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Abstract

The topic of this paper is how to implement optimal decisions in an uncertain world. A study of how this is done in real systems—from the
nationwide optimization of the economy by the Central Bank to the optimal use of resources in a single cell—shows that a common approach
is to use feedback strategies where selected controlled variables are kept at constant values. For example, in order to optimize the wealth
of a country (overall objective), the Central Bank may to attempt to keep the inflation constant (selected controlled variable) by adjusting
the interest rate (independent input variable). The underlying idea is that the system behavior is indirectly optimized by keeping selected
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ontrolled variables at given constant values (setpoints). In the paper this idea of “self-optimizing control” is explained and illustr
arge number of examples.
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. Introduction

Consider the national economy, the government,
ompanies and businesses, consumers, chemical process
lants, biological systems, and so on. For all these sys-

ems we have available degrees of freedom (decisions)
that we want to use in order to optimize the operation

system behavior). We are herenot concerned with the
ptimization of these systems (which is certainly very

nteresting), but rather on how the decisions areimplemen-
ed.

A major problem in making and implementing the right
ecision is that the world changes and is uncertain. These
hanges and uncertainties, which we cannot affect, are here
enoteddisturbances d. They include changes in exogenous
ariables (such as the outdoor temperature), parameter
ariations in the system (e.g. aging of system compo-
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nents), as well as uncertainty in our model (if any) of
system.

One approach for adapting or correcting for disturba
is to use any new information about the system beha
and the disturbances to reoptimize the decision varia
(“on-line optimization”). A simpler strategy is to impl
ment some simple rule such that the system some
“optimizes itself” without the need for actually performi
on-line optimization. We here consider the strategy
“self-optimizing control”(Skogestad, 2000)where the rule
is to keep some “magic” controlled variable at a cons
value (setpoint). The idea is extremely simple, but it m
nevertheless be difficult to grasp. The objective of this p
is two-fold: (1) provide some simple examples that illust
the concept of self-optimizing control; (2) show that
concept is universal and may be applied for a wide rang
systems.

The idea of self-optimizing control is explained in m
detail in the next section. In the rest of this section we con
optimal operation and discuss the difficulty in achieving
practice.

Assume that optimal operation of the system can be q
tified in terms of a scalar cost function (performance ind
098-1354/$ – see front matter © 2004 Elsevier Ltd. All rights reserved.
oi:10.1016/j.compchemeng.2004.07.011
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J0 which is to be minimized with respect to the available
degrees of freedom (manipulated variables; inputs)u0:

min
u0

J(x, u0, d) (1)

subject to the constraints

g1(x, u0, d) = 0, g2(x, u0, d) ≤ 0 (2)

Hered represents the exogenous disturbances that affect the
system, including the effect of changes in the model (typi-
cally represented by changes in the functiong1), changes in
the specifications (constraints), and changes in the parameters
(prices) that enter in the cost function (and possibly in the con-
straints).x represents the internal states. We have available
measurementsy = f0(x, u0, d) that give information about
the actual system behavior during operation. Note thatymay
include measured values of the disturbancesd, as well as
known or measured values of the independent variablesu0.
For simplicity, we assume pseudo-steady-state behavior and
do not in this paper include time as a variable. The equality
constraints (g1 = 0) include the model equations, which give
the relationship between the independent variables (u0 and
d) and the states (x). The system must generally satisfy sev-
eral inequality constraints (g2 ≤ 0); for example, we usually
require that selected variables are positive. The cost function
J pen-
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ning of the race, and the runner has to select an appropriate
energy input in order to optimize the behavior. How should
this be done in practice?

From this example it is clear that the selection of an appro-
priate operational policy may be a difficult issue for problems
with unconstrained degrees of freedom. Such problems are
therefore the focus of the rest of this paper. We assume in
the following that the active constraints are fulfilled (imple-
mented), and we write, for simplicity, the remaining uncon-
strained problem in reduced space in the form

min
u

J(u, d) (3)

whereu represents the remaining unconstrained degrees of
freedom, and where we have also eliminated the statesx =
x(u, d) by making use of the model equationsg1. For any
value of the disturbancesdwe can then solve the (remaining)
unconstrained optimization problem (3) and obtainuopt(d)
for which

min
u

J(u, d) = J(uopt(d), d)
def= Jopt(d)

The solution of such problems has been studied extensively,
and is not the issue of this paper. In this paper the issue is
implementation, and how to handle variations (known or un-
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is in many cases a simple linear function of the inde
ent variables with prices as parameters. In many ca

s more natural to formulate the optimization problem
aximization of the profitP, which may be formulated as
inimization problem by selectingJ = −P .
In most cases some subsetg′

