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Abstract

The topic of this paper is how to implement optimal decisions in an uncertain world. A study of how this is done in real systems—from the
nationwide optimization of the economy by the Central Bank to the optimal use of resources in a single cell—shows that a common approach
is to use feedback strategies where selected controlled variables are kept at constant values. For example, in order to optimize the wealth
of a country (overall objective), the Central Bank may to attempt to keep the inflation constant (selected controlled variable) by adjusting
the interest rate (independent input variable). The underlying idea is that the system behavior is indirectly optimized by keeping selected
controlled variables at given constant values (setpoints). In the paper this idea of “self-optimizing control” is explained and illustrated on a
large number of examples.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction nents), as well as uncertainty in our model (if any) of the
system.

Consider the national economy, the government, One approach for adapting or correcting for disturbances
companies and businesses, consumers, chemical proceds to use any new information about the system behavior
plants, biological systems, and so on. For all these sys-and the disturbances to reoptimize the decision variables
tems we have available degrees of freedom (decisions)(“on-line optimization”). A simpler strategy is to imple-

u that we want to use in order to optimize the operation ment some simple rule such that the system somehow
(system behavior). We are herot concerned with the  “optimizes itself” without the need for actually performing
optimization of these systems (which is certainly very on-line optimization. We here consider the strategy of
interesting), but rather on how the decisions ianplemen- “self-optimizing control” (Skogestad, 2000)here the rule
ted is to keep some “magic” controlled variable at a constant

A major problem in making and implementing the right value (setpoint). The idea is extremely simple, but it may
decision is that the world changes and is uncertain. Thesenevertheless be difficult to grasp. The objective of this paper
changes and uncertainties, which we cannot affect, are herds two-fold: (1) provide some simple examples that illustrate
denotedlisturbances dThey include changes in exogenous the concept of self-optimizing control; (2) show that the
variables (such as the outdoor temperature), parameterconcept is universal and may be applied for a wide range of
variations in the system (e.g. aging of system compo- systems.

The idea of self-optimizing control is explained in more
detail in the next section. In the rest of this section we consider
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Jo which is to be minimized with respect to the available ning of the race, and the runner has to select an appropriate

degrees of freedom (manipulated variables; inpugs) energy input in order to optimize the behavior. How should
this be done in practice?

"ggn J(x, uo, d) (1) From this example itis clear that the selection of an appro-
) ) priate operational policy may be a difficult issue for problems

subject to the constraints with unconstrained degrees of freedom. Such problems are

e1(x, uo, d) = 0, 92(x, ug, d) < 0 ) therefore the focus of the rest of this paper. We assume in

the following that the active constraints are fulfilled (imple-
Hered represents the exogenous disturbances that affect themented), and we write, for simplicity, the remaining uncon-
system, including the effect of changes in the model (typi- strained problem in reduced space in the form
cally represented by changes in the functiah changes in .
the specifications (constraints), and changes in the parameter§!n J(u, d)
(prices) that enterin the cost function (and possibly in the con-

straints) x represents the internal states. We have available Whereu represents the remaining unconstrained degrees of
measurements = fo(x, uo, d) that give information about freedom, and where we have also eliminated the states

©)

the actual system behavior during operation. Note\timaay
include measured values of the disturbandeas well as
known or measured values of the independent varialyjes

x(u, d) by making use of the model equatiops. For any
value of the disturbancebwve can then solve the (remaining)
unconstrained optimization problem (3) and obtaig(d)

For simplicity, we assume pseudo-steady-state behavior andor Which
do not in this paper include time as a variable. The equality def
constraintsg; = 0) include the model equations, which give mMin J(u,d) = J(uopt(d), d) = Jopt(d)
the relationship between the independent variahlgsafd
d) and the statesq|. The system must generally satisfy Sev- 1,4 go1ution of such problems has been studied extensively,
eral inequality constraintg < 0); for example, we usually 54 js not the issue of this paper. In this paper the issue is
require that selected variables are positive. The cost funCtionimplementation, and how to handle variations (known or un-
Jis in many cases a simple linear function of the indepen- known) ind in a simple manner.
dent variables with prices as parameters. In many cases it
is more natural to formulate the optimization problem as a
maximization of the profiP, which may be formulated as a
minimization problem by selecting = — P.

In most cases some subggtof inequality constraintgz
are active (i.eg, = 0 at the optimal solution). Implemen-

In the following we letd* denote the nominal value of
the disturbances. Let us first assume that the disturbance
variables are constant, i.é.= d*. In this case implemen-
tation is simple: we keepconstant airs = uopt(d™) (hereus

is the “setpoint” or desired value far), and we will have

- ; - C ) ) optimal operation. However, there are two problems with
tation to achieve this is usually simple: we adjust a corre- s holicy. First, it is usually not possible in practice to get
qundlng numper of degregs of freedaa_wsuch that .these exactlyu = us due to an implementation errar= u — us
gctwe constramts are satlsﬁed.(the possible errors in e'f‘forc'(Skogestad, 2000)8econd, the disturbanakchanges, so

ing the constraints should be included as additional distur- uopt(d*) is N0 longer optimal. What value should we select

bances). For example, consider short-distance (e.g. 100 mj, s in this case? Two “obvious” approaches are:
running where the objective is minimize the running time

(J = T) and the independent variahlg is the energy input
(or something similar). For a reasonable well-trained runner
the optimal solution lies on the constraint of maximum en-
ergy. Implementation is then easy; the runner simply runs at
maximum speed (applies maximum energy input) throughout
the race.

