Probably the best simple PID tuning rules in the world

Sigurd Skogestad*
Department of Chemical Engineering
Norwegian University of Science and Technology
N–7491 Trondheim Norway

Submitted to Journal of Process Control July 3, 2001
This version: July 17, 2001

Abstract
The aim of this paper is to present analytic tuning rules which are as simple as possible and still result in a good closed-loop behavior. The starting point has been the IMC PID tuning rules of Rivera, Morari and Skogestad (1986) which have achieved widespread industrial acceptance. The integral term has been modified to improve disturbance rejection for integrating processes. Furthermore, rather than deriving separate rules for each transfer function model, we start by approximating the process by a first-order plus delay processes (e.g. using the “half method”), and then use a single tuning rule. This is much simpler and appears to give controller tunings with comparable performance.

1 Introduction
Hundreds, if not thousands, of papers have been written on tuning of PID controllers, and one must question the need for another one. The first justification is that PID controller is by far the most widely used control algorithm in the process industry, and that improvements in tuning of PID controllers will have a significant practical impact. The second justification is that the simple rules and insights presented in this paper may contribute to a significantly improved understanding into how the controller should be tuned.

The PID controller has three principal control effects. The proportional (P) action gives a change in the input (manipulated variable) directly proportional to the control error r. The integral (I) action gives a change in the input proportional to the integrated error, and its main purpose is to eliminate offset. The less commonly used derivative (D) action is used in some cases to speed up the response or to stabilize the system, and it gives a change in the input proportional to the derivative of the controlled variable. The overall controller output is the sum of the contributions from these three terms. The corresponding three adjustable PID parameters are most commonly selected to be

- Controller gain K_c (increased value gives more proportional action and faster control)
- Integral time τ_I [s] (decreased value gives more integral action and faster control)
- Derivative time τ_D [s] (increased value gives more derivative action and faster control)

* E-mail: skoge@chembio.ntnu.no; Phone: +47-7359-4154
Although the PID controller has only three parameters, it is not easy, without a systematic procedure, to find good values (tunings) for them. In fact, a visit to a process plant will usually show that a large number of the PID controllers are poorly tuned. The objective of this paper is to simple model-based tuning rules that give insight into how the tuning depends on the process parameters based on very simple process information. These rules may then be used to assist in retuning the controller if, for example, the production rate is changed. Another related objective is that the rules should be so simple that they can be memorized.

There has been previous work along these lines; most noteworthy the early paper by Ziegler and Nichols (1942), the IMC PID-tuning paper by Rivera, Morari and Skogestad (1986), and the book by Smith and Corripio (1985). The Ziegler-Nichols tunings result in a very good disturbance response for integrating processes, but are otherwise known to result in rather aggressive tunings (e.g., Tyreus and Luyben (1992)), and also give poor performance for processes with a dominant delay. On the other hand, the IMC-tunings of Rivera et al. (1986) are known to result in poor disturbance response for integrating processes (e.g., Chien and Fruehauf (1990), Horn et al. (1996)), but generally give very good responses for setpoint changes.

Figure 1: Block diagram of feedback control system.
In the simulations we consider input “load” disturbances ($gd = g$).

Notation. The notation is summarized in Figure 1. Here u is the manipulated input (controller output), d the disturbance, y the controlled output, ys the setpoint (reference) for the controlled output, and $y - ys$ the control error (offset). $g(s) = \frac{Nu}{Su}$ denotes the process transfer function and $c(s)$ is the feedback part of the controller.

2 **Summary of method**

2.1 **Process information**

The controller tunings are based on first approximating the process by a first- or second-order plus delay model with the following model information (see Figure 2):

- Plant gain, k
- Dominant time constant, τ_1
- Effective time delay, θ
- Second-order time constant, τ_2 (only used for dominant second-order process for which $\tau_2 > \theta$, approximately)
Figure 2: Step response of first-order with delay system, \(g(s) = ke^{-\theta t}/(\tau_1 s + 1) \).

If the response is sluggish or integrating, i.e. typically if \(\tau_1 > 8\theta \), then the exact value of the time constant \(\tau_1 \) and of the gain \(k \) may be difficult to obtain and is also not important for controller design. For such processes one should instead obtain a good value for the

- Slope, \(k' \equiv k/\tau_1 \)

1. **Obtaining parameters from experimental step response**

 If the starting point is an experimental step response (response in process output \(y \) to a step in the process input \(u \)), then we may obtain the required process information as follows:

 - The gain \(k \) is the ratio of the steady-state changes for the output and input,
 \[
 k = \frac{\Delta y}{\Delta u} (t \to \infty)
 \]
 Note that since we have normalized by dividing with \(\Delta u \), the gain \(k \) represents the output change in response to an unit (magnitude 1) step input.
 - The delay \(\theta \) is approximately the time it takes for the output to start clearly moving in the “right” direction (towards its new steady-state).
 - For a first-order process (\(\tau_2 = 0 \)) we obtain \(\tau_1 \) as the additional time until the output has moved 63\% of the way to its new steady state.
 - For a process which is dominant second order (with a S-shaped step response), we may want to obtain also the second time constant \(\tau_2 \). It is recommended that numerical curve fitting is used to obtain \(\tau_1, \tau_2 \) and \(\theta \) in this case.
 - For slow or integrating process we may instead of \(k \) and \(\tau_1 \) obtain the initial slope \(k' \) of the step response
 \[
 k' = \frac{\Delta y/\Delta t}{\Delta u}
 \]
 where \(\Delta y \) is the (maximum) change in the output \(y \) over a period \(\Delta t \) following the initial delay.
The above method for obtaining τ_1 and θ is sensitive to errors, and the area method (Astrom et al. 1993) shown in Figure 3 may be used instead.

2. Obtaining parameters from transfer function model

The effective time delay θ is an approximation for the remaining high-order dynamics that are not included in τ_1 (or τ_2). If the starting point is a detailed transfer function model, then we propose a very simple method where the effective delay θ is taken as the sum of the

+ “true” delay
+ inverse response time constant(s)
+ half of the largest neglected time constant (the “half rule”)
+ all smaller high-order time constants

The “other half” of the largest neglected time constant is added to τ_1 (or to τ_2 if we choose to use a second-order model) – for more details see Section 5.

On transfer function form, the resulting model is then

$$g(s) = \frac{k}{(\tau_1 s + 1)(\tau_2 s + 1)} e^{-\theta s} = \frac{k'}{(s + 1/\tau_1)(\tau_2 s + 1)} e^{-\theta s}$$

(1)

2.2 Recommended SIMC-PID tunings

The tunings given below are for the cascade form PID controller:

$$\text{Cascade PID} : \quad c(s) = K_c \cdot \frac{\tau_D s + 1}{\tau_D s} \cdot (\tau_D s + 1)$$

(2)

The reason for using the cascade form is that the PID rules are much simpler in this case. when we have derivative action. Following the internal model control approach (Rivera et al. 1986) where one specifies a
first-order closed-loop response with time constant τ_c, the following SIMC tunings\(^1\) are recommended for the process in (1) (see derivation in Section 3):

$$K_c = \frac{1}{k} \frac{\tau_1}{\tau_c + \theta} = \frac{1}{k'} \frac{1}{\tau_c + \theta}$$

(3)

$$\tau_I = \min \{ \tau_1, \frac{4}{k' K_c} \} = \min \{ \tau_1, 4(\tau_c + \theta) \}$$

(4)

$$\tau_D = \tau_2$$

(5)

where $-\theta < \tau_c < \infty$ is the tuning parameter. The optimal value of τ_c is determined by a trade-off between

1. fast speed of response and good disturbance rejection (which are favored by a small value of τ_c), and
2. stability, robustness issues and small input usage (which are favored by a large value of τ_c).

For robust tunings it is recommended to use $\tau_c \geq \theta$.

