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Abstract
A new method for selecting controlled variables (c) as linear combination of measure-
ments (y) is proposed based on the idea of self-optimizing control. The objective is to
find controlled variables, such that a constant setpoint policy leads to near optimal op-
eration in the presence of low frequency disturbances (d). We propose to combine as
many measurements as there are unconstrained degrees of freedom (inputs, u) and major
disturbances such that ∆copt�d� � 0. To illustrate the ideas a gas-lift allocation example
is included. The example show that the method proposed here give controlled variables
with good self-optimizing properties.

1. Introduction

Although not widely acknowledged, controlling the right variables is a key element in
overcoming uncertainty in operation. Control systems often consist of several layers in
a hierarchical structure, each operating on a different time scale. Typically, layers in-
clude scheduling (weeks), site-wide optimization (day), local optimization (hours), su-
pervisory/predictive control (minutes) and regulatory control (seconds). The layers are
interconnected through the controlled variables c. Optimal operation for a given distur-
bance d can be found by solving the following problem.

min
u

J�x�u�d� (1)

f �x�u�d� � 0

g�x�u�d�� 0

x � X �u �U�d �D

where f is the process model, g the inequality constraints, u the independent variables
(inputs), d the disturbances in which we cannot affect, and x the states. J is the scalar
economic performance metric and since the economics are primarily decided by steady-
state operation, only steady-state models are used in this analysis. Solution of (1) give
the optimal inputs and states, uopt�d� and xopt�d� respectively, and also the optimal value



of the measurements, yopt�d�, as a function of d. As shown in Skogestad (2000a) we
assume that all optimally active constraints are implemented (active constraint control).
Self-optimizing control follows the idea of Morari et al. (1980) and may be summarized
as:

Self-optimizing control (Skogestad 2000a) is when an acceptable loss can be achieved
using constant setpoints for the controlled variables (without the need to re-optimize when
disturbances occur).

The central issue when searching for the self-optimizing control structure is to decide how
to best implement the optimal policy in the presence of uncertainty. This is accomplished
by selecting the right set of controlled variables c to be kept at constant setpoints cs, in
spite of disturbances d and implementation error n. The goal is to minimize the loss, L �

J�c�d��Jopt�d�, with a constant setpoint strategy, where the loss is the difference between
the value of the objective using a constant setpoint policy and the value of the true optimal
objective. For a review of self-optimizing control see (Skogestad 2000b). Skogestad et al.
(1998) propose two methods for selecting controlled variables with good self-optimizing
properties based on a Taylor series expansion of the loss function. Candidate controlled
variables are not limited to single measurements, as shown by Morud (1995) who, by
seeking all possible directions of the output space, was able to find a linear combination
of the measurements with good self-optimizing properties. Here a much simpler method
is proposed.

2. Proposed method for selecting controlled variables as linear combi-
nations of measurements

We show in this section, that if we neglect the implementation error in controlling c (e.g
caused by poor control or measurement error), then it is possible from a linear point of
view to find a linear combination of the available measurements with zero loss (“perfect
self-optimizing control”). By eliminating the states x, we may write the measured vari-
ables y as a function of the independent variables (degrees of freedom) u and disturbances
d.

y � fy�u�d� (2)

In general the set y also includes the independent variables u. The controlled variables c
(“primary outputs”) are to be selected as combinations of the measured variables (“sec-
ondary outputs”),

c � h�y� (3)

where the generally non-linear function h is free to choose, except that we assume that
the controlled variables are independent and that the number of controlled variables (c’s)
equals the number of degrees of freedom (u’s). We will here consider the case where the
function h(y) is linear. We may then write c � h�y� as



∆c � H∆y (4)

where the matrix H is free to choose. We assume that the operation is nominally optimal,
that is, we have cs � copt�d�� where d� is the nominal disturbance. We assume that there
is no implementation error (n � 0), which implies that we will have c � cs (constant) for
all disturbances d. This constant setpoint policy will be optimal (with zero loss) provided
the optimal value of c�d� remains constant, that is, is copt�d� is independent of d. This
simple insight may be used to find the optimal linear combination (i.e. find the optimal
choice for the matrix H). We consider small changes (disturbances) from the nominal
disturbance. Then the change in the optimal value of the measurements is given by