In many cases the active constraints consumes all the avail-
able degrees of freedom. For example, if the original problem
is linear (linear cost function with linear constraigts and
g2), then it is well known from Linear Programming theory
that there will be no remaining unconstrained variables. For
nonlinear problems (e.g. the modal is nonlinear), the op-
timal solution may be unconstrained, and such problems are2.
the focus of this paper. For example, consider long-distance
(e.g. marathon) running where the objective is minimize the
running time ¢ = T') and the independent variahlg is the
energy input. In this case the optimal solution does not lie on
the constraint of maximum energy, at least not at the begin-

1. If we do not have any information on how the system be-
haves during actual operation (no measurenygnor if

it is not possible to adjust once it has been selected,
then the optimal policy is to find the best “average” value
us for the expected disturbances, which would involve
“backing off” from the nominally optimal setpoints by
selectingus different fromugpi(d*). The solution to this
problem is quite complex, and depends on the expected
disturbance scenario. For example, we may use stochas-
tic optimization(Birge & Louveaux, 1997)In any case,
operation may generally be far from optimal for a given
disturbancel.

In this paper we assume that the unconstrained degrees
of freedomu may be adjusted freely and that we have in-
formation (measuremenis= f,(u, d)) about the actual
operation. If we then have a model of the system, we may
image using these measurements to estimate the actual
disturbancel, and based on this perform a reoptimization
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to compute a new optimal va|ua,pt(21), which is subse-  today is for the Central Bank to adjust the interest rajen
guently implemented; = uopt(;i)- an attempt to keep the inflation rate constant (corresponds to

, the choicec = y1). A typical desired value (setpoint) for the
Both of these “obvious” approaches are complex and re- jnfation rate iscs = 2.5%.

quire a detailed model of the system, and are not likely to be  \y/hat is the motivation behind attempting to keepon-
used in practice, except in special cases. Is there any simpleant -2 Obviously, the idea must be that the optimal value
approach that may work? of ¢, denotedcopi(d), depends only weakly on the distur-
banced, such that by keeping at this value, we indirectly
) . ] obtain optimal, or at least near-optimal, operat{dforari,
2. Implementation of optimal operation: Stephanopoulos, & Arkun, 1980)ore precisely, we may
self-optimizing control define the los4. as the difference between the actual value

] o ] ) of the cost function obtained with a specific control strategy,
Generally, we find that the decision making and imple- e.g. adjustingi to keepe = cs, and the truly optimal value of
mentation in real systems is done in a hierarchical man- \ha cost function. i.e.

ner (Findeisen et al., 198Qyith setpoints for selected con-

trolled variables being send from one layer to the one L(u,d) = J(u,d) — Jop(d) (4)
below. This corresponds to a simple feedback strategy
where the degrees of freedom (manipulated variables; in-
puts) u are adjusted to keep selected controlled variables
¢ at constant valuess (“setpoints”) (seeFig. 1). Herec

is a selected subset or combination of the available mea-
surementsy. The idea is to get “self-optimizing control” Let us summarize how the optimal operation may be im-
where “near-optimal operation” is indirectly achieved, with-  plemented in practice:

out the need for continuously solving the above optimization

Self-optimizing control(Skogestad, 200Gy when we can
achieve an acceptable loss with constant setpoint values for
the controlled variables (without the need to reoptimize when
disturbances occur).

problem. 1. A subset of the degrees of freedonmuipnare adjusted in
order to satisfy the optimally active constraints.
2.1. Example: Central Bank 2. The remaining unconstrained degrees of freedomgin

(denotedu) are adjusted in order to keep selected con-
Consider the role of the Central Bank in a country, which trolled variablesc at constant desired values (setpoints)
has available one degree of freedom, namely the interest rate ~ s

(u). The measuremerysnay in this case include the inflation Ideally, this results in “self-optimizing control” where no
rate (1), the unemployment rate{), the consumer spending  fyrther optimization is required, but in practice some in-
(v3) and the investment ratg4). In addition, we also know  frequent update of the setpoints may be required. If the

the chosen interest rates(= ). The simplest policy would  set of active constraints changes, then one generally has to
be to do nothing, that s, to keep the interest rate constant (Cor'change the set of controlled variablesor at least change
responds to the choiee= ys = u). Amore common policy  their setpoints, since the optimal values generally change in
a discontinuous manner when the set of active constraints
change.