The original IMC tuning rules (Rivera et al. 1986) yield $\tau_I = \tau_1$, that is, the integral time is selected so as to exactly cancel the dynamics corresponding to the dominant (first-order) time constant τ_1. However, this gives a very sluggish response to input (load) disturbances for “slow” (τ_1 large) or integrating processes (Chien and Fruehauf 1990). Therefore, for such processes it is suggested to use a smaller integral time, and the recommended value $\tau_I = \frac{4}{K_c}$ just avoids the slow oscillations that would otherwise result by using “too much” integral action for such a process.

Derivative action is primarily recommended for processes with dominant second order dynamics (with $\tau_2 > \theta$). Here the derivative time is selected so as to cancel the second-largest process time constant. In addition, derivative action is often needed to stabilize unstable processes, but such processes are not covered here.

2.3 Tuning for fast response with good robustness

The main limitation on achieving a fast closed-loop response is the time delay. Selecting the desired response time equal to the time delay,

SIMC : $\tau_c = \theta$

(6)

gives a reasonably fast response with moderate input usage and good robustness margins, and results in the following SIMC-PID tunings which may be easily memorized:

$$K_c = \frac{0.5 \tau_1}{k \theta} = \frac{0.5}{k'' \theta}$$

(7)

$$\tau_I = \min \{ \tau_1, 8\theta \}$$

(8)

$$\tau_D = \tau_2$$

(9)

Two common robustness measures are the gain margin (GM) and phase margin (PM). Typical minimum requirements are GM>1.7 and PM$>30^\circ$ (Seborg et al. 1989), but for most control loops in the process industries larger margins are recommended. Alternative robustness measures are the peak value M_s of the sensitivity function $S = 1/(1 + gc)$, and the peak value M_t of the complementary sensitivity, for which small values are desirable. For example, $M_s < 2$ guarantees GM>2 and PM$>29.0^\circ$.

With the SIMC PID-tunings in (7)-(9) the gain margin is typically above 3, the phase margin is about $50^\circ - 60^\circ$, and M_s is 1.7 or less (Holm and Butler 1998). Specifically, with $\tau_I = \tau_1$ the system always

\(^1\)The S in “SIMC” denotes Skogestad, Simple or Super – pick your choice.
has a gain margin (GM) of 3.14, a phase margin (PM) of 61.4°, $M_s = 1.59$, and a maximum allowed time delay error of 2.14θ i.e., the tunings provide time delay error robustness in excess of 200% (see Table 1). As expected, the robustness margins are somewhat poorer for “sluggish” processes, where we in order to improve the disturbance response use $\tau_I = 8\theta$. For example, for an integrating process the suggested tunings give a gain margin of 2.96, a phase margin of 46.9°, and a maximum allowed time delay error of 1.49θ.

<table>
<thead>
<tr>
<th>Process $g(s)$</th>
<th>Controller gain, K_c</th>
<th>Integral time, τ_I</th>
<th>Gain margin (GM)</th>
<th>Phase margin (PM)</th>
<th>Allowed time delay error, $\Delta\theta/\theta$</th>
<th>Sensitivity peak, M_s</th>
<th>Complementary sensitivity peak, M_t</th>
<th>Phase crossover frequency, $\omega_{c180} \cdot \theta$</th>
<th>Gain crossover frequency, $\omega_c \cdot \theta$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{k}{\tau_I+1} e^{-\theta s}$</td>
<td>$\frac{0.51}{\theta} \tau_I$</td>
<td>$\frac{0.51}{\theta}$</td>
<td>3.14</td>
<td>61.4°</td>
<td>2.14</td>
<td>1.59</td>
<td>1.00</td>
<td>1.57</td>
<td>0.50</td>
</tr>
<tr>
<td>$\frac{e^{-\theta s}}{0.51 \theta}$</td>
<td>τ_I</td>
<td>θ</td>
<td>2.96</td>
<td>46.9°</td>
<td>1.59</td>
<td>1.70</td>
<td>1.30</td>
<td>1.49</td>
<td>0.51</td>
</tr>
</tbody>
</table>

Table 1: Robustness margins for first-order and integrating delay process using SIMC-tunings in (7) and (8) ($\tau_c = \theta$). The same margins apply to second-order processes if we choose $\tau_D = \tau_2$.

Derivation: For the first-order delay process with $\tau_I = \tau_1$ the resulting loop transfer function is $L(s) = ge^{-\theta s}$. The frequency ω_{180} where the phase of L is $-180°$ is then $\angle L = -\omega_{180} \theta - \frac{\pi}{2} = -\pi \Rightarrow \omega_{180} = \frac{\pi}{2\theta}$. The gain of L as a function of frequency is $0.5/\theta \omega$ and by evaluating the gain at the frequency ω_{180} we find that $GM = 1/|L(j\omega_{180})| = \pi = 3.14$. Similarly, we can show that the frequency ω_c where $|L| = 1$ is $\omega_c = 0.5/\theta \omega$ and if we find that $PM = \pi - \angle L(j\omega_c) = \pi/2 - 0.5[rad] = 61.4°$. The maximum allowed time delay error is then $\Delta\theta = PM/\omega_c = (\pi - 1)\theta = 2.14\theta$.

These good margins come at the expense of a somewhat more sluggish time response compared to that which can be achieved with more aggressive tunings. Note that for the case with $\tau_I = \tau_1$, increasing K_c by a factor of 2 (corresponding to choosing $\tau_c = 0$), reduces PM from 61° to 33° and reduces GM from 3.14 to 1.57, which are rather poor robustness margins. Thus, to maintain reasonable robustness, the controller gain should be at most a factor of 2 larger than the value given in (7).

2.4 Tuning for slow response

In many cases the above choice $\tau_c = \theta$ may be unnecessary “aggressive” and we may want to increase τ_c or equivalently decrease K_c. In particular, this may be the case for processes with a small (effective) time delay, for example, a pure first-order process. More generally, there are cases where we want to use as little control as possible, that is, we want a slow or smooth response. However, there is usually some performance requirements in terms of the allowed output variation, and this gives a minimum controller gain needed to achieve satisfactory disturbance rejection. For example, for the case of input “load” disturbances we must approximately require that (see (37) below):

$$K_c \geq \frac{d_u}{y_{max}} \quad (10)$$

Here y_{max} is the allowed output error $(y - y_s)$, and d_u is the magnitude of the input “load” disturbance. As expected, tight control with y_{max} small requires K_c large, as does a large disturbances with d_u large.
After deciding on a reasonable value for K_c, one may from (3) back-calculate the corresponding value of τ_c. For cases where the integral time is not equal to τ_1 one may then modify the integral time according to (4).

If the “minimum” controller gain given by (10) is larger than the “maximum” the controller gain given in (7), then the process is not controllable – at least not with PID control with reasonably robust tunings. In words, the speed of response required for disturbance rejection is faster than what can be achieved with the given time delay.

Example. Consider a second-order with delay process with time constants $\tau_1 = 6$ and $\tau_2 = 1.2$, and time delay $\theta = 0.25$:

$$ g(s) = 4 \frac{e^{-0.25s}}{(6s + 1)(1.2s + 1)} $$

(11)

The requirements is that the output deviation should be less than $y_{\text{max}} = 1$ in response to a load disturbance $d_u = 0.5$. It is also desirable that the input usage is as smooth as possible.

Tuning for fast response. With $\tau_c = \theta = 0.25$ the recommended tunings (7)-(9) for a cascade form PID controller are

$$ K_c = \frac{0.5 \tau_1}{k \theta} = 3; \quad \tau_I = 8 \theta = 2; \quad \tau_D = \tau_2 = 1.2 $$

(12)

The load disturbance response in Figure 4 is much better than the requirement, with a output deviation in response to the load disturbance of less than 0.1. However, the input has some overshoot and oscillations.