∆yopt � yopt�d� yopt�d� � F�d�d�� � F∆d (5)

where the sensitivity matrix F �
dyopt

dd may be obtained numerically by solving the op-
timization problem (1) for small changes in the disturbance variables d, and from this
obtain uopt�d� as well as yopt�d�. We assume that uopt and xopt are continuous in d in a
neighborhood of the nominal point. From (4) the corresponding change in the optimal
value of c is ∆copt � H∆yopt . Now require that ∆copt � 0 which gives ∆copt � HF∆d � 0.
This need to be satisfied for any ∆d so we must have that

HF � 0 (6)

In other words, we should select H to be in the left null space of F (H � N �FT �). We
assume that we have n unconstrained degrees of freedom (the length of vectors u and c
are n), use m independent measurements when forming c, and have k independent distur-
bances. We than have that F is a m� k matrix and H is a n�m matrix. By assuming
m � k and m � n and by assuming independent inputs and disturbances it follows that
rank�F� � k. The fundamental theorem of linear algebra (Strang 1988) tells that the left
null space of F, N �FT �, has rank m� r, where r � K � Rank�F�. Since H �N �FT � we
have that dim�H� � m� k and by assuming that the number of controlled variables must
be equal to the number of inputs we get rank�H� � n

m� k � n� m � n� k (7)

so that #y � #d �# u , e.g. the minimum number of measurements needed is equal to the
number of inputs plus the number of disturbances. We then have

Theorem 2.1 Assume we have n unconstrained independent variables u, k independent
disturbances d, and m measurements y, of which at least n� k are independent. It is the
possible to select measurement combinations

∆c � H∆y (8)



such that HF � 0 where F �
dyopt

dd . Keeping c constant at its nominal optimal value then
gives zero loss when there are small disturbances d. The matrix H is generally not unique.

In summary, the main idea is to select the selection matrix H such that ∆copt �H∆ym�opt �

0 by using m� n�k independent measurements. If the number of available measurements
exceeds the number of inputs and major disturbances, there is some freedom to choose
these as to reduce the implementation error and to maximize the observability of the
disturbances in the measurements, see Alstad & Skogestad (2002) for further details.

3. Example: Gas-lift allocation optimization

In many oil/gas fields the production of oil, gas and water are constrained by the pro-
cessing capacity and other process constraints such as available flow-line transportation
capacity. Wang et al. (2002) point out that the available literature does not provide ro-
bust procedures on how to formulate and solve typical optimization problems for such
systems. Often, the “optimization” consider the constraints sequentially, or only sub-
problems are considered (e.g by not including the transportation system to the processing
facility). Dutta-Roy & Kattapuram (1997) considered the effect of including process con-
straints for a two-well case that share a common transportation line to the process. They
found that failing to include the process constraints (in this case the transportation line)
gave a sub-optimal solution of the problem.
Here, we focus on how to implement the optimal operation in the presence of low fre-
quency disturbances. In typical oil/gas producing systems there are large uncertainties
(e.g. reservoir properties, models) and few measurements, so methods that can help oper-
ate the process optimally when disturbances occur are of great value.
In this paper we consider the gas-lift structure in Figure 1 with the data given in Table
2. The model used is a distributed pseudo one-phase flow model (Taitel 2001) assuming
black oil compositional PVT behavior (Golan & Whitson 1996). The valves are modeled
as one-phase with a linear characteristic. The flow model represent a two-point boundary
value problem and the partial differential equations are discretized using orthogonal col-
location. The two wells (W1 and W2) are connected to a common transport line (T ). We
assume that the system is dynamically stable. Gas is injected through valves (CV6 and
CV7) to increase the production from the reservoir by making the static pressure (head)
less. The operating objective is to maximize the profit, J � ∑i�o�g�gi pimi where indices
o�g�gi are oil, gas and injected gas respectively, pi is the price for phase and mi is the
mass rate for phase i. We have neglected water in this analysis. The inputs in this case
are u � �V1 V2 V3 V4 V5 V6 V7�

T where Vi is the valve position for valve i. We assume that
the level and pressure of the separator are controlled at the setpoints using CV4 and CV5

respectively. These setpoints can not be manipulated, thus removing 2 DOF. In typical
offshore systems, the ratio of oil and gas (GOR, the ratio of stock-tank gas mass to stock-
tank oil mass) from each well is not exactly known, so we assume that the low frequency
disturbance is the ratio of gas and oil (d � �GOR1 GOR2�

T � kg gas
kg oil �) in the reservoir, where

the GOR is given at reservoir properties. The available measurements are the pressure
upstream the valves for the wells (PV1 and PV2) and the injection gas mass rates (mgi�1 and
mgi�2). It is assumed that there is a upper limit in the gas processing capacity in the process,



due to compressor limitations in the process. The optimally active constraints (for all dis-
turbances) are �mg�tot V1 V2 V3� so we have DOF � 7�2�4� 1 unconstrained DOF. Since
it is optimal to control the total gas mass flow at the constraint, we can reformulate the ob-
jective to only consider the cost of injecting the gas into the well (J �∑i�o�gi pimi). In this
case we have assumed that po � 0�17�$�kg� and pgi ��0�05�$�kg� corresponding to a oil
price of $ 20 per barrel. The cost for recycling gas in the system has been assumed to be
half the sale price of natural gas which was assumed to be 0�1$�Sm3. Following the pro-
cedure in Section 2 we have that m � n�k � 1�2 � 3, so we need three measurements.
We select the measurements PV1, PV2 and mgi�1as measurements. The optimal sensitivity
function (F) is calculated by imposing the above constraints and upon requiring HF � 0,
this result in the controlled variable cLC � Hy � �0�76 �0�65 0�09��PV1 PV2 mgi�1�

T . The
loss is calculated for several structures and is given in Table 1. We see that controlling
c � cLC have good self-optimizing properties with the lowest average and worst case loss.
A constant setpoint policy for the other controlled variables give a higher loss.

Table 1. Loss for the alternative control variables for the gas optimization case

Loss (in million $/year)
Rank c GOR1 GOR2 GOR1 : 0�03� 0�06 Average

0�03� 0�06 0�10� 0�13 GOR2 : 0�10� 0�13
1 cLC 0.0 0.0 0.16 0.05
2 PV 1 1.5 1.0 1.9 1.5
3 mgi�2 2.0 0.5 4.5 2.3
4 mgi�1 0.8 1.4 5.3 2.5
5 PV 2 3.2 2.7 4.1 3.3
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Figure 1. Figure of the well network

Table 2. Data for the gas lift allocation example

Parameter Value Unit Comment
LW 1�W2 1500 m Length well 1 and 2
DW1�W2 0�12 m Diameter well 1 and 2

LT 300 m Length transportation line
DT 0�25 m Diameter transportation line

Pres�1 150 bara Pressure reservoir well 1
Pres�2 155 bara Pressure reservoir well 2

PIres�1 1E�7 m3

s Pa Production index well 1

PIres�2 0�98E�7 m3

s Pa Production index well 2
Psep 50 bara Pressure separator
ρ1 750 kg

m3 Black oil density reservoir 1

ρ2 800 kg
m3 Black oil density reservoir 2

Mg 20 kg
kmole Molecular weight gas

GOR0
1 0�03 kg

kg Nominal gas oil ratio

GOR0
2 0�10 kg

kg Nominal gas oil ratio

mg�tot 15 kg
s Maximum gas capacity



4. Conclusion

We have derived a new method for selecting controlled variables as linear combination of
the available measurements, that from a linear point of view have perfect self-optimizing
properties if we neglect implementation error. The idea is to calculate the optimal sensi-
tivity function (∆yopt � F∆d) and select controlled variables as linear combination of the
measurements c � Hy, such that HF � 0. The method has been illustrated on a gas-lift
allocation example. The example illustrate that in a constant set-point control structure,
selecting the right controlled variables are of major importance.
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