2 of inequality constraintsg2
re active (i.e.g′

2 = 0 at the optimal solution). Impleme
ation to achieve this is usually simple: we adjust a co
ponding number of degrees of freedomu0 such that thes
ctive constraints are satisfied (the possible errors in en

ng the constraints should be included as additional di
ances). For example, consider short-distance (e.g. 1
unning where the objective is minimize the running t
J = T ) and the independent variableu0 is the energy inpu
or something similar). For a reasonable well-trained ru
he optimal solution lies on the constraint of maximum
rgy. Implementation is then easy; the runner simply ru
aximum speed (applies maximum energy input) throug

he race.
In many cases the active constraints consumes all the

ble degrees of freedom. For example, if the original prob
s linear (linear cost function with linear constraintsg1 and
2), then it is well known from Linear Programming theo
hat there will be no remaining unconstrained variables
onlinear problems (e.g. the modelg1 is nonlinear), the op

imal solution may be unconstrained, and such problem
he focus of this paper. For example, consider long-dist
e.g. marathon) running where the objective is minimize
unning time (J = T ) and the independent variableu0 is the
nergy input. In this case the optimal solution does not li

he constraint of maximum energy, at least not at the be
nown) ind in a simple manner.
In the following we letd∗ denote the nominal value

he disturbances. Let us first assume that the disturb
ariables are constant, i.e.d = d∗. In this case implemen
ation is simple: we keepu constant atus = uopt(d∗) (hereus
s the “setpoint” or desired value foru), and we will have
ptimal operation. However, there are two problems

his policy. First, it is usually not possible in practice to
xactlyu = us due to an implementation errorn = u − us
Skogestad, 2000). Second, the disturbanced changes, s
opt(d∗) is no longer optimal. What value should we se
or us in this case? Two “obvious” approaches are:

. If we do not have any information on how the system
haves during actual operation (no measurementy), or if
it is not possible to adjustu once it has been selecte
then the optimal policy is to find the best “average” va
us for the expected disturbances, which would invo
“backing off” from the nominally optimal setpoints b
selectingus different fromuopt(d∗). The solution to thi
problem is quite complex, and depends on the expe
disturbance scenario. For example, we may use sto
tic optimization(Birge & Louveaux, 1997). In any case
operation may generally be far from optimal for a gi
disturbanced.

. In this paper we assume that the unconstrained de
of freedomumay be adjusted freely and that we have
formation (measurementsy = fy(u, d)) about the actua
operation. If we then have a model of the system, we
image using these measurements to estimate the
disturbancẽd, and based on this perform a reoptimiza



Sigurd Skogestad / Computers and Chemical Engineering 29 (2004) 127–137 129

to compute a new optimal valueuopt(d̃), which is subse-
quently implemented,u = uopt(d̃).

Both of these “obvious” approaches are complex and re-
quire a detailed model of the system, and are not likely to be
used in practice, except in special cases. Is there any simpler
approach that may work?

2. Implementation of optimal operation:
self-optimizing control

Generally, we find that the decision making and imple-
mentation in real systems is done in a hierarchical man-
ner (Findeisen et al., 1980)with setpoints for selected con-
trolled variables being send from one layer to the one
below. This corresponds to a simple feedback strategy
where the degrees of freedom (manipulated variables; in-
puts) u are adjusted to keep selected controlled variables
c at constant valuescs (“setpoints”) (seeFig. 1). Here c
is a selected subset or combination of the available mea-
surementsy. The idea is to get “self-optimizing control”
where “near-optimal operation” is indirectly achieved, with-
out the need for continuously solving the above optimization
problem.

2
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today is for the Central Bank to adjust the interest rate (u) in
an attempt to keep the inflation rate constant (corresponds to
the choicec = y1). A typical desired value (setpoint) for the
inflation rate iscs = 2.5%.

What is the motivation behind attempting to keepc con-
stant atcs? Obviously, the idea must be that the optimal value
of c, denotedcopt(d), depends only weakly on the distur-
bancesd, such that by keepingc at this value, we indirectly
obtain optimal, or at least near-optimal, operation(Morari,
Stephanopoulos, & Arkun, 1980). More precisely, we may
define the lossL as the difference between the actual value
of the cost function obtained with a specific control strategy,
e.g. adjustingu to keepc = cs, and the truly optimal value of
the cost function, i.e.

L(u, d) = J(u, d) − Jopt(d) (4)

Self-optimizing control(Skogestad, 2000)is when we can
achieve an acceptable loss with constant setpoint values for
the controlled variables (without the need to reoptimize when
disturbances occur).

Let us summarize how the optimal operation may be im-
plemented in practice:

1. A subset of the degrees of freedom inu0 are adjusted in
order to satisfy the optimally active constraints.
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.1. Example: Central Bank

Consider the role of the Central Bank in a country, wh
as available one degree of freedom, namely the interes
u). The measurementsymay in this case include the inflati
ate (y1), the unemployment rate (y2), the consumer spendi
y3) and the investment rate (y4). In addition, we also know
he chosen interest rate (y5 = u). The simplest policy woul
e to do nothing, that is, to keep the interest rate constant
esponds to the choicec = y5 = u). A more common polic

ig. 1. Implementation of optimal operation with separate layers for
ization and control. Self-optimizing control is when near-optimal oper

an be achieved withcs constant, in spite of disturbancesd and implemen
ation errorn.
. The remaining unconstrained degrees of freedomu0
(denotedu) are adjusted in order to keep selected c
trolled variablesc at constant desired values (setpoi
cs.