Tuning for slow response. The above response is unnecessary fast. To reject the disturbance we need a minimum gain, which from (10) is approximately $K_c = \frac{d_u}{y_{\text{max}}} = \frac{0.5}{1} = 0.5$ (corresponding to $\tau_c = 2.75$), and the resulting PID tunings are

$$ K_c = 0.5; \quad \tau_I = \tau_1 = 6; \quad \tau_D = \tau_2 = 1.2 $$

(13)

The load disturbance response in Figure 4 has an output deviation $y - y_s$ of about $1.5 - 1 = 0.5$ which is well below 1, and the input is smooth with no overshoot or oscillations. Thus, this tuning is preferred in practice.

Remark: We may reduce K_c further below 0.5 and still achieve an output deviation less than 1. The reason why (10) is not tight, is that (1) the expression is derived for sinusoidal disturbances whereas we consider a step disturbance, and (2) the derivative time is quite close to the integral time so that the controller gain as a function of frequency does not come down to its asymptotic value of K_c.

2.5 Ideal PID controller

The above tunings (K_c, τ_I, τ_D) are for the cascade form PID controller in (2). To derive the corresponding tunings for the “ideal” PID controller

$$ \text{Ideal PID: } c'(s) = K_c' \left(1 + \frac{1}{\tau_I' s} + \tau_D' s\right) = \frac{K_c'}{\tau_I' s} \left(\tau_I' \tau_D' s^2 + (\tau_I' + \tau_D') s + 1\right) $$

(14)

we use the formulas

$$ K_c' = K_c \left(1 + \frac{\tau_D}{\tau_I}\right); \quad \tau_I' = \tau_I \left(1 + \frac{\tau_D}{\tau_I}\right); \quad \tau_D' = \frac{\tau_D}{1 + \frac{\tau_D}{\tau_I}} $$

(15)

Note that it is not always possible to do the reverse and obtain cascade tunings from the ideal tunings. This is because the ideal form is slightly more general as it also allows for complex zeros in the controller. Thus, if we want to derive PID-tunings for a second-order oscillatory process which has complex poles, then we should start directly with the ideal PID controller.
The tuning parameters for the cascade and ideal forms are identical when the ratio between the derivative and integral time, \(\tau_D/\tau_I \), approaches zero, that is, for a PI-controller (\(\tau_D = 0 \)) or a PD-controller (\(\tau_I = \infty \)).

The SIMC-PID cascade tunings in (7)-(8) correspond to the following SIMC “ideal” PID tunings (\(\tau_c = \theta \)):

\[
\begin{align*}
\tau_1 \leq 8\theta & : \quad K_c' = \frac{0.5 \tau_1 + \theta_2}{\theta}; \quad \tau_I' = \tau_1 + \tau_2; \quad \tau_D' = \frac{\tau_2}{1 + \frac{\tau_2}{\tau_1}} \\
\tau_1 \geq 8\theta & : \quad K_c' = \frac{0.5 \tau_1}{k} \left(1 + \frac{\tau_2}{8\theta}\right); \quad \tau_I' = 8\theta + \tau_2; \quad \tau_D' = \frac{\tau_2}{1 + \frac{\tau_2}{8\theta}}
\end{align*}
\]

(16) (17)

Note that the tuning rules for the ideal form are much more complicated.

Example. Consider the second-order process in (11) with cascade-form PID tunings given in (12). The corresponding tunings for the ideal PID controller in (14) are

\[
K_c' = 4.8; \quad \tau_I' = 3.2; \quad \tau_D' = 0.75
\]

The robustness margins with these tunings are given by the first column in Table 1.

3 Derivation of SIMC tuning rules

We will now derive the above tuning rules.

3.1 Tuning for setpoint response

Our starting point is a second-order with delay model,

\[
g(s) = k \frac{e^{-\theta s}}{(\tau_1 s + 1)(\tau_2 s + 1)}
\]

(18)
for which we want to derive analytical PID-settings. We use the direct synthesis approach of Rivera et al. (1986) where we specify the desired setpoint response. Under feedback control the closed-loop setpoint response of the system in Figure 1 is

\[
\frac{y}{y_s} = \frac{gc}{gc + 1}
\]

(19)

where \(c \) is the feedback controller, and we have assumed that the measurement of the output \(y \) is perfect. Following Rivera et al. (1986), we specify that we, after the delay, desire a simple first-order response

\[
\left(\frac{y}{y_s} \right)_{\text{desired}} = \frac{1}{\tau_c s + 1} e^{-\theta s}
\]

(20)

We have kept the delay in the “desired” response because it is unavoidable. \(\tau_c \) is the desired closed-loop time constant, and is the sole tuning parameter for the controller. Combining (19) and (20) and solving with respect to the controller gives a “Smith Predictor” controller (Smith 1957):

\[
c(s) = \frac{(\tau_1 s + 1)(\tau_2 s + 1)}{k} \frac{1}{(\tau_c s + 1 - e^{-\theta s})}
\]

(21)

To get a PID-controller we introduce in (21) the following first-order Taylor approximation for the delay

\[
e^{-\theta s} \approx 1 - \theta s
\]

(22)

and derive

\[
c(s) = \frac{(\tau_1 s + 1)(\tau_2 s + 1)}{k} \frac{1}{(\tau_c + \theta)s}
\]

(23)

which is a cascade form PID-controller (2) with

\[
K_c = \frac{1}{k \frac{\tau_1}{\tau_c + \theta}};
\quad \tau_I = \tau_1;
\quad \tau_D = \tau_2
\]

(24)

Alternative approximations of the delay

1. We may instead of (22) use the more exact 1st order Padé approximation,

\[
e^{-\theta s} = \frac{e^{-\theta/2s}}{e^{-\theta/2s}} + \frac{\theta s}{\theta s + 1}
\]

With the choice \(\tau_c = \theta \) this results in the same PID-controller (23) found above, but in addition we get a term

\[
\frac{\theta s}{0.5\theta s + 1}
\]

(25)

which may be viewed as an additional derivative term which is effective over only a very small range, and increases the controller gain by a factor 2 at high frequencies. Simulations show that performance is only slightly improved by adding this term (at least with the choice \(\tau_c = \theta \); see Figure 5)), and thus does not justify the increased complexity of the controller.

2. **Original IMC PID tunings for first-order with delay process.** Rivera et al. (1986) introduced the Padé approximation in the process itself, before deriving the controller. By specifying a closed-loop response \(\frac{y}{y_s} = \frac{-(\theta/2)s + 1}{es + 1} \) (note that \(\tau_c \) is denoted \(\varepsilon \) in their notation) and choosing \(\varepsilon = 2\theta \), their resulting “(unimproved) IMC PI-tunings” for a first-order with delay process are identical to the
tunings (24) just derived. They also propose some variations. One is the “improved IMC PI-tuning” where the integral time is changed from τ_1 to $\tau_1 + \theta/2$:

\[
IMC \text{ PI} : \quad K_c = \frac{1}{k} \frac{\tau_1 + \theta/2}{\varepsilon}; \quad \tau_I = \tau_1 + \theta/2
\]

(26)

with $\varepsilon \geq 1.7\theta$. This improvement has some effect for dominant time delay processes (with τ_1/θ small), but it is minor and probably does not justify the added complication in the rule.

Rivera et al. (1986) also propose for a first-order with delay process to use an additional derivative term with time constant $\theta/2$ resulting in the “IMC PID-tunings”:

\[
IMC \text{ cascade - PID} : \quad K_c = \frac{1}{k} \frac{\tau_1}{\varepsilon + \theta/2}; \quad \tau_I = \tau_1; \quad \tau_D = \frac{\theta}{2}
\]

(27)

with $\varepsilon \geq 0.8\theta$. With their recommended value $\varepsilon = 0.8\theta$ (tight control) this gives some improvement with less overshoot in the setpoint response, but the load disturbance response is almost unchanged. For larger values of ε (more robust tuning corresponding to the SIMC-rules), there is very little improvement also in the setpoint response; see Figure 5.