Itis usually straightforward to select variables correspond-
ing to the optimally active constraints. For example, if we
want to drive a car from A to B along a straight road in the
¢ shortest possible time, subject to the constraint of staying

below the speed limit, then speed should be selected as the
iy n controlled variableg) and its setpointds) should be the given
Controller |- g speed limit.
As mentioned, the difficult issue is to select controlled
u variables for the unconstrained degrees of freedoriror
example, if we want to drive a car from A to B along a very
winding road in the shortest possible time, then most likely

d Bieesss Mesirament we must drive slower tha_n the speed _Iimit in order to stay

- v ™| Combination on the road (“remain feasible”). A possible constant setpoint
strategy in this case could be, for example, to keep the speed
Fig. 1. Implementation of optimal operation with separate layers for opti- ata constapt value; = kﬁ wheresis the .stra|g'ht Im? path
mization and control. Self-optimizing control is when near-optimal operation ahead andlis a constant. The re_ason behm_d this policy (_:OUId
can be achieved withs constant, in spite of disturbancesnd implemen- be that the distance for stopping the car increases with the
tation errom. square of the speed.

Optimizer
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We next present some simple examples to illustrate the 2.4. Example 4: biology
above ideas.
Biological systems, for example a single cell, contain
2.2. Example 2: cake baking very complex chemical and biochemical reaction networks,
of which significant parts have the function of a feedback
Let us consider the final process in cake baking, which is control systems (Savageau, 1976; Doyle & Csete, 2002).
to bake it in an oven. Here there are two independent vari- Indeed, Doyle (lecture, Santa Barbara, February 2002) spec-
ables, the heat input{ = Q) and the baking timeu, = ¢). ulates that many of the supposedly unimportant genes in bi-
Itis a bit more difficult to define exactly whadltis, but it could ological systems are related to control, and compares this
be quantified as the average rating of a test panel (where 1 iswith an airplane (or a chemical plant) where the majority
the best and 10 the worst). One disturbance will be the room of the number of the parts of the system is related to con-
temperature. A more important disturbance is probably un- trol. Biological systems at the cell level are obviously not
certainty with respect to the actual heat input, for example, capable of performing any “on-line” optimization of its over-
due to varying gas pressure for a gas stove, or difficulty in all behavior. Thus, it seems safe to assume that biologi-
maintaining a constant firing rate for a wooden stove. In prac- cal systems by natural selection through millions of years
tice, this seemingly complex optimization problem is solved must have developed simple self-optimizing control strate-
by using a thermostat that keeps a constant oven temperaturgies of the kind discussed in this paper. For biologists it
(e.g. keepr1 = Toven at 200 degC) and keeping the cake in is a challenge is to find out how these complex systems
the oven for a given time (e.g. choosg= uy = 20 min). work and what the controlled variables are. Also, if one can
This feedback strategy, based on measuring the oven temperidentify the controlled variables, then one can imagine per-
aturecs, gives a self-optimizing solution where the heatinput forming “reverse engineering” in an attempt to identify the
(1) is adjusted to correct for disturbances and uncertainty. cost functionJp that nature has been attempting to mini-
The optimal value for the controlled variables &ndc;) are mize.
obtained from a cook book. An improved strategy may be to
measure also the temperature inside the cake, and take ou?2.5. Example 5: portfolio management
the cake when a given temperature is reachedu}.e- ¢ is

adjusted to get a given value of = Tcake)- Assume that we want to decide what fraction of our sav-
ings should be in stocks and what fraction should be in the
2.3. Example 3: long distance running bank or in bonds. In this case we want to maximize the future

value of the savings, and the manipulated input is the buying

Consider a runner who is participating in a long-distance (or selling) of stocks. One constant setpoint strategy is to re-
race, for example a marathon. The cost function to be min- balance the portfolio such that we always have a fixed mix
imized is the total running timef = T. The independent  (e.g.cs = 50%) of our capital in stocks and the rest in bonds
variable u is the energy input (or something similar). Of or bank savings (Fleten, Hyland, & Wallace, 2002; Perold
course, the runner may perform some “on-line” optimization & Sharpe, 1988). This means that we will sell stocks when
of his/her body, but this is not easy (especially if the run- their value increases and buy stocks when their value goes
ner is alone), and a constant setpoint policy may probably bedown.
more efficient. Does there exist any “magic” self-optimizing

variablec that may be kept constant? 2.6. Example 6: business systems and KPIs
A common and simple strategy is to run at the same speed
as the other runners (e.g= y1 = distance to best runner, Business systems are very complex with a large number

with cs = 1 m). However, this may give infeasibility if one is  of degrees of freedomu), measurements, disturbances and
no longer able to maintain this speed. Also, it does not work constraints. The overall objective of the system is usually
if the runner is alone. to maximize the profit (or more specifically, the net present
Another strategy is to keep constant speed=(y; = value of the future profit] = —NPV) (although, businesses
speed). However, this policy is not good if the terrain is hilly are often criticized for using other shorter-term objectives,
(d=slope of terrain), where it is clearly optimal to adjust the like maximizing the present share value, but we will leave
speed. This policy, as well as the previous one, may also givethat discussion). In any case, it is clear that few managers
infeasibility, since the runner may not able to maintain the base their decisions on performing a careful optimization of
desired speed if the terrain is uphill. their overall operation Instead, managers often make deci-
A better self-optimizing strategy for a lone runner may sions about “company policy”, which in many cases involved
be to keep a constant heart rate<{ y3 = heart rate) or a  keeping selected controlled variable$ &t constant values.
constant lactate concentration in the musctes (y4 = lac- For example, the recently very popular approach of identi-
tate level). In these cases, a constant setpoint strategy seemfying “value metrics” orkey performance indicatof&PIs)
more reasonable, as the speed will be reduced while runningfor the business (e.¢koppel (2001), may be viewed as the
uphill. selection of appropriate controlled variables, thatis KPI.
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Some examples of KPIs may be