Ideally, this results in “self-optimizing control” where
urther optimization is required, but in practice some
requent update of the setpointscs may be required. If th
et of active constraints changes, then one generally h
hange the set of controlled variablesc, or at least chang
heir setpoints, since the optimal values generally chan

discontinuous manner when the set of active constr
hange.

It is usually straightforward to select variables correspo
ng to the optimally active constraints. For example, if
ant to drive a car from A to B along a straight road in
hortest possible time, subject to the constraint of sta
elow the speed limit, then speed should be selected a
ontrolled variable (c) and its setpoint (cs) should be the give
peed limit.

As mentioned, the difficult issue is to select contro
ariables for the unconstrained degrees of freedomu. For
xample, if we want to drive a car from A to B along a v
inding road in the shortest possible time, then most li
e must drive slower than the speed limit in order to
n the road (“remain feasible”). A possible constant setp
trategy in this case could be, for example, to keep the s
t a constant valuecs = k

√
s wheres is the straight line pat

head andk is a constant. The reason behind this policy co
e that the distance for stopping the car increases wit
quare of the speed.
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We next present some simple examples to illustrate the
above ideas.

2.2. Example 2: cake baking

Let us consider the final process in cake baking, which is
to bake it in an oven. Here there are two independent vari-
ables, the heat input (u1 = Q) and the baking time (u2 = t).
It is a bit more difficult to define exactly whatJ is, but it could
be quantified as the average rating of a test panel (where 1 is
the best and 10 the worst). One disturbance will be the room
temperature. A more important disturbance is probably un-
certainty with respect to the actual heat input, for example,
due to varying gas pressure for a gas stove, or difficulty in
maintaining a constant firing rate for a wooden stove. In prac-
tice, this seemingly complex optimization problem is solved
by using a thermostat that keeps a constant oven temperature
(e.g. keepc1 = Toven at 200 degC) and keeping the cake in
the oven for a given time (e.g. choosec2 = u2 = 20 min).
This feedback strategy, based on measuring the oven temper-
aturec1, gives a self-optimizing solution where the heat input
(u1) is adjusted to correct for disturbances and uncertainty.
The optimal value for the controlled variables (c1 andc2) are
obtained from a cook book. An improved strategy may be to
measure also the temperature inside the cake, and take out
t
a
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2.4. Example 4: biology

Biological systems, for example a single cell, contain
very complex chemical and biochemical reaction networks,
of which significant parts have the function of a feedback
control systems (Savageau, 1976; Doyle & Csete, 2002).
Indeed, Doyle (lecture, Santa Barbara, February 2002) spec-
ulates that many of the supposedly unimportant genes in bi-
ological systems are related to control, and compares this
with an airplane (or a chemical plant) where the majority
of the number of the parts of the system is related to con-
trol. Biological systems at the cell level are obviously not
capable of performing any “on-line” optimization of its over-
all behavior. Thus, it seems safe to assume that biologi-
cal systems by natural selection through millions of years
must have developed simple self-optimizing control strate-
gies of the kind discussed in this paper. For biologists it
is a challenge is to find out how these complex systems
work and what the controlled variables are. Also, if one can
identify the controlled variables, then one can imagine per-
forming “reverse engineering” in an attempt to identify the
cost functionJ0 that nature has been attempting to mini-
mize.

2.5. Example 5: portfolio management
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he cake when a given temperature is reached (i.e.u2 = t is
djusted to get a given value ofc2 = Tcake).

.3. Example 3: long distance running

Consider a runner who is participating in a long-dista
ace, for example a marathon. The cost function to be
mized is the total running time,J = T . The independen
ariableu is the energy input (or something similar).
ourse, the runner may perform some “on-line” optimiza
f his/her body, but this is not easy (especially if the r
er is alone), and a constant setpoint policy may probab
ore efficient. Does there exist any “magic” self-optimiz

ariablec that may be kept constant?
A common and simple strategy is to run at the same s

s the other runners (e.g.c = y1 = distance to best runne
ith cs = 1 m). However, this may give infeasibility if one
o longer able to maintain this speed. Also, it does not w

f the runner is alone.
Another strategy is to keep constant speed (c = y2 =

peed). However, this policy is not good if the terrain is h
d= slope of terrain), where it is clearly optimal to adjust
peed. This policy, as well as the previous one, may also
nfeasibility, since the runner may not able to maintain
esired speed if the terrain is uphill.

A better self-optimizing strategy for a lone runner m
e to keep a constant heart rate (c = y3 = heart rate) or
onstant lactate concentration in the muscles (c = y4 = lac-
ate level). In these cases, a constant setpoint strategy
ore reasonable, as the speed will be reduced while ru
phill.
s

Assume that we want to decide what fraction of our
ngs should be in stocks and what fraction should be in
ank or in bonds. In this case we want to maximize the fu
alue of the savings, and the manipulated input is the bu
or selling) of stocks. One constant setpoint strategy is t
alance the portfolio such that we always have a fixed
e.g.cs = 50%) of our capital in stocks and the rest in bo
r bank savings (Fleten, Hyland, & Wallace, 2002; Pe
Sharpe, 1988). This means that we will sell stocks w

heir value increases and buy stocks when their value
own.