![Figure 5: Introduction of derivative action (solid line) has only a minor effect for first-order with delay process, \(g(s) = k e^{-\theta s}/(\tau_1 + 1) \)
Note: Controller gain corresponds to $\tau_c = \theta$ in (24) and $\varepsilon = 2\theta$ in (27)
Load disturbance of magnitude 0.5 occurs at $t = 20$.](image)

In summary, the tunings proposed in this paper are similar to the IMC-tunings of Rivera et al. (1986). Rivera et al. (1986) proposed some modifications to improve the response, which have only a minor effect, and do not seem worthwhile. However, for a process with τ_1/θ large, there is a significant scope for improvement when it comes to disturbance rejection (Chien and Fruehauf 1990). This is discussed next.

3.2 Modifying the integral term for improved disturbance rejection

Above we derived PI- and PID tunings based on considering the setpoint response. We found that we should effectively cancel the first order dynamics of the process by selecting the integral time $\tau_I = \tau_1$. This is a
robust setting which results in very good responses when it comes to setpoint changes and disturbances occurring directly at the process output. However, it is well known that for processes where \(\tau_1 \) is “large” (e.g. an integrating processes), this choice results in a long settling time for input “load” disturbances (Chien and Fruehauf 1990). The reason is that the controller cancels the process dynamics, whereas for a disturbance occurring at the input we actually want to keep the dynamics. To improve the load disturbance response we therefore want to reduce the integral time. However, we must not reduce the integral time too much, because otherwise we will encounter slow oscillations caused by almost having two integrators in series (one from the slow dynamics in the process and one from the controller). This is illustrated in Figure 6 for a “slow” process with \(\tau_1 = 30 \):

- \(\tau_I = \tau_1 = 30 \) (IMC) gives slow settling for a load disturbance.
- \(\tau_I = 8\theta = 8 \) (SIMC) gives faster settling.
- \(\tau_I = 4 \) gives even faster settling, but the setpoint response (and robustness) is poorer.
- \(\tau_I = 2 \) gives poor response with oscillations.

![Figure 6: Effect of changing the integral time \(\tau_I \) for PI-control of “slow” process \(g(s) = e^{-s}/(30s + 1) \) with \(K_c = 15 \). Load disturbance of magnitude 10 occurs at \(t = 20 \).](image)

A good trade-off between disturbance response and robustness is obtained by selecting the integral time such that we just avoid the oscillations (\(\tau_I = 8\theta \) in the above example). Let us analyze this in more detail. First, note that these “slow” oscillations have a different origin and occur at a lower frequency than the usual fast oscillations which occur at about the frequency of the delay, \(1/\theta \). Because of this, we neglect the delay in the model when we analyze the slow oscillations. The process model then becomes

\[
g(s) = k \frac{e^{-\theta s}}{\tau_1 s + 1} \approx k \frac{1}{\tau_1 s + 1} \approx \frac{k}{\tau_1 s} = \frac{k'}{s}
\]

where the second approximation applies since the resulting frequency of oscillations \(\omega \) is such that \((\tau_1 \omega)^2 \) is much larger than 1 (see footnote). With a PI controller \(c = K_c \left(1 + \frac{1}{\tau_I s} \right) \) the closed-loop characteristic
equation $1 + gc$ then becomes
\[
\frac{\tau_I}{k'K_c} s^2 + \tau_I s + 1
\]
which is on standard second-order form $\tau_0^2 s^2 + 2\tau_0\zeta s + 1$ with
\[
\tau_0 = \sqrt{\frac{\tau_I}{k'K_c}}; \quad \zeta = \frac{1}{2}\sqrt{k'K_c}\tau_I
\]
(28)

To avoid slow oscillations we must have a damping coefficient $\zeta \geq 1$. Of course, some oscillations may be tolerated, but nevertheless a good starting value is to have $\zeta = 1$ (see also Marlin (1995) page 588), which gives
\[
K_c\tau_I = 4/k'
\]
(29)
or equivalently
\[
\tau_I = \frac{4}{k'K_c}
\]
(30)
which is the value recommended in (4). The choice $K_c = \frac{0.51}{k'}\theta$ in (7) gives $\tau_I = 8\theta$ as given in (8). For a first-order with delay process this gives a gain margin better than 2.96 and a phase margin better than 46.9°; see Table 1.

We get slow oscillations if the product of the controller gain K_c and the integral time τ_I is reduced compared to the value given in (29). What is the period P of these oscillations? From a standard analysis of second-order systems, we have that (e.g. Seborg et al. (1989) page 118)
\[
P = \frac{2\pi}{\sqrt{1-\zeta^2}} \tau_0 > 2\pi \tau_0 = 2\pi \sqrt{\frac{\tau_I}{k'K_c}}
\]
(31)
where the inequality applies since the presence of oscillations requires $\zeta \leq 1$. With the suggested tuning $\tau_I = 4/k'K_c$ (30) this gives
\[
P > \pi \cdot \tau_I
\]
(32)
Thus, the “slow” oscillations which result by reducing the controller gain have a period larger than 3 times the integral time.\(^2\) On the other hand, the “usual” fast oscillations that appear by increasing the controller gain have a period of 6 times the delay. This is illustrated in Figure 7 for a “slow” process with $\tau_1 = 30$, $\theta = 1$ and integral time $\tau_I = 4$:

- $K_c = 15$ gives no detectable oscillations.
- Increasing the controller gain ($K_c = 30$) gives fast oscillations with a period of about 6 (about 6 times the delay).
- Decreasing the controller gain ($K_c = 3$) gives slow oscillations with a period of about 30 (larger than 3 times the integral time).

\(^2\)The corresponding normalized frequency of these slow oscillations is $\tau_1\omega = \tau_1 \cdot 2\pi/P \approx 2\tau_1/\tau_I$ which is larger than 2 since we use $\tau_I \leq \tau_1$.

12
Figure 7: Effect of changing the gain K_c for PI-control of “slow” process $g(s) = e^{-s}/(30s + 1)$ with $\tau_I = 4$. Setpoint responses.

3.3 Lower limit on controller gain

In many practical situations we do not require very fast control, and to reduce the use of manipulated inputs and generally make operation smoother we may want to use lower controller gains. Are there any *lower limits* on the controller gain? Yes, there are, and to derive this we will consider the performance requirements for disturbance rejection.

The linear transfer function model with deviation variables is

$$y = g(s)u + g_d(s)d$$

(33)

where $g_d(s)$ is the disturbance transfer function model. With feedback control, $u = -c(s)y$, the effect of a disturbance d on the control output y is

$$y = S(s)g_d(s)d$$

where $S(s) = 1/(1 + g(s))c(s)$ is the sensitivity function. Let d denote the disturbance magnitude, and y_{max} the allowed output variation. We assume that this requirement applies on a frequency-by-frequency basis, i.e., for a sinusoidal disturbance with frequency ω [rad/min] and magnitude d, the resulting sinusoidal output should have a magnitude less than y_{max}. Since the sinusoidal response is mathematically obtained by setting $s = j\omega$, the requirement becomes

$$|y(j\omega)| = |S(j\omega)| \cdot |g_d(j\omega)| \cdot d \leq y_{max}$$

or

$$|1 + g(j\omega)c(j\omega)| \geq \frac{|g_d(j\omega)| \cdot d}{y_{max}}$$

At low frequencies (i.e., within the closed-loop bandwith) we have that $|gc| \gg 1$ and we derive the following lower limit on the frequency-dependent controller gain

$$|c(j\omega)| \geq \frac{|g_d(j\omega)| \cdot d}{|g(j\omega)| \cdot y_{max}}$$

(34)
At lower frequencies, where this expression applies, we effectively have “perfect control” and $y \approx 0$. From (33) the required input to reject the disturbance (i.e., achieve $y = 0$) is $u_d = (g_d/g)d$, and we derive the following alternative expression

$$|c(j\omega)| \geq \frac{u_d(j\omega)}{y_{max}}$$

(35)

where $u_d(j\omega)$ is the magnitude of the input change needed to reject the disturbances and y_{max} is the maximum allowed output deviation ($y - y_s$). By constructing a controller which just satisfies the bound (34) or (35), we obtain the “slowest” acceptable controller (this is generally not a PID controller).