energy consumption per unit produced; Optimizer
number of accidents per unit produced,;

number of employees per unit produced;

research spending per unit produced;

size of administration relative to production staff;

time for the business to respond to an order from a cus-
tomer;

¢ fraction of manual control loops in the plant.

c,=c+n n

Controller

One may think that the value of the above KPIs should be I u
minimized, but this is not the case since it would imply non-

optimal operation with “overspending”. The optimal values  d Plant :
forthe KPIs are typically obtained by comparing oneself with = u

other successful businesses. This is done by “benchmarking” o u
tofind the “best business practice”. However, itis less obvious
what variables to select as KPIs? In theory, the results in the
next section may be used to find the optimal set of KPIs. This
assumes that we have knowledge about the sensitivity matrix
F for how the measurements depend on the disturbathces
and that we disregard the implementation error.

Fig. 2. Feedback implementation of unconstrained optimum.

e |norderto minimize the effect of implementation errors
the sensitivity oft to changes in the independent variable
u should be adarge as possible. This is maybe not so
obvious, but it can be quite easily understood friig. 2:
a large sensitivity corresponds to a steep slope otthe
curve and then a givamwill only weakly increase the cost

3. Selection of controlled variables

What should we control? As mentioned, we should gen-
erally control variables corresponding to the optimally active

constraints. We here consider the remaining unconstrained

variables (if any) for which the selection of controlled vari-
ables is a difficult issue.

J. (Equivalently, the relationship betweerandJ should
be as “flat” as possibléSkogestad, 2000)

From this, Skogestad (2000formulated the following

rules for selecting controlled variables

To answer this question quantitatively we need to eval-
uate the loss imposed by keeping the selected controlled1.
variables at constant setpoints. The ldsss defined as
L = J — Jopdd), whereld is the cost obtained when the con- 2.
trolled variables: are kept constant anthpt(d) is the lowest 3.
achievable cost with the given disturbance. However, thisloss
evaluation requires a model of the system, so we will first
consider some more qualitative rules for selecting controlled 4.
variables.

The optimal value ot should be insensitive to distur-
bances.
¢ should be easy to measure and control accurately.
¢ should be sensitive to changes in the (steady-state) de-
grees of freedom. (Equivalently, the cdsas a function
of c should be flat.)
For cases with more than one unconstrained degrees of
freedom, the selected controlled variables should be inde-
pendent.
3.1. Qualitative rules
The first rule minimizes the effect of disturbances

To approach the problem in a systematic manner, it is use- The second rule reduces the magnitudenoThe last two
ful to consider the reasons why a constant setpoint policy may rules minimize the effect of the implementation emoihe
not be optimal. Generally, there are two reasons, namely thefour rules may be summarized by the following single rule
presence of (1) disturbancesind (2) implementation errors ~ (Skogestad, & Postlethwaite, 1996)
n. This is illustrated inFig. 2 where we see that the actual
value ¢ = ¢ — n of the controlled variable should ideally
correspond to the optimal valugp(d) whereJ has its min-
imum. This has the following implications for the choice of
controlled variables:

Select controlled variablesfor which the controllable range
is large compared to the sum of optimal variation and control
error.

Here the “controllable range” is the range tlamay
reach by varying the inputs (degrees of freedam)the
“optimal variation” is the expected variation i, due to
disturbance, and the “control error” is the implementation
errorn.

¢ In order to minimize the effect of disturbana&sve obvi-
ously want theoptimalvalue ofc to remain constant. That
is, the sensitivity okopi(d) to changes i should be as
smallas possible.
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3.2. Minimum singular value rule e Step 6.For the remaining unconstrained degrees of free-
dom: evaluate the loss with constant setpoints for alterna-
The above rules may be quantified in terms of the tive controlled variables.
minimum singular value rulé&Skogestad & Postlethwaite, e Step 7.Evaluate more carefully the alternatives with a

1996 small loss, including controllability analysis.

Select controlled variableghat maximize the minimum sin- The procedure has been applied to a large number
gular valuer(G) of the appropriately scaled steady-state gain of process case studies, including the optimal operation
matrix G from inputsu to c. of distillation columns(Skogestad, 2000Q)the Tennesee

Eastman challenge procedsarsson, Hestetun, Hovland, &

By inputsu is here meant the unconstrained steady-state Skogestad, 20013nd the reactor-recycle procegsrsson,
degrees of freedom. Note that appropriate scaling is impor- goyatsmark, Skogestad, and Yu, 2003)
tant: One disadvantage with this “brute force” method is that
it is requires a lot of computations, especially since there is
no limit on the possible candidate controlled variables that
may be evaluated (in Step 6). It may therefore be important
to limit the number of alternatives to evaluate in detail, and
methods for this are discussed in detail lbgrsson et al.
(2001) One effective method is to eliminate choices with a
small minimum singular value.