.6. Example 6: business systems and KPIs

Business systems are very complex with a large num
f degrees of freedom (u), measurements, disturbances
onstraints. The overall objective of the system is usu
o maximize the profit (or more specifically, the net pre
alue of the future profit,J = −NPV) (although, business
re often criticized for using other shorter-term objecti

ike maximizing the present share value, but we will le
hat discussion). In any case, it is clear that few mana
ase their decisions on performing a careful optimizatio

heir overall operation Instead, managers often make
ions about “company policy”, which in many cases invol
eeping selected controlled variables (c) at constant value
or example, the recently very popular approach of id

ying “value metrics” orkey performance indicators(KPIs)
or the business (e.g.Koppel (2001)), may be viewed as th
election of appropriate controlled variables, that isc = KPI.
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Some examples of KPIs may be

• energy consumption per unit produced;
• number of accidents per unit produced;
• number of employees per unit produced;
• research spending per unit produced;
• size of administration relative to production staff;
• time for the business to respond to an order from a cus-

tomer;
• fraction of manual control loops in the plant.

One may think that the value of the above KPIs should be
minimized, but this is not the case since it would imply non-
optimal operation with “overspending”. The optimal values
for the KPIs are typically obtained by comparing oneself with
other successful businesses. This is done by “benchmarking”
to find the “best business practice”. However, it is less obvious
what variables to select as KPIs? In theory, the results in the
next section may be used to find the optimal set of KPIs. This
assumes that we have knowledge about the sensitivity matrix
F for how the measurements depend on the disturbancesd,
and that we disregard the implementation error.

3. Selection of controlled variables
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Fig. 2. Feedback implementation of unconstrained optimum.

• In order to minimize the effect of implementation errorsn,
the sensitivity ofc to changes in the independent variable
u should be aslarge as possible. This is maybe not so
obvious, but it can be quite easily understood fromFig. 2:
a large sensitivity corresponds to a steep slope of thec-
curve and then a givennwill only weakly increase the cost
J. (Equivalently, the relationship betweenc andJ should
be as “flat” as possible(Skogestad, 2000).)

From this, Skogestad (2000)formulated the following
rules for selecting controlled variablesc:

1. The optimal value ofc should be insensitive to distur-
bances.

2. c should be easy to measure and control accurately.
3. c should be sensitive to changes in the (steady-state) de-

grees of freedom. (Equivalently, the costJ as a function
of c should be flat.)

4. For cases with more than one unconstrained degrees of
freedom, the selected controlled variables should be inde-
pendent.

The first rule minimizes the effect of disturbancesd.
The second rule reduces the magnitude ofn. The last two
rules minimize the effect of the implementation errorn. The
f rule
(

S e
i ntrol
e

r
“
d tion
e

What should we control? As mentioned, we should g
rally control variables corresponding to the optimally ac
onstraints. We here consider the remaining unconstr
ariables (if any) for which the selection of controlled va
bles is a difficult issue.

To answer this question quantitatively we need to e
ate the loss imposed by keeping the selected contr
ariables at constant setpoints. The lossL is defined a
= J − Jopt(d), whereJ is the cost obtained when the co

rolled variablesc are kept constant andJopt(d) is the lowes
chievable cost with the given disturbance. However, this
valuation requires a model of the system, so we will
onsider some more qualitative rules for selecting contro
ariables.

.1. Qualitative rules

To approach the problem in a systematic manner, it is
ul to consider the reasons why a constant setpoint policy
ot be optimal. Generally, there are two reasons, name
resence of (1) disturbancesd and (2) implementation erro
. This is illustrated inFig. 2 where we see that the actu
alue c = cs − n of the controlled variable should idea
orrespond to the optimal valuecopt(d) whereJ has its min
mum. This has the following implications for the choice
ontrolled variablesc:

In order to minimize the effect of disturbancesd, we obvi-
ously want theoptimalvalue ofc to remain constant. Th
is, the sensitivity ofcopt(d) to changes ind should be a
smallas possible.
our rules may be summarized by the following single
Skogestad, & Postlethwaite, 1996):

elect controlled variablesc for which the controllable rang
s large compared to the sum of optimal variation and co
rror.

Here the “controllable range” is the range thatc may
each by varying the inputs (degrees of freedom)u, the
optimal variation” is the expected variation incopt due to
isturbance, and the “control error” is the implementa
rrorn.
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3.2. Minimum singular value rule

The above rules may be quantified in terms of the
minimum singular value ruleSkogestad & Postlethwaite,
1996:

Select controlled variablesc that maximize the minimum sin-
gular valueσ(G) of the appropriately scaled steady-state gain
matrixG from inputsu to c.

By inputsu is here meant the unconstrained steady-state
degrees of freedom. Note that appropriate scaling is impor-
tant:

• Scale the candidate variablesc such that their expected
variation is similar. Specifically, dividing each variable by
its optimal variation+ implementation error gives each
variable an expected variation of magnitude 1.

• Scale the inputsu such that they have similar effect on
the costJ (only necessary if we have two or more uncon-
strained degrees of freedom).