For the special case of a load disturbance (disturbance d_u at the input) we have $g_d = g$ and the requirement (34) becomes

$$c(j\omega) \geq \frac{d_u}{y_{max}}$$

(36)

For a P-, PI- and PID-controller the controller gain $|c(j\omega)|$ has a minimum asymptotic value 3 of K_c, and we derive the following lower limit on the controller gain,

$$K_c \geq \frac{d_u}{y_{max}}$$

(37)

From (35) and (37) we derive the following useful rule:

- The minimum controller gain is approximately equal to the expected input change divided by the allowed output variation.

We can rearrange (37) into $y_{max} = d_u/K_c$, which in words says that that the maximum output change y_{max} in response to a load disturbance is d_u/K_c. This is for a sinusoidal disturbance, but as illustrated in the simulations, a step disturbance often results in a similar value. For example, in Figure 6 we see that the maximum output deviation $y - y_s$ in response to a step disturbance is about 0.65 (independent of the integral time) which compares well the value $d_u/K_c = 10/15 = 0.67$.

4 Some special cases and comparison with other tuning methods

We here present some special cases and compare the suggested SIMC tuning rules with the classical “closed-loop” tuning rules of Ziegler and Nichols (1942), as well as some other tuning methods. We find that the simple SIMC tunings generally perform very well.

Ziegler-Nichols (ZN) tuning rules. The first step in the Ziegler-Nichols procedure is to generate sustained oscillations with a P-controller, and from this obtain the “ultimate” gain K_u and corresponding “ultimate” period P_u. Based on simulations, Ziegler and Nichols (1942) recommended the following ZN tunings:

- P-control: $K_c = 0.5K_u$
- PI-control: $K_c = 0.45K_u; \tau_I = P_u/1.2$
- PID-control (cascade): $K_c = 0.6K_u; \tau_I = P_u/2; \tau_D = P_u/8$

These tunings were based on pneumatic controllers similar to the cascade form of the PID controller given in (2) (Shinskey 1998). From (15) this means that for an ideal PID controller the ZN tunings are:

- PID-control (ideal): $K_c = 0.48K_u; \tau_I = P_u/1.6; \tau_D = P_u/10$

^3For a PID controller the break frequencies are at $1/\tau_I$ and $1/\tau_D$, and the controller gain as a function of frequency will only reach its asymptotic minimum value of K_c for cases where the integral time τ_I is significantly larger than the derivative time τ_D.

14
Tyreus-Luyben modified ZN tuning rules. The ZN tunings were derived to give decay ratio of 1/4. This is too aggressive for most process control systems, where oscillations and overshoot is usually not desired at all. This lead Tyreus and Luyben (1992) to recommend the following PI-rules for more conservative loops:

$$K_c = 0.313 K_u; \quad \tau_I = 2.2 P_u$$

Regressed analytic tuning rules. Many papers on PID control include comparisons with the tuning rules of Cohen and Coon (1953) where the tunings are given by analytical functions of $$\tau_1$$ and $$\tau_2$$. These tunings were also derived for a decay ratio of 1/4 and are generally too aggressive, and performance is usually poor (this is probably why it is popular to compare with them since anyone can beat them). Later, there has been many papers along these lines, e.g. Ho et al. (1998).

Astrom PI tuning rules. Schei (1994) argued that in process control applications we usually want a robust design with the highest possible attenuation of low-frequency disturbances, and suggested to maximize the low-frequency controller gain

$$K_I = \frac{K_c}{\tau_I} \tag{38}$$

subject to given robustness constraints on $$M_s$$ and $$M_t$$. Astrom et al. (1998) showed how to formulate this as a convex optimization problem for the case with PI control and a constraint on $$M_s$$. The value of the tuning parameter $$M_s$$ is typically between 1.4 (robust tuning) to 2 (more aggressive tuning). To improve the setpoint performance Astrom et al. (1998) use a “two degrees of freedom controller” where they use only a fraction $$b$$ of the proportional action on the setpoint, but we do not use this here (i.e., we set $$b = 1$$).

4.1 Pure time delay process

$$g(s) = k e^{-\theta s} \tag{39}$$

Note that a pure P-controller is unacceptable for this process, because even with maximum gain (at the limit to instability) the steady-state offset is 0.5 (50%). Thus integral action will be needed.

SIMC tunings. This is a special case of (1) with $$\tau_1 = 0$$ and $$\tau_2 = 0$$. The rules (3) and (4) give $$K_c \to \infty$$ and $$\tau_I = \tau_1 = 0$$. More precicely, the controller becomes

$$c(s) = K_c \frac{\tau_I s + 1}{\tau_I s} \to \frac{1}{k (\tau_c + \theta)} \frac{1}{s}$$

which is a pure integral controller $$c(s) = \frac{K_I}{s}$$. With the suggested choice $$\tau_c = \theta$$ the integral gain is

$$K_I = \frac{0.5}{k \theta} \tag{40}$$

corresponding to $$GM = 3.14$$, $$PM = 61.4^\circ$$ and $$M_s = 1.59$$. This is not a PI controller, but it may of course be approximated by a PI controller by choosing $$\tau_I$$ small and using $$K_c = \frac{0.5}{k \theta} \cdot \frac{\tau_I}{\theta}$$.

ZN tunings. For this process, a pure proportional control with gain $$K_u = 1/k$$ results in persistent oscillations with period $$P_u = 2\theta$$ (at the limit to instability). The Ziegler-Nichols tunings rules then give the following PI-tunings

$$K_c = \frac{0.45}{k \theta}; \quad \tau_I = 1.67 \theta \tag{41}$$

corresponding to $$GM = 2.18$$, $$PM = 99.5^\circ$$ and $$M_s = 1.85$$. Thus, the robustness is acceptable, but the simulations in Figure 8 show that reponse with the ZN controller is sluggish. This may explained by the relatively low integral gain, $$K_I = K_c/\tau_I = 0.27/(k \theta)$$. We therefore conclude that the Ziegler-Nichols settings are generally poor for a pure time delay process. This may partly explain the myth in the process industry that a PI controller should not be used for processes with large time delays.
Figure 8: Responses for pure delay process, \(g(s) = e^{-s} \).
SIMC (solid line): I-controller (40) with \(K_c = 0 \) and \(K_I = 0.5 \)
ZN (dashed line): PI-controller (41) with \(K_c = 0.6 \) and \(K_I = 0.27 \)
Astrom (dashed-dot): PI-controller (42) with \(K_c = 0.26 \) and \(K_I = 0.85 \)

Astrom tunings. With \(M_s = 1.4 \) (robust tunings), Astrom et al. (1998) derive a PI-controller \(c(s) = K_c + \frac{K_I}{s} \) with \(K_c = \frac{0.16}{k} \) and \(K_I = \frac{0.424}{k\theta} \). We note that the integral part is almost the same as for the SIMC integral controller in (40), and the response is also quite similar. With \(M_s = 2 \) (more aggressive tunings), Astrom et al. (1998) derive
\[
K_c = \frac{0.26}{k}, \quad K_I = \frac{0.85}{k\theta}
\]
(42)
corresponding to \(GM=2.11 \), \(PM = 54.2^\circ \) and \(M_s = 2 \). The simulations in Figure 8 show that the performance with this latter PI controller is somewhat faster, but the response with the SIMC integral controller is smoother and more robust.

4.2 Integrating process
Consider an integrating process with delay \(\theta \),
\[
g(s) = k' e^{-\theta s}
\]
(43)
The corresponding PI tunings for some methods are summarized in Table 2.