Note that we have assumed that the cost depends only on

A detailed derivation of the minimum singular value is the steady-state behavior. This is reasonable in most cases.
given inHalvorsen, Skogestad, Morud, & Alstad (200B)  The dynamic (control) behavior comes only into Step 7, and
is shown that for small disturbances (local behavior) and with if the control properties are not acceptable, then one needs to
the scaling mentioned above, the expected worst-case loss ig0 back and evaluate more candidates.
bounded by

e Scale the candidate variablessuch that their expected
variation is similar. Specifically, dividing each variable by
its optimal variation+ implementation error gives each
variable an expected variation of magnitude 1.

e Scale the inputsl such that they have similar effect on
the cost] (only necessary if we have two or more uncon-
strained degrees of freedom).

3.4. Optimal measurement combination
[ < Vw) 1
- 2 o(G)? Let y denote the available measurements (on-line infor-
B mation about the system behavior), e.g. temperature, infla-

From this we see that the expected loss is inversely propor-tion rate or energy consumption. We make the simplifying
tional to the square of(G). The matrixJ,, is the second (but very reasonable) assumption that the number of con-
derivative (Hessian) of the cost function with respect to the trolled variables9) is equal to the number of unconstrained
inputsu, and is thus independent af The bound is tight for ~ degrees of freedomu]. In most cases the controlled vari-
the scalar case, and usually tight also for cases with moreablesc are selected simply as a subset of the measurements
than one input. A more serious limitation is usually that the ¥, but more generally we may allow for variable combina-
above bound holds only locally, that is, in the range where tions and writec = i (y) where the functiork(y) is free to

J.u is constant. This is often not the case, for example, the choose.

optimum may be close to infeasibility (in some other variable ~ One important disadvantage with the two above methods
or close to “the edge of a cliff"). (singular value rule and direct loss evaluation) is that they can

only be used to check given choicesfolf the loss is accept-
able then we have “self-optimizing control” and it does not
really matter of there exists an even better choice. However,
if the loss is not acceptable, then we have no way of know-
ing if there simply does not exist any self-optimizing scheme
or if we have overlooked some “magic” controlled variable
¢ = h(y). Unfortunately, there exists no general method for
finding the optimal (“magic”) controlled variable, and thus
knowing what the best achievable loss is.
e Step 1Determine the degrees of freedom for optimization. The situation is better if we consider the local behavior
e Step 2Define optimal operation in terms of a cost function Where it is sufficient to consider linear measurement combi-
J and operational constraints. nations
e Step 3ldentify the important disturbances. Ac— H (5)
e Step 4Use the model to find the optimal operation (nom- =
inally and with disturbances). where the constant matrii is free to choose. This is dis-
e Step 5ldentify active constraints (and control these). cussed next.

3.3. Direct evaluation of loss

A direct evaluation of the loss for the expected dis-
turbances and implementation errors avoids the above-
mentioned problems with local behavior and infeasibility.
The method requires a model of the system and involves the
following steps(Skogestad, 2000)
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3.4.1. Witho%plementation error constant, i.ec = y;. However, recall from the requirement

Itis possible to find the locally optimal linear measurement HF = O for zero loss, that we need an extra measurement for
combinationH as proposed bidalvorsen et al. (2003)he every disturbances, so with the large number of disturbances
local-behavior assumption makes it possible to use the max-it is unlikely that this choice, based on a single measurement,
imum singular value of a matrid to effectively evaluate the is always self-optimizing. Even if we assume thatthere is only
loss for all expected disturbances and implementations error.a single major disturbance (ed. =consumer mood), then
However, a numerical search to find the best linear combi- from the results presented above we need to combine at least
nation is still required. In addition to being computationally two measurements (numbenof number ofs + number of
demanding the method also provides little insight into how d = 1+ 1 = 2). This could, for example, be a corrected in-
to combine the measurements in order to get a small loss. flation goal based on using the interest rate; h1y; + hou,

%} but more generally we could use additional measurements,
3.4.2. With implementation err ¢ = h1y1 + hoy2 + h3ys + hays + hsu. The parameters for
The simple method oAlstad and Skogestad (2008)- such a corrected inflation goal could be obtained by reopti-

quires much less computations and gives more insight into Mizing the model for the national economy with alternatives

how to select good controlled variables. The main restriction, disturbances, using the approach just outlined.

besides being a local method, is that the implementation error

is not considered. 3.5. Summary: selection of controlled variables
InterestinglyAlstad and Skogestad (200&)ow that with

no implementation error it is always possible to find a mea- ~ There are broadly three classes of systems when it comes

surement combination with zero loss, provided we have to the use of self-optimizing control.