A detailed derivation of the minimum singular value is
given inHalvorsen, Skogestad, Morud, & Alstad ( 2003). It
is shown that for small disturbances (local behavior) and with
the scaling mentioned above, the expected worst-case loss is
bounded by

L

F opor-
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J , the
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3
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t ove-
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• ion.
• ion

•
• m-

•

• Step 6.For the remaining unconstrained degrees of free-
dom: evaluate the loss with constant setpoints for alterna-
tive controlled variables.

• Step 7.Evaluate more carefully the alternatives with a
small loss, including controllability analysis.

The procedure has been applied to a large number
of process case studies, including the optimal operation
of distillation columns(Skogestad, 2000), the Tennesee
Eastman challenge process(Larsson, Hestetun, Hovland, &
Skogestad, 2001)and the reactor-recycle process(Larsson,
Govatsmark, Skogestad, and Yu, 2003).

One disadvantage with this “brute force” method is that
it is requires a lot of computations, especially since there is
no limit on the possible candidate controlled variables that
may be evaluated (in Step 6). It may therefore be important
to limit the number of alternatives to evaluate in detail, and
methods for this are discussed in detail byLarsson et al.
(2001). One effective method is to eliminate choices with a
small minimum singular value.

Note that we have assumed that the cost depends only on
the steady-state behavior. This is reasonable in most cases.
The dynamic (control) behavior comes only into Step 7, and
if the control properties are not acceptable, then one needs to
go back and evaluate more candidates.

3
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≤ σ(Juu)

2

1

σ(G)2

rom this we see that the expected loss is inversely pr
ional to the square ofσ(G). The matrixJuu is the secon
erivative (Hessian) of the cost function with respect to

nputsu, and is thus independent ofc. The bound is tight fo
he scalar case, and usually tight also for cases with
han one input. A more serious limitation is usually that
bove bound holds only locally, that is, in the range w
uu is constant. This is often not the case, for example
ptimum may be close to infeasibility (in some other varia
r close to “the edge of a cliff”).

.3. Direct evaluation of loss

A direct evaluation of the loss for the expected
urbances and implementation errors avoids the ab
entioned problems with local behavior and infeasibi
he method requires a model of the system and involve

ollowing steps(Skogestad, 2000):

Step1.Determine the degrees of freedom for optimizat
Step 2.Define optimal operation in terms of a cost funct
J and operational constraints.
Step 3.Identify the important disturbances.
Step 4.Use the model to find the optimal operation (no
inally and with disturbances).
Step 5.Identify active constraints (and control these).
.4. Optimal measurement combination

Let y denote the available measurements (on-line in
ation about the system behavior), e.g. temperature,

ion rate or energy consumption. We make the simplify
but very reasonable) assumption that the number of
rolled variables (s) is equal to the number of unconstrain
egrees of freedom (u). In most cases the controlled va
blesc are selected simply as a subset of the measurem
, but more generally we may allow for variable combi
ions and writec = h(y) where the functionh(y) is free to
hoose.

One important disadvantage with the two above met
singular value rule and direct loss evaluation) is that they
nly be used to check given choices forc. If the loss is accep
ble then we have “self-optimizing control” and it does
eally matter of there exists an even better choice. How
f the loss is not acceptable, then we have no way of kn
ng if there simply does not exist any self-optimizing sche
r if we have overlooked some “magic” controlled varia
= h(y). Unfortunately, there exists no general method
nding the optimal (“magic”) controlled variable, and th
nowing what the best achievable loss is.

The situation is better if we consider the local beha
here it is sufficient to consider linear measurement co
ations

c = Hy (5)

here the constant matrixH is free to choose. This is di
ussed next.
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3.4.1. Without implementation error
It is possible to find the locally optimal linear measurement

combinationH as proposed byHalvorsen et al. (2003). The
local-behavior assumption makes it possible to use the max-
imum singular value of a matrixM to effectively evaluate the
loss for all expected disturbances and implementations error.
However, a numerical search to find the best linear combi-
nation is still required. In addition to being computationally
demanding the method also provides little insight into how
to combine the measurements in order to get a small loss.

3.4.2. With implementation error
The simple method ofAlstad and Skogestad (2002)re-

quires much less computations and gives more insight into
how to select good controlled variables. The main restriction,
besides being a local method, is that the implementation error
is not considered.

Interestingly,Alstad and Skogestad (2002)show that with
no implementation error it is always possible to find a mea-
surement combination with zero loss, provided we have
enough measurements. More precisely, we need as many
measurements as there are independent variables (inputs plus
disturbances).

The derivation is surprisingly simple; in general, the op-
timal value of they values depend on the disturbancesd,
a
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constant, i.e.c = y1. However, recall from the requirement
HF = 0 for zero loss, that we need an extra measurement for
every disturbances, so with the large number of disturbances
it is unlikely that this choice, based on a single measurement,
is always self-optimizing. Even if we assume that there is only
a single major disturbance (e.g.d1 =consumer mood), then
from the results presented above we need to combine at least
two measurements (number ofy = number ofu + number of
d = 1 + 1 = 2). This could, for example, be a corrected in-
flation goal based on using the interest rate,c = h1y1 + h2u,
but more generally we could use additional measurements,
c = h1y1 + h2y2 + h3y3 + h4y4 + h5u. The parameters for
such a corrected inflation goal could be obtained by reopti-
mizing the model for the national economy with alternatives
disturbances, using the approach just outlined.