SIMC tunings. This is a special case of (1) with \(\tau_1 \to \infty \). From (3) and (4) we get with \(\tau_c = \theta \) a PI controller with
\[
K_c = \frac{1}{k'} \cdot \frac{1}{\tau_c + \theta} = \frac{0.5}{k'} \cdot \frac{1}{\theta}
\]
(44)
\[
\tau_I = 4(\tau_c + \theta) = 8\theta
\]
(45)
ZN tunings. For this process a proportional controller with gain \(K_u = \frac{\pi}{2k'\theta} \) results in persistent oscillations with period \(P_u = 4\theta \). The Ziegler-Nichols tunings rules then give the following tunings:
\[
ZN - PI : \quad K_c = \frac{0.71}{k'} \quad \tau_I = 3.33 \theta
\]
Table 2: PI tunings for integrating process, $g(s) = k' e^{-\theta s} / s$

<table>
<thead>
<tr>
<th>Method</th>
<th>$K_c \cdot k' \cdot \theta$</th>
<th>τ_I / θ</th>
<th>GM</th>
<th>PM</th>
<th>M_s</th>
<th>M_I</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIMC ($\tau_c = \theta$)</td>
<td>0.5</td>
<td>8</td>
<td>2.96</td>
<td>46.9</td>
<td>1.70</td>
<td>1.30</td>
</tr>
<tr>
<td>IMC ($\tau_c = 1.7\theta$)</td>
<td>0.59</td>
<td>∞</td>
<td>2.66</td>
<td>56.2</td>
<td>1.75</td>
<td>1.07</td>
</tr>
<tr>
<td>ZN</td>
<td>0.71</td>
<td>3.33</td>
<td>1.86</td>
<td>24.8</td>
<td>2.85</td>
<td>2.37</td>
</tr>
<tr>
<td>Tyreus-Luyben</td>
<td>0.49</td>
<td>7.32</td>
<td>3.00</td>
<td>45.9</td>
<td>1.70</td>
<td>1.33</td>
</tr>
<tr>
<td>Astrom ($M_s = 1.4$)</td>
<td>0.28</td>
<td>7.0</td>
<td>5.24</td>
<td>47.5</td>
<td>1.40</td>
<td>1.43</td>
</tr>
<tr>
<td>Astrom ($M_s = 2$)</td>
<td>0.49</td>
<td>3.77</td>
<td>2.77</td>
<td>32.8</td>
<td>2.00</td>
<td>1.81</td>
</tr>
</tbody>
</table>

The ZN tunings give (as usual) poor robustness, but as seen in Figure 9 the ZN tunings give considerably faster settling than the SIMC tunings for load disturbances.

The Astrom tunings with $M_s = 2$ give responses somewhat in between SIMC and ZN.

The Tyreus-Luyben modified (conservative) ZN tunings are almost identical to the SIMC tunings for this particular example.

The IMC tunings of Rivera et al. (1986) result in a pure P-controller since $\tau_I = \tau_1 + \frac{\theta}{2} \to \infty$. This P-controller is acceptable for setpoint changes, but load disturbances integrate and result in steady-state offset.

4.3 Integrating process with delay and lag

$$g(s) = k' \frac{e^{-\theta s}}{s(\tau_2 s + 1)}$$

(46)
SIMC tunings. This results in the same tunings and responses as for the process (43), but we must add derivative action to counteract the lag,

\[K_c = \frac{1}{k_l} \cdot \frac{1}{\tau_c + \theta}; \quad \tau_I = 4(\tau_c + \theta); \quad \tau_D = \tau_2 \quad (47) \]

If the time constant \(\tau_2 \) for the lag is small, then one may approximate the process as \(k' e^{-(\theta+\tau_2)s}/s \) and derive a PI-controller by using the rules for the integrating process with delay in (43), but with \(\theta \) replaced by \(\theta + \tau_2 \).

If the time constant \(\tau_2 \) for the lag is large, such that we in effect have a double integrating process, then the load response is poor, and the controller needs (47) to be modified. This is discussed next.

4.4 Double integrating process

\[g(s) = k'' \frac{e^{-\theta s}}{s^2} \quad (48) \]

SIMC tunings. By letting \(\tau_2 \to \infty \) and introducing \(k'' = k'/\tau_2 \) the PID-controller (47) obtained for the process (46) approaches a PD-controller with

\[K_c = \frac{1}{k''} \cdot \frac{1}{4(\tau_c + \theta)^2}; \quad \tau_I = 4(\tau_c + \theta) \quad (49) \]

This controller gives good setpoint responses for the process (48), but results in steady-state offset for load disturbances occurring at the input, see Figure 10. To remove this offset, we need to reintroduce integral action, and as before propose to use \(\tau_I = 4(\tau_c + \theta) \). With the choice \(\tau_c = \theta \) the resulting SIMC-PID parameters are

\[PID - \text{cascade}: \quad K_c = \frac{0.0625}{k''} \cdot \frac{1}{\theta^2}; \quad \tau_I = 8\theta; \quad \tau_D = 8\theta \quad (50) \]

It should also be noted that derivative action is required in order to stabilize this process if we use integral action in the controller.

ZN tunings can not be derived for this process because we get sustained oscillations with P-control even with \(K_c = 0 \).

5 The half rule: Obtaining the effective delay

In this paper we base the process information on a first-order or second-order plus delay process. This may seem restrictive, but more complex models can be handled by approximating the remaining high-order dynamics by an effective delay.

The problem of obtaining the effective delay can be set up as a parameter estimation problem, for example, by making an least squares approximation of the open-loop step response. However, our goal is to use the resulting effective delay to obtain controller tunings, so a better approach would be to find the approximation which for a given tuning method results in the best closed-loop response (here “best” could, for example, by the in terms of the minimum integrated absolute error (IAE)).

However, our objective is not “optimality” but “simplicity”, so we choose to use a much simpler approach where we simply add all the “neglected” small time constants to the effective delay, except for the largest which we distribute evenly to the delay and the time constant using the “half method”. This extremely simple rule has been applied to numerous examples, and leads to very good final PID tunings.
Figure 10: Responses for double integrating process, \(g(s) = e^{-\theta s}/s^2 \).

SIMC-PID with \(K_c = 0.0625, \tau_I = 8 \) and \(\tau_D = 8 \).

SIMC-PD with \(K_c = 0.0625, \tau_I = \infty \) and \(\tau_D = 8 \).

Disturbance of magnitude 0.1 occurs at \(t = 40 \).

The starting point is a model on the following standard form

\[
g_0(s) = k e^{-\theta_s} \frac{\prod_{j=1}^{n} (T_{j0}s + 1)}{\prod_{i=1}^{m} (\tau_{i0}s + 1)} = \frac{k' e^{-\theta_s}}{s + 1/\tau_{10}} \frac{\prod_{i=1}^{m} (T_{i0}s + 1)}{\prod_{i=2}^{m} (\tau_{i0}s + 1)} \tag{51}
\]

where \(T_{j0} \) are the time constants for overshoot (or inverse response for the case when \(T_{j0} \) is negative), and \(\tau_{i0} \) are the lag time constants. We want to approximate (51) by a first- or second-order plus delay model,

\[
g(s) = k' \frac{e^{-\theta s}}{(\tau_1 s + 1)(\tau_2 s + 1)} = k' \frac{e^{-\theta s}}{(s + 1/\tau_1 s)(\tau_2 s + 1)} \tag{52}
\]

Here \(\theta \) is the “effective” delay, and we select \(\tau_2 = 0 \) if a first-order approximation is desired.

Rules for obtaining the effective delay

1. **Approximation of lags \(\tau_{i0} \).** The largest of the neglected time constants \(\tau_{i0} \) is evenly distributed to the remaining time constant and to the delay (“the half rule”), whereas all the smaller time constants are added to the delay.