enough measurements. More precisely, we need as many, ¢35 A Systems for which we have no model, and where
measurements as there are independent variables (inputs plus . jine optimization is therefore not possible. This class

disturbances). o _ _ of problems is ideally suited for self-optimizing control,

_ The derivation is surprisingly simple; in general, the op- ¢ since there is no model we cannot obtain the con-
timal value of they values depend on the disturbancks trolled variables in a systematic manner. An example is
and we may write this dependency agi(d). For “small long-distance running. In such cases the self-optimizing
disturbance changes we may linearize this relationship to get ., trolled variables, if they exist, must be obtained by try-

Ayopi(d) = FAd (6) ing alternative choices on the real system, for example,
P through evolution.
where the sensitivity" = dyopt(d)/dd is a constant matrix. e Class B.Systems that can be modelled, but where on-

We would like to find a variable combinationc = HAy line optimization is impractical or costly. Self-optimizing

such thatAcopt = 0. We getAcopt = HAyopt = HFAd = 0. control is also well suited for such problems, and the con-
This should be satisfied for any value af/, so we must trolled variables may be obtained using the methods men-
require thaH is selected such that tioned above. A generic model usually suffices because

the selection of controlled variables istauctural issue
which usually does not depend strongly on the specific
parameter values.

Class C.Simple systems that are easy to model and op-

HF =0 @)

i.e. H must be in the left null space &f. This is always
possible provided we have at least as many (independent)® ~'& . . i k i
measurementy as we have independent variablesand timize on-line (like the blending case considered in the

d), i.e. number ofy = number ofu 4+ number of (Alstad & next section). In this case it may be better to use on-line
Sliogestad 2002) optimization, rather than using a large effort to find self-

optimizing controlled variables, if they exist. In particular,
this is the case for problems where the active constraints

3.4.3. Example 1: Central Bank (continued) change with time

For this problem we havel = interest rate and/ =
—National Product. A constraint in this problemiis> 0 Finally, it is stressed again that we in this section have
(because a negative interest rate will result in an unstable sit-assumed that the set of active constraints remains constant.
uation), but in most cases this constraint will not be active, If the active constraints change, then generally the best set of
so we have an unconstrained optimization problem with one “unconstrained” controlled variable (and setpoints) will also
degree of freedom. The measurememtsay include the in- change.
flation rate §1), the unemployment rate/f), the consumer
spending {3) and the investment rate4). There are many
disturbances, forexampl#, ="the mood” ofthe consumers, 4. Example 7: optimal blending of gasoline
do = global politics, including possible wardg = oil prices,
ds4 = weathergds = technology changes, etc. As mentioned The following example is included for illustrative pur-
earlier,acommon policy is to attempt to keep the inflation rate poses, as an on-line model-based approach is simple and
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would probably be preferred for this process. Nevertheless, solution is to have
we here assume that we want to use a constant setpoint strat-
egy. The example then illustrates clearly the importance of uo,opt(d = 97) = [0.20 0075 Q725 o'

selecting the right controlled variables, and illustrates nicely

of the nullspace method @lstad and Skogestad (200
selecting optimal measurement combinations.

Problem statemeniVe want to make 1kg/s of gasoline
with at least 98 octane and not more than 1 wt.%
mixing the following four streams:

e Stream 1. 99 octane, 0% benzene, pr;@(o.l +
ml) $/kg.

e Stream 2: 105 octane, 0% benzene, ppige= 0.200 Hkg.

e Stream 3: 95 octane, 0% benzene, prge= 0.12 $/kg.

e Stream 4: 99 octane, 2% benzene, pyige= 0.185 Fkg.

The maximum amount of stream 1 is 0.4 kg/s. The distur-
bance {) is the octane contents in stream 3 which may vary
from 95 (its nominal value) and up to 97. We want to obtain a
self-optimizing strategy that “automatically” corrects for this
disturbance.

Solution.The degrees of freedom for this problem are

ug = [my mo m3 m4]T

wherem; (kg/s) represents the mass flows of the individual
streams. The optimization problem is to minimize the cost of
the raw material:

(o) = ) pim

i
= (0.1@%1 +0.2m + 0.12m3 + 0.185m4

subject to 1 equality constraint (given product rate) and 7
inequality constraints:

mi+mo+m3z+mg=1

99m1 + 105n2 + dm3z + 99m4 > 98
2mg <1

At the nominal operating point (where the octane number in
stream 3 igi* = 95) the optimal solution is to have

uo,opt(d* = 95)=[0.26 0196 0544 0]"

which gives Jopd*) = 0.13724 $. We find that three con-

straints are active (the product rate equality constraint, the

non-negative flowrate forn4 and the octane constraint). The

which corresponds tdopi(d = 97) = 0.126 $.
The proposed control strategy is then to use three of the
degrees of freedom ing to control the following variables

benzene, by, tive constraint control):

1. keep the product rate at 1 kg/s;
2. keep the octane number at 98;
3. keepma = 0.