3.5. Summary: selection of controlled variables

There are broadly three classes of systems when it comes
to the use of self-optimizing control.

• Class A.Systems for which we have no model, and where
on-line optimization is therefore not possible. This class
of problems is ideally suited for self-optimizing control,
but since there is no model we cannot obtain the con-
trolled variables in a systematic manner. An example is

zing
try-
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r-
p e and
nd we may write this dependency asyopt(d). For “small”
isturbance changes we may linearize this relationship t

yopt(d) = F�d (6)

here the sensitivityF = dyopt(d)/dd is a constant matrix
e would like to find a variable combination�c = H�y

uch that�copt = 0. We get�copt = H�yopt = HF�d = 0.
his should be satisfied for any value of�d, so we mus
equire thatH is selected such that

F = 0 (7)

.e. H must be in the left null space ofF. This is always
ossible provided we have at least as many (indepen
easurementsy as we have independent variables (u and

), i.e. number ofy = number ofu + number ofd (Alstad &
kogestad, 2002).

.4.3. Example 1: Central Bank (continued)
For this problem we haveu = interest rate andJ =

National Product. A constraint in this problem isu ≥ 0
because a negative interest rate will result in an unstab
ation), but in most cases this constraint will not be ac
o we have an unconstrained optimization problem with
egree of freedom. The measurementsymay include the in
ation rate (y1), the unemployment rate (y2), the consume
pending (y3) and the investment rate (y4). There are man
isturbances, for example,d1 =“the mood” of the consumer
2 = global politics, including possible wars,d3 = oil prices,
4 = weather,d5 = technology changes, etc. As mention
arlier, a common policy is to attempt to keep the inflation
long-distance running. In such cases the self-optimi
controlled variables, if they exist, must be obtained by
ing alternative choices on the real system, for exam
through evolution.
Class B.Systems that can be modelled, but where
line optimization is impractical or costly. Self-optimizi
control is also well suited for such problems, and the
trolled variables may be obtained using the methods m
tioned above. A generic model usually suffices bec
the selection of controlled variables is astructural issue
which usually does not depend strongly on the spe
parameter values.
Class C.Simple systems that are easy to model and
timize on-line (like the blending case considered in
next section). In this case it may be better to use on
optimization, rather than using a large effort to find s
optimizing controlled variables, if they exist. In particu
this is the case for problems where the active constr
change with time.

Finally, it is stressed again that we in this section h
ssumed that the set of active constraints remains con

f the active constraints change, then generally the best
unconstrained” controlled variable (and setpoints) will a
hange.

. Example 7: optimal blending of gasoline

The following example is included for illustrative pu
oses, as an on-line model-based approach is simpl

skoge
Note
MISPRINT: With implementation error

skoge
Note
MISPRINT: WITHOUT implementation error
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would probably be preferred for this process. Nevertheless,
we here assume that we want to use a constant setpoint strat-
egy. The example then illustrates clearly the importance of
selecting the right controlled variables, and illustrates nicely
of the nullspace method ofAlstad and Skogestad (2002)for
selecting optimal measurement combinations.

Problem statement.We want to make 1 kg/s of gasoline
with at least 98 octane and not more than 1 wt.% benzene, by
mixing the following four streams:

• Stream 1: 99 octane, 0% benzene, pricep1 = (0.1 +
m1) $/kg.

• Stream 2: 105 octane, 0% benzene, pricep2 = 0.200 $/kg.
• Stream 3: 95 octane, 0% benzene, pricep3 = 0.12 $/kg.
• Stream 4: 99 octane, 2% benzene, pricep4 = 0.185 $/kg.

The maximum amount of stream 1 is 0.4 kg/s. The distur-
bance (d) is the octane contents in stream 3 which may vary
from 95 (its nominal value) and up to 97. We want to obtain a
self-optimizing strategy that “automatically” corrects for this
disturbance.

Solution.The degrees of freedom for this problem are

u0 = [ m1 m2 m3 m4 ]T

wheremi (kg/s) represents the mass flows of the individual
s st of
t

J
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solution is to have

u0,opt(d = 97) = [ 0.20 0.075 0.725 0]T

which corresponds toJopt(d = 97) = 0.126 $.
The proposed control strategy is then to use three of the

degrees of freedom inu0 to control the following variables
(active constraint control):

1. keep the product rate at 1 kg/s;
2. keep the octane number at 98;
3. keepm4 = 0.