That is, to obtain a first-order model (\(\tau_2 = 0 \)) we choose

\[
\tau_1 = \tau_{10} + \frac{\tau_{20}}{2}; \quad \theta = \theta_0 + \frac{\tau_{20}}{2} + \sum_{i \geq 3} \tau_{i0}
\]

and to obtain a second-order delay model we choose

\[
\tau_1 = \tau_{10}; \quad \tau_2 = \tau_{20} + \frac{\tau_{30}}{2}; \quad \theta = \theta_0 + \frac{\tau_{30}}{2} + \sum_{i \geq 4} \tau_{i0}
\]
2. **Approximation of small or negative** T_{j0} **as effective delay.** Let θ_1 be the effective delay obtained so far, and consider a numerator term with $T_{j0} = T$. For $T < \theta_1/2$ (approximately) we simply subtract T from the delay

$$\theta = \theta_1 - T$$

A special case is a process with an inverse response (T negative), which then yields a larger effective delay (for example, the term $(-3s + 1)$ gives an effective delay $\theta = 3$)

3. **Cancellation of large** T_{j0} **by reducing time constant.** For $T > \theta_1/2$ (i.e. for large positive values of T) we cannot subtract T from the delay, so we instead cancel it by subtracting it from a larger time constant, e.g. $T_{j0}/(s+1) \approx 1/(\tau - T)$. The rules are best understood by considering some examples. Simulations show that the subsequent application of the SIMC tuning rules result in good responses in all cases.

Example 1. The second-order process

$$g_0(s) = 20 \frac{1}{(10s + 1)(s + 1)}$$

is approximated as a first-order delay process ($\tau_2 = 0$) with

$$\tau_1 = 10 + 0.5 = 10.5; \quad \theta = 0.5$$

The corresponding SIMC-PI controller tunings are $K_c = \frac{0.5 \tau_1}{\theta} = 0.525$ and $\tau_I = 8\theta = 4$. The model (53) is already second-order and the SIMC-PID tunings give $\tau_I = 10$ and $\tau_D = 1$, and since there is no delay we may in theory use an infinite controller gain and achieve perfect responses (and perfect stability margins). However, in practice K_c will be limited due to uncertainty, unmodelled dynamics and limited input usage.

Example 2. The process

$$g_0(s) = \frac{k}{(2s + 1)(1s + 1)(0.4s + 1)(0.2s + 1)(0.05s + 1)^3}$$

is approximated as a first-order delay process with

$$\tau_1 = 2 + 1/2 = 2.5; \quad \theta = 1/2 + 0.4 + 0.2 + 3 \cdot 0.05 + 0.3 - 0.08 = 1.47$$

or as a second-order delay process with

$$\tau_1 = 2; \quad \tau_2 = 1 + 0.4/2 = 1.2; \quad \theta = 0.4/2 + 0.2 + 3 \cdot 0.05 + 0.3 - 0.08 = 0.77$$

The corresponding tuning parameters for this process are given in Table 3. The responses with the SIMC tunings are very good as shown in Figure 11.

<table>
<thead>
<tr>
<th></th>
<th>$K_c \cdot k$</th>
<th>τ_I</th>
<th>τ_D</th>
<th>GM</th>
<th>PM</th>
<th>M_s</th>
<th>M_t</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIMC-PI</td>
<td>0.85</td>
<td>2.5</td>
<td>0</td>
<td>3.37</td>
<td>57.9°</td>
<td>1.66</td>
<td>1.04</td>
</tr>
<tr>
<td>SIMC-PID</td>
<td>1.30</td>
<td>2</td>
<td>1.2</td>
<td>2.84</td>
<td>57.5°</td>
<td>1.74</td>
<td>1.05</td>
</tr>
<tr>
<td>ZN-PID</td>
<td>2.56</td>
<td>2.65</td>
<td>0.66</td>
<td>1.84</td>
<td>30.8°</td>
<td>1.79</td>
<td>2.13</td>
</tr>
</tbody>
</table>

Table 3: Example 2. Tunings for process (54)
Example 3. The process

$$g_0(s) = k \frac{(6s + 1)(3s + 1)e^{-0.3s}}{(10s + 1)(8s + 1)(s + 1)}$$

is approximated as a first-order delay process with

$$\tau_1 = 10 + 8 - 6 - 3 + 0.5 = 9.5; \quad \theta = 0.5 + 0.3 = 0.8$$

The corresponding SIMC-PI controller tunings are $K_c = 5.94/k$ and $\tau_l = 6.4$. A second-order model (and thus the use of a PID controller) is not recommended here because the initial response is overall first order (with a pole excess of one).

Example 4. The process

$$g_0(s) = k \frac{1}{(\tau_0s + 1)^4}$$

is approximated as a first-order delay process with

$$\tau_1 = 1.5\tau_0; \quad \theta = 2.5\tau_0$$

or as a second-order delay process with (here we interchange τ_1 and τ_2 since we want $\tau_1 > \tau_2$)

$$\tau_1 = 1.5\tau_0; \quad \tau_2 = \tau_0; \quad \theta = 1.5\tau_0$$

The corresponding SIMC PI- and PID-controller tunings are given in Table 4. In this case $\tau_2 < \theta$ and the use of derivative action has little effect.

Example 5. The process (Astrom et al. 1998)

$$g_0(s) = \frac{1}{(s + 1)(0.2s + 1)(0.04s + 1)(0.008s + 1)}$$
Table 4: Example 4. Tunings for process (56)

is approximated as a first-order delay process with

\[\tau_1 = 1.1; \quad \theta = 0.148 \]

or as a second-order delay process with

\[\tau_1 = 1.0; \quad \tau_2 = 0.22; \quad \theta = 0.028 \]

The corresponding tunings are given in Table 5.

As seen in Figure 12 the Ziegler-Nichols tunings almost give instability for this process, whereas the SIMC tunings give nice closed-loop responses. A PID controller gives a significant improvement for this process, which is expected since for the process is dominant second order with \(\tau_2 = 0.22 \) much larger than \(\theta = 0.028 \).

Table 5: Example 5. Tunings for process (57)

Example 6. The process (Astrom et al. 1998)

\[g_0(s) = \frac{(0.17s + 1)^2}{s(s + 1)^2(0.028s + 1)} \]

is approximated as an integrating process, \(e^{-\theta s}/s \), with

\[\theta = 2 \cdot 1 + 0.028 - 2 \cdot 0.17 = 1.69 \]

or as an integrating process with lag, \(e^{-\theta s}/s(\tau_2s + 1) \), with

\[\tau_2 = 1 + 1/2 - 0.17 = 1.33; \quad \theta = 1/2 + 0.028 - 0.17 = 0.358 \]

The corresponding SIMC PI- and PID-controller tunings are given in Table 6. The corresponding closed-loop responses (Figure 13) are again very good, especially for the PID-controller.

In summary, these examples illustrate that the simple SIMC tuning rules used in combination with the simple half-rule for estimating the effective delay, result in good and robust tunings. The method for approximating a first-order with delay model (“half rule”) and the PID tuning rules are not “optimal” in any mathematical sense, but they are simple and give surprisingly good robust performance. Furthermore, the reason for using a PID controller is simplicity, and if high performance control is desired, then one would not use PID control in the first place.

A large number of additional comparisons have been performed, and there has been few cases (if any) where the proposed SIMC tuning rules perform poorly. In cases where there were large differences, the SIMC tunings could usually be improved by adjusting the tuning parameter \(\tau_c \).
Figure 12: Example 5. Responses for process (57) with tunings from Table 5
Load disturbance of magnitude 2 occurs at $t = 10$.

<table>
<thead>
<tr>
<th>Controller</th>
<th>K_c</th>
<th>τ_I</th>
<th>τ_D</th>
<th>GM</th>
<th>PM</th>
<th>M_s</th>
<th>M_l</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIMC-PI</td>
<td>0.296</td>
<td>13.52</td>
<td>0</td>
<td>16.6</td>
<td>48.8</td>
<td>1.48</td>
<td>1.29</td>
</tr>
<tr>
<td>SIMC-PID</td>
<td>1.397</td>
<td>2.894</td>
<td>1.33</td>
<td>∞</td>
<td>52.4</td>
<td>1.23</td>
<td>1.30</td>
</tr>
<tr>
<td>Astrom ($M_s = 2$)</td>
<td>0.47</td>
<td>7.01</td>
<td>0</td>
<td>8.2</td>
<td>33.1</td>
<td>2.00</td>
<td>1.77</td>
</tr>
</tbody>
</table>

Table 6: Example 6. Tunings for process (58)

6 Insights

6.1 Guidelines for retuning

The tuning rules presented in this paper, see (3)-(5), give invaluable insights, for example, into how we must change the tuning parameters in response to changes in the process model:

1. An increase in the process gain k is counteracted by reducing the controller gain K_c such that $K_c k$ remains constant. (The integral time is kept constant, and the closed-loop response will remain unchanged unless there is also a change in the disturbance transfer function).