This leaves one unconstrained degree of freedom. We
would like to achieve self-optimizing control. To this effect,
we now evaluate the loss imposed by keeping alternative sin-
gle controlled variables constant at their nominal optimal
valuescs = copt(d™). The measurements available are in this
case a subset afy, namely

y = [m1mzm3]"

Here we have excluded, since it is kept constant at 0, and
thus is independent af andu. Let us first consider keeping
individual flows constant (and the three others adjusted to
satisfy the active constraints on product rate, octane number
and zero flow forn4). We find wherd is changed from 95 to

97:

e ¢ =m1 constant at 0.267 = 0.12636 corresponding to
lossL = 0.12636— 0.126= 0.00036;

e ¢ = mp constant at 0.196: infeasible (requires a negative
m3 to satisfy the octane constraint);

e ¢ = mgzconstant at 0.544/ = 0.13182 corresponding to
lossL = 0.13182— 0.126 = 0.00582.

Let us now obtain the optimal variable combination that
gives zero loss. We consider a linear variable combination of
the measurements

Ac = HAy = h1Am1 + hpAmo + haAm3

The relationship between the optimal valuey@ind the dis-
turbance is exactly linear in this case and we have

0.20—-0.26
0.075—-0.196
0.725— 0.544

—0.0300
—0.0605 | Ad

0.0905

—— ——
F

Ayopt = FAd =

same three constraints remain active when we change the ocfwe divide by 2 because the disturbance is 2 octane number
tane number in stream 3 from 95 to 97, where the optimal units). To get a variable combination with zero loss we must
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m; =cg+0.5m,

Stream | ==

: Octane
Stream 2 HR
Stream 3 D q ’
Octane varies
Stream 4 M—’

my =0kg/s
Fig. 3. Possible implementation of optimal blending wite: m1 — 0.496m, as the “self-optimizing” controlled variable.
haveHF = 0 or 5. Discussion
—0.030511 — 0.060912 + 0.0909:3 =0 5.1. Change in prices

In this case we have 1 unconstrained degree of freeddm ( By “prices” we mean the parameters or weights that enter
and 1 disturbancel], so we need to combine at least 2 mea- in the cost function.

surements to get a variable combination with zero loss. This  In the above example, the prices were assumed constant,
is confirmed by the above equation which may always be but from simple considerations it is clear that, unless the ac-
satisfied by selecting one elementH equal to zero. We  tive constraints change, price changes will not affectthe selec-
therefore have an infinite number of possible combinations tion of controlled variables. The reason is that prices appear
of variables with zero loss. For example, the following three onlyinthe optimization part of the block diagranfiig. 1and
combinations of two variables give zero loss: do not effect the measurementand also not the controlled
variablec = h(y). In other words, no matter which variables

¢ we choose to control, there will be no “self-correction” to
price changes.

However, prices changes will of course influence the op-
timal value of the variables, and since prices are generally
known, we would like to include some “price correction”.
This may be done in two different ways:

1. ¢ = m1 — 0.496n, constant at 0.162: zero loss (derived
by settinghz = 0 and choosing1 = 1);

2. ¢ = 3.02m1 + m3 constant at 1.328: zero loss (derived by
settingh, = 0 and choosings = 1);

3. ¢ = 1.496m, 4+ m3 constant at 0.837: zero loss (derived
by settingk; = 0 and choosingz = 1).

A possible implementation of optimal blending with
single-loop controllers and = m1 — 0.496n, as the “self-
optimizing” controlled variable is shown iRig. 3. Pairings
of inputs and outputs, for example the largest flow is used
to control the total flowrate, have been included for illustra-
tion. However, note that the choice of pairings does notinflu- ¢ = ¢s(p*) + HF ,Ap
ence the steady-state costs as long as the controllers have
integral action. This control structure is steady-state opti-
mal as long as the active constraints do not change. Dis-
turbances in the feed octane in stream 3 are detected by thé”
octane controller (OC) which adjusis, andm is then ad-
justed to keepc at its setpointcs = 0.162. Price changes
may be included as a correction on the setpeintsee
Section .

As mentioned, there are an infinite number of variable
combinationsc of the three measurements:q, mo, m3)
with zero disturbance loss. However, if we also were to
include the implementation error, then there would be a
single optimal combination of the three measurements in
terms of the overall expected lo§dalvorsen et al., 2003)
(seeSection 3.

1. Make the setpoint a function of the pricep (this is prob-
ably the simplest and most obvious approach). Specifi-
cally, for a price chang&p = p — p*, the corrected set-
point is

where the matrix¥’, = dyopt/dp is the optimal sensitivity

of the measurements to prices (see below).

Keep constant setpoints, and instead include the (known)
prices as extra “measured disturbancds(Skogestad,
2004).

5.1.1. Example 7 (continued)

Let us return to the blending example, and consider the
case where the price of stream 2 may vary. Specifically,
changing the pricep, from 0.2 to 0.21 gives the same
set of active constraints and the following new optimal
flows

uo.opt(p2 = 0.21, d = 95)=[0.28 0.188 0532 0] "
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The sensitivity to price changes is then earlier, numerical approaches may be used, at least locally
(Halvorsen et al., 2003pbut these are quite complicated.
Ayopt=1[2.0-0.8 —1.2]"Ap> Finally, it should be noted th&ig. 1is a bit misleading as
it (i) only includes the contribution tofrom the measurement
If we, for example, selectc =mj — 0.496n3 = y; — error, and (ii) gives the impression that we directly measure

0.496y3 as the controlled variable, then the price-corrected c, whereas we in reality measwgi.e.nin Fig. 1represents
setpoint iscs = 0.162+ (2 — 0.496(—0.8))Ap2 = 0.162+ the combined effect oo of the measurement errors far
2.40Ap>.