This leaves one unconstrained degree of freedom. We
would like to achieve self-optimizing control. To this effect,
we now evaluate the loss imposed by keeping alternative sin-
gle controlled variablesc constant at their nominal optimal
values,cs = copt(d∗). The measurements available are in this
case a subset ofu0, namely

y = [ m1 m2 m3 ]T

Here we have excludedm4 since it is kept constant at 0, and
thus is independent ofd andu. Let us first consider keeping
individual flows constant (and the three others adjusted to
s mber
a o
9

• to

• tive

• to

that
g n of
t
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t
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( mber
u ust
treams. The optimization problem is to minimize the co
he raw material:

(u0) =
∑

i

pimi

= (0.1 + m1)m1 + 0.2m2 + 0.12m3 + 0.185m4

ubject to 1 equality constraint (given product rate) an
nequality constraints:

1 + m2 + m3 + m4 = 1

1 ≥ 0, m2 ≥ 0, m3 ≥ 0, m4 ≥ 0

1 ≤ 0.4

9m1 + 105m2 + dm3 + 99m4 ≥ 98

m4 ≤ 1

t the nominal operating point (where the octane numb
tream 3 isd∗ = 95) the optimal solution is to have

0,opt(d
∗ = 95) = [ 0.26 0.196 0.544 0]T

hich givesJopt(d∗) = 0.13724 $. We find that three co
traints are active (the product rate equality constraint
on-negative flowrate form4 and the octane constraint). T
ame three constraints remain active when we change t
ane number in stream 3 from 95 to 97, where the opt
atisfy the active constraints on product rate, octane nu
nd zero flow form4). We find whend is changed from 95 t
7:

c = m1 constant at 0.26:J = 0.12636 corresponding
lossL = 0.12636− 0.126= 0.00036;
c = m2 constant at 0.196: infeasible (requires a nega
m3 to satisfy the octane constraint);
c = m3 constant at 0.544:J = 0.13182 corresponding
lossL = 0.13182− 0.126= 0.00582.

Let us now obtain the optimal variable combination
ives zero loss. We consider a linear variable combinatio

he measurementsy:

c = H�y = h1�m1 + h2�m2 + h3�m3

he relationship between the optimal value ofy and the dis
urbance is exactly linear in this case and we have

yopt = F�d =




0.20− 0.26

0.075− 0.196

0.725− 0.544


 �d

2

=




−0.0300

−0.0605

0.0905




︸ ︷︷ ︸
F

�d

we divide by 2 because the disturbance is 2 octane nu
nits). To get a variable combination with zero loss we m

skoge
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Fig. 3. Possible implementation of optimal blending withc = m1 − 0.496m2 as the “self-optimizing” controlled variable.

haveHF = 0 or

−0.0305h1 − 0.0605h2 + 0.0905h3 = 0

In this case we have 1 unconstrained degree of freedom (u)
and 1 disturbance (d), so we need to combine at least 2 mea-
surements to get a variable combination with zero loss. This
is confirmed by the above equation which may always be
satisfied by selecting one elementi, H equal to zero. We
therefore have an infinite number of possible combinations
of variables with zero loss. For example, the following three
combinations of two variables give zero loss:

1. c = m1 − 0.496m2 constant at 0.162: zero loss (derived
by settingh3 = 0 and choosingh1 = 1);

2. c = 3.02m1 + m3 constant at 1.328: zero loss (derived by
settingh2 = 0 and choosingh3 = 1);

3. c = 1.496m2 + m3 constant at 0.837: zero loss (derived
by settingh1 = 0 and choosingh3 = 1).

A possible implementation of optimal blending with
single-loop controllers andc = m1 − 0.496m2 as the “self-
optimizing” controlled variable is shown inFig. 3. Pairings
of inputs and outputs, for example the largest flow is used
to control the total flowrate, have been included for illustra-
tion. However, note that the choice of pairings does not influ-
e have
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m Dis-
t y the
o -
j s
m
S

ble
c
w to
i e a
s ts in
t )
(

5. Discussion

5.1. Change in prices

By “prices” we mean the parameters or weights that enter
in the cost function.

In the above example, the prices were assumed constant,
but from simple considerations it is clear that, unless the ac-
tive constraints change, price changes will not affect the selec-
tion of controlled variables. The reason is that prices appear
only in the optimization part of the block diagram inFig. 1and
do not effect the measurementsy and also not the controlled
variablec = h(y). In other words, no matter which variables
c we choose to control, there will be no “self-correction” to
price changes.

However, prices changes will of course influence the op-
timal value of the variables, and since prices are generally
known, we would like to include some “price correction”.
This may be done in two different ways:

1. Make the setpointcs a function of the pricesp (this is prob-
ably the simplest and most obvious approach). Specifi-
cally, for a price change�p = p − p∗, the corrected set-
point is

cs = cs(p
∗) + HFp�p

y

2 own)
,

5
r the

c ally,
c e
s mal
fl

u

nce the steady-state costs as long as the controllers
ntegral action. This control structure is steady-state

al as long as the active constraints do not change.
urbances in the feed octane in stream 3 are detected b
ctane controller (OC) which adjustsm2, andm1 is then ad

usted to keepc at its setpointcs = 0.162. Price change
ay be included as a correction on the setpointcs (see
ection 5).
As mentioned, there are an infinite number of varia

ombinationsc of the three measurements (m1, m2, m3)
ith zero disturbance loss. However, if we also were

nclude the implementation error, then there would b
ingle optimal combination of the three measuremen
erms of the overall expected loss(Halvorsen et al., 2003
seeSection 5).
where the matrixFp = dyopt/dp is the optimal sensitivit
of the measurements to prices (see below).

. Keep constant setpoints, and instead include the (kn
prices as extra “measured disturbances”d (Skogestad
2004).