2. An increase in the process time constant τ_1 is counteracted by increasing K_c such that K_c / τ_1 remains constant. For a “fast” process where we use $\tau_I = \tau_1$, we also need to increase the integral time (the closed-loop response will then remain unchanged). For a “slow” process where we use $\tau_I = 4(\tau_c + \theta)$, we keep τ_I unchanged (but the closed-loop response will change somewhat in this case).

3. In many cases there is a direct correlation between the gain and the time constant such that the initial slope $k' = k / \tau_1$ remains constant. In this case we should keep K_c constant. For “fast” processes where we use $\tau_I = \tau_1$ we should increase the integral time. For “slow” processes where we use $\tau_I = 4(\tau_c + \theta)$ we should keep the integral time constant.
4. Note that for a “slow” process, the tunings only depend on the initial response as expressed by $k' = k/\tau_1$ and θ, whereas for a “fast” process the steady-state gain k is also of importance.

5. An increase in the delay θ is counteracted by a corresponding decrease in K_c in order to maintain the same robustness. For “fast” processes with $\tau_I = \tau_3$ the integral time is kept unchanged, whereas for “slow” processes with $\tau_I = 4(\tau_c + \theta)$ the integral time is increased.

6. For a second order process the derivative time increases when the second order time constant τ_2 is increased.

When retuning the controller based on experimental responses the following guidelines for PI control may prove helpful. The basis for these guidelines is the disturbance response.

1. If the maximum output deviation is too large then the controller gain should be increased - recall (37).

2. If the settling time is too large then the integral time should be reduced.

3. If the oscillations are too large and these have a period shorter than the integral time τ_I, then the gain should be reduced or the integral time increased - recall Figure 7.

4. If the oscillations are too large and these have a period more than about three times longer than the integral time τ_I), then the product of the controller gain and integral time should be increased, recall (29).

6.2 Retuning the controller for integrating process

Many control loops for integrating processes, including many liquid level control systems, have oscillations because the controller gain is too low, or alternatively, the integral time is too short. Here we show how to retune the controller in such cases.
Consider a PI controller with (initial) tunings K_{c0} and τ_{I0} which results in “slow” oscillations with period P_0 (by slow we mean that P_0 is larger than about $3\tau_{I0}$). Then we most likely have an integrating process

$$g(s) = \frac{k't^{-\theta s}}{s}$$

for which the product of the controller gain and integral time $(K_{c0}\tau_{I0})$ is too low. Assuming $\zeta^2 << 1$ (significant oscillations), (31) gives the following approximate expression for P_0

$$P_0 \approx 2\pi\tau_0 = 2\pi \sqrt{\frac{\tau_{I0} \tau_1}{k' K_{c0}}}$$ \hspace{1cm} (59)

Thus, from (59) the product of the controller gain and integral time is approximately

$$K_{c0}\tau_{I0} = \left(2\pi\right)^2 \frac{\tau_1}{k'} \left(\frac{\tau_{I0}}{P_0}\right)^2$$

To avoid oscillations ($\zeta \geq 1$) we must from (30) require

$$K_c\tau_I \geq 4\frac{\tau_1}{k'}$$

that is, we must require that

$$\frac{K_c\tau_I}{K_{c0}\tau_{I0}} \geq \frac{1}{\pi^2} \left(\frac{P_0}{\tau_{I0}}\right)^2$$ \hspace{1cm} (60)

Here $1/\pi^2 \approx 0.10$, so we have the rule:

To avoid “slow” oscillations the product of the controller gain and integral time should be increased by at least a factor $f \approx 0.1(P_0/\tau_{I0})^2$.

The application of this simple rule should guarantee you immediate success and respect among plant operators.

Example. A real industrial case study of a reboiler level control loop is shown in Figure 14. Here y is the reboiler level and u is the bottoms flow valve position. The PI tunings had been kept at their default setting ($K_c = -0.5$ and $\tau_I = 1$ min) since start-up several years ago, and resulted in an oscillatory response as shown in the top part of the Figure. The control of the level (y) itself was acceptable, but the bottoms flowrate (input u) showed large variations, and because it is the feed to the downstream column this caused poor temperature control in the downstream column.

From a closer analysis of the “before” response we find that the period of the slow oscillations is $P_0 = 0.85 \text{ h} = 51 \text{ min}$. Since $\tau_I = 1 \text{ min}$, we get from the above rule we should increase $K_c \cdot \tau_I$ by a factor $f = 0.1 \cdot (51)^2 = 260$ to avoid the oscillations. The plant personnel were somewhat sceptical to authorize such large changes, but eventually accepted to increase K_c by a factor 7.7 and τ_I by a factor 24, that is, $K_c\tau_I$ was increased by $7.7 \cdot 24 = 185$. The much improved response is shown in the “after” plot in Figure 14. There is still some minor oscillations, but these may be caused by disturbances outside the loop. In any case the control of the downstream distillation column was much improved, and the plant personnel were very impressed by what the fresh engineer had learned in her control course in Trondheim.

7 Conclusion

The first step is to approximate the process as a first or second order process with effective delay, and the half rule is simple to use and gives good results. Based on this model with parameters k, τ_1 and θ, the
following SIMC tunings are suggested:

$$K_c = \frac{1}{k} \frac{1}{\tau_c + \theta}; \quad \tau_I = \min\{\tau_1, 4(\tau_c + \theta)\}$$

If the process is second order (with $$\tau_2 > \theta$$, approximately) and derivative action is acceptable we choose

$$\text{Cascade PID: } \tau_D = \tau_2$$

The parameter $$\tau_c$$ is the only tuning parameter, and a reasonably fast response with good robustness is obtained with $$\tau_c = \theta$$. This gives robust (conservative) tunings when compared with most other tuning rules. If the response is too slow, then one may decrease the value of $$\tau_c$$, and possibly further reduce the integral time.

However, one may also want to increase $$\tau_c$$ to get a slower and smoother response. This results in a smaller controller gain $$K_c$$, but we must require

$$K_c \geq d_u/y_{max}$$

(approximately) in order to keep the output deviation less than $$y_{max}$$ in response to a load disturbance of magnitude $$d_u$$.

Acknowledgement

Discussions with Professor David Clough from the University of Colorado at Boulder are gratefully acknowledged.
Simulations

In all simulations we have used a cascade PID controller with derivative action effective over one decade ($\alpha = 0.1$) and without taking the derivative of the setpoint:

$$u(s) = K_c \frac{\tau_i s + 1}{\tau_i s} \left(y_i(s) - \frac{\tau_D s + 1}{\alpha \tau_D s + 1} y(s) \right)$$

(61)

However, note that stability margins etc. are computed with $\alpha = 0$. In most cases we use a PI controller, that is $\tau_D = 0$, and the controller becomes

$$u(s) = K_c \frac{\tau_i s + 1}{\tau_i s} (y_i(s) - y(s))$$

(62)

or in the time domain

$$\Delta u(t) = K_c \left((y_h(t) - y(t)) + \frac{1}{\tau_i} \int_0^t (y_h(\tau) - y(\tau)) d\tau \right)$$

(63)

In the simulations a unit setpoint change $y_s = 1$ is introduced at time $t = 0$, and an input “load” disturbance of magnitude $d_u = 0.5$ occurs at $t = 20$ (unless otherwise stated).

References