Note that the above discussion assumes that the price5.3. Model uncertainty
changes are sufficiently small such that the active constraints
do not change. Larger price changes are likely to change the  Model uncertainty, the differences between the actual sys-
set of active constraints, and through this strongly affect the tem and its model, is usually not very important when imple-
choice of controlled variables. In other words, there is usually menting a “self-optimizing” constant setpoint policy. This
not a single set of controlled variables that will be the best follows since the model is not explicitly used in a constant

for all prices. setpoint policy, but rather we are using a feedback implemen-
tation based on measurements from the actual plant. It may
5.2. Implementation error be desirable to use the model to obtain the optimal setpoints

cs, but alternatively we may attempt to obtaigby observ-
One issue which we have not discussed so far is the imple-ing the actual behavior. A mod& needed when using the
mentation erron, which is the difference between the actual above rocedure to select the best controlled variable (with

controlled variablec and its desired valuei(= ¢s — ¢). In minimum loss), but since we are using this model to make
some cases there may be no implementation error, but this isstructural rather than parametric decisions, it is obviously not
relatively rare. critical if there is some mismatch between the system and the

model, as long as its structural properties are correct.

5.2.1. Example 1 (continued)

Let us again consider the Central Bank. A simple policy
would be to do nothing, that is keep the interest rate constant6. Conclusion
(i.e. select = u). In this case there would be no implemen-
tation error. However, a more common policy isto attemptto ~ Most real systems are operated by keeping selected “con-
keep the inflation rate constamt£ y;), andinthis casethere trolled variables” at given values (“setpoints”). The goal is
will generally be a differenca between the actual inflation  to have “self-optimizing control” which is when near-to-
rate €) and its desired valued), because of (i) poor dynamic  optimal operation is achieved with constant setpoints (or in-
control and (ii) an incorrect measurement of the inflation frequent updates). Many real examples have been presented

rate. in this paper.
There are broadly three classes of problems when it comes
5.2.2. Remark to the use of self-optimizing control. (A) A self-optimizing

In this special caseSgction 2.) there is no implemen-  constant setpoint strategy is obviously ideally suited for sys-
tation error when using the “no-control” (open-loop) policy tems that are difficult to model, and thus cannot be optimized
with ¢ = u, but this is not at all a general rule. For example, on-line. An example is long-distance running. However, in
in a wood-fired pizza overSgction 2.2 our inability to keep such cases the self-optimizing controlled variables, if they
the heat inputi1) at a constant desired value, may be a key exist, must be obtained by trial and error. (B) Self-optimizing
reason for avoiding the open-loop poliey (= u1). control is also well suited for systems that can be modelled,

In any case, the implementation ermogenerally needs  but where on-line optimization is impractical or costly. In
to be taken into account, and it will affect the optimal choice such cases, controlled variables may be obtained using the
for the controlled variables. Specifically, with implementa- methods mentioned in this paper based on a “generic” model
tion error it is no longer possible to find a set of controlled of the system. (C) For simple systems that are easy to model
variables that give zero loss. One way of seeing this is to and optimize, like the blending case, it is probably better to
consider the implementation erroras a special case of a use on-line optimization.
disturbanced. Recall that to achieve zero loss, we need to For class B, where amodelis available, the controlled vari-
add one extra measuremerior each disturbance. However, ables may be obtained in a systematic manner. The first step
no measurement is perfect, so this extra measurement willis to quantify the operational objectives through a scalar cost
also have an associated error (“noise”), which may again befunction J to be minimized. Next, the system is optimized
considered as an additional disturbance, and so on. with respect to its degrees of freedag From this we iden-

Unfortunately, the implementation error makes it much tify the “active constraints” which are implemented as such.
more difficult to find the optimal measurement combina- Finally, if there remains unconstrained degrees of freedom
tion, ¢ = h(y), to use as controlled variables. As mentioned we mustidentify appropriate controlled variabtge keep at



Sigurd Skogestad / Computers and Chemical Engineering 29 (2004) 127-137

137

constant setpoints. Several methods exist for this, including Halvorsen, I. J., Skogestad, S., Morud, J. C., & Alstad, V. (2003). Optimal

the minimum singular value rule, “brute force” loss evalua-

tion and optimal measurement combination. These methods
have not been discussed in detail, as the main objective of

selection of controlled variablekdustrial Engineering and Chemical
Research42 (14), 3273-3284.

Koppel, L. B. (2001). Business process control: the outer |&pceed-
ings of the Symposium on Chemical Process Control (CRC&con,

this paper has been to give the reader an understanding of the  arizona, January 2001

idea of self-optimizing control.
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