.1.1. Example 7 (continued)
Let us return to the blending example, and conside

ase where the price of stream 2 may vary. Specific
hanging the pricep2 from 0.2 to 0.21 gives the sam
et of active constraints and the following new opti
ows

0,opt(p2 = 0.21, d = 95) = [ 0.28 0.188 0.532 0]T
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The sensitivity to price changes is then

�yopt = [ 2.0 −0.8 −1.2]T�p2

If we, for example, selectc = m1 − 0.496m3 = y1 −
0.496y3 as the controlled variable, then the price-corrected
setpoint iscs = 0.162+ (2 − 0.496(−0.8))�p2 = 0.162+
2.40�p2.

Note that the above discussion assumes that the price
changes are sufficiently small such that the active constraints
do not change. Larger price changes are likely to change the
set of active constraints, and through this strongly affect the
choice of controlled variables. In other words, there is usually
not a single set of controlled variables that will be the best
for all prices.

5.2. Implementation error

One issue which we have not discussed so far is the imple-
mentation errorn, which is the difference between the actual
controlled variablec and its desired value (n = cs − c). In
some cases there may be no implementation error, but this is
relatively rare.

5.2.1. Example 1 (continued)
licy
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earlier, numerical approaches may be used, at least locally
(Halvorsen et al., 2003), but these are quite complicated.

Finally, it should be noted thatFig. 1is a bit misleading as
it (i) only includes the contribution ton from the measurement
error, and (ii) gives the impression that we directly measure
c, whereas we in reality measurey, i.e.n in Fig. 1represents
the combined effect onc of the measurement errors fory.

5.3. Model uncertainty

Model uncertainty, the differences between the actual sys-
tem and its model, is usually not very important when imple-
menting a “self-optimizing” constant setpoint policy. This
follows since the model is not explicitly used in a constant
setpoint policy, but rather we are using a feedback implemen-
tation based on measurements from the actual plant. It may
be desirable to use the model to obtain the optimal setpoints
cs, but alternatively we may attempt to obtaincs by observ-
ing the actual behavior. A modelis needed when using the
above rocedure to select the best controlled variable (with
minimum loss), but since we are using this model to make
structural rather than parametric decisions, it is obviously not
critical if there is some mismatch between the system and the
model, as long as its structural properties are correct.
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Let us again consider the Central Bank. A simple po
ould be to do nothing, that is keep the interest rate con

i.e. selectc = u). In this case there would be no implem
ation error. However, a more common policy is to attem
eep the inflation rate constant (c = y1), and in this case the
ill generally be a differencen between the actual inflatio

ate (c) and its desired value (cs), because of (i) poor dynam
ontrol and (ii) an incorrect measurement of the infla
ate.

.2.2. Remark
In this special case (Section 2.1) there is no implemen

ation error when using the “no-control” (open-loop) po
ith c = u, but this is not at all a general rule. For exam

n a wood-fired pizza oven (Section 2.2) our inability to keep
he heat input (u1) at a constant desired value, may be a
eason for avoiding the open-loop policy (c1 = u1).

In any case, the implementation errorn generally need
o be taken into account, and it will affect the optimal cho
or the controlled variables. Specifically, with implemen
ion error it is no longer possible to find a set of contro
ariables that give zero loss. One way of seeing this
onsider the implementation errorn as a special case of
isturbanced. Recall that to achieve zero loss, we nee
dd one extra measurementy for each disturbance. Howev
o measurement is perfect, so this extra measuremen
lso have an associated error (“noise”), which may aga
onsidered as an additional disturbance, and so on.

Unfortunately, the implementation error makes it m
ore difficult to find the optimal measurement comb

ion, c = h(y), to use as controlled variables. As mentio
. Conclusion

Most real systems are operated by keeping selected
rolled variables” at given values (“setpoints”). The goa
o have “self-optimizing control” which is when near-
ptimal operation is achieved with constant setpoints (o

requent updates). Many real examples have been pres
n this paper.

There are broadly three classes of problems when it c
o the use of self-optimizing control. (A) A self-optimizi
onstant setpoint strategy is obviously ideally suited for
ems that are difficult to model, and thus cannot be optim
n-line. An example is long-distance running. Howeve
uch cases the self-optimizing controlled variables, if
xist, must be obtained by trial and error. (B) Self-optimiz
ontrol is also well suited for systems that can be mode
ut where on-line optimization is impractical or costly.
uch cases, controlled variables may be obtained usin
ethods mentioned in this paper based on a “generic” m
f the system. (C) For simple systems that are easy to m
nd optimize, like the blending case, it is probably bette
se on-line optimization.

For class B, where a model is available, the controlled
bles may be obtained in a systematic manner. The firs

s to quantify the operational objectives through a scalar
unction J to be minimized. Next, the system is optimiz
ith respect to its degrees of freedomu0. From this we iden

ify the “active constraints” which are implemented as s
inally, if there remains unconstrained degrees of freedou,
e must identify appropriate controlled variablesc to keep a
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constant setpoints. Several methods exist for this, including
the minimum singular value rule, “brute force” loss evalua-
tion and optimal measurement combination. These methods
have not been discussed in detail, as the main objective of
this paper has been to give the reader an understanding of the
idea of self-optimizing control.
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