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Abstract: A new simple approach for selecting controlled variables, that give near-
optimal operation with a constant set-point feedback structure in the presence
of uncertainty, is presented. The controlled variables are linear combinations of a
subset of the available measurements. A method for selecting the best sub-set and
the required number of measurements is derived. The method is illustrated on a
Petlyuk (Divided wall) distillation column.
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1. INTRODUCTION

Although not widely acknowledged, controlling
the right variables is a key element in overcoming
uncertainty in operation. Control systems often
consist of several layers in a hierarchical structure,
each operating on a different time scale. Typi-
cally, layers include scheduling (weeks), site-wide
optimization (day), local optimization (hours), su-
pervisory/predictive control (minutes) and regu-
latory control (seconds). The layers are intercon-
nected through the controlled variables c. This
paper focuses on the interaction between the local
optimization layer and the feedback control layer,
see Figure 1. The objective is to find good can-
didate controlled variables c with self-optimizing
properties. Self-optimizing control follows the idea
of Morari et al. (1980) where one want to find
controlled variables that, when kept at constant
set-points, operates near optimally under the in-
fluence of disturbances and implementation er-
rors. The disturbances include both exogenous
process disturbances and modeling errors. In typ-
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Fig. 1. Self-optimizing feedback control structure

ical plants the number of disturbances may be
very large. In order to reduce the dimension of the
problem, only slow varying disturbances that are
economically important should be included in the
analysis. Morari et al. (1980) propose to include
disturbances that have a large effect on the objec-
tive, (∂Jopt

∂di
), and let the remaining disturbances

be handled by the regulatory layer



In plant operation the basic goal is to optimize an
economic measure of the operation, while satis-
fying equality and inequality constraints (such as
product specifications, safety constraints, environ-
mental regulations etc.). Since plant economics is
primarily decided by steady-state behavior, only
steady-state information is used in the rest of this
paper. For a given disturbance (d), optimal op-
eration is defined as the solution to the following
problem:

min
u0

J0(x0,u0,d) (1)

f(x0,u0,d) = 0 (2)

g(x0,u0,d) ≤ 0 (3)

x0 ∈ Rnx0 , u0 ∈ Rnu0 , d ∈ Rnd

where f are the equality constraints, g the inequal-
ity constraints, u0 the free independent variables
(inputs), d the disturbances and x0 the states. At
the nominal optimum a subset (g′) of the inequal-
ity constraints will be active and for small changes
in the disturbance from the nominal point, it
is assumed that the active set does not change.
Thus, the reduced space optimization problem is:

min
u

J0(x,u,d) (4)

f ′(x,u,d) = 0 (5)

where f ′ = [f g′]T , x = [x0 u′]T where u′ ∈ u0

is the subset used to fulfill the active constraints
(g′ = 0) and u ∈ u0 denotes the remaining
unconstrained reduced space degrees of freedom.
By formally eliminating the states (x) by using
the equality constraints (f ′ = 0), the remaining
unconstrained problem, which is the focus in the
rest of this paper, becomes:

min
u

J(u,d) (6)

where u ∈ Rnu . The solution of the result-
ing problem in (4) may be categorized into two
classes. Let nf ′ = dim(f ′). If nu = nu0

+ (nx0
−

nf ′) = 0, all degrees of freedom must be used
to fulfill the constraints and implementation is
usually simple by using the ideas of active con-
straint control (Maarleveld and Rijnsdorp, 1970).
In case of nu > 0, implementing the remaining nu

unconstrained degrees of freedom is not straight
forward and this will be the focus in the rest of
this paper.

.

Online information about the system behavior is
available from the measurements in the plant:

y0 = fy0
(u,d) (7)

Based on the online information y0, the most
obvious operational policy is to use some sort of

optimizing controller with frequent model updates
and re-optimization. A much simpler approach for
practical applications, is to utilize the ideas of self-
optimizing control.

Self-optimizing control (Skogestad, 2000) is
when an acceptable loss can be achieved using
constant set-points cs for the controlled variables c

(without the need to re-optimize when disturbances
occur).

The loss is defined as the difference between the
objective using the constant feedback structure
and the true optimal objective

L = J(cs + n,d) − Jopt(d) (8)

where n is the implementation error (measure-
ment and set-point error) in enforcing c = cs.
The central issue when searching for the self-
optimizing control structure, is to decide how to
best implement the optimal policy in the presence
of uncertainty.

The optimal self-optimizing control structure may
be formulated mathematically by:

min
h

∫

d∈D

∫

n∈N

J(u,d) dn dd (9)

y = fy(u,d) (10)

h(y) = cs + n (11)

where y ∈ y0 and u is an implicit function of h, d,
cs and n. The goal is to find the optimal function
h interconnecting the measurements and the con-
trolled variables. We assume in this paper that we
use nominally optimal set-points, cs = copt(d

∗),
but it is also possible to compute the “robust
optimal set-points” by minimizing with respect
to cs in (9) (Govatsmark and Skogestad, 2002).
In practice (9) may be solved by discretizing the
disturbance and implementation error space and
calculate some weighted average over all points.
Clearly, this is a non-convex combinatorial opti-
mization problem, that may be very difficult to
solve in practice. A much simpler method for se-
lecting the interconnecting structure h is needed.

2. PREVIOUS WORK ON SELECTION OF
CONTROLLED VARIABLES

Skogestad et al. (2003) use a Taylor series ex-
pansion of the loss function around the nominal
optimal point to develop two methods for selecting
controlled variables, the “singular value rule” and
the “exact local method”. The exact local method,
is based on the second order Taylor series expan-
sion of the loss function L = 1

2
‖z‖2

2 with

z = J1/2
uu [(J−1∗

uu J∗
du − G−1Gd)(∆d) + G−1n]



where Juuand Jud are the second derivatives of J
and G and Gd are given by ∆c = G∆u + Gd∆d.
By proper scaling and assuming that ‖[d n]T ‖2 ≤
1, the worst-case loss is:

L =
σ([Md Mn])2

2
(12)

Md = J1/2
uu (J−1∗

uu J∗
du − G−1Gd)Wd (13)

Mn = J1/2
uu G−1Wn (14)

where Wd and Wn are positive diagonal matrices
representing the expected magnitudes of the dis-
turbances and implementation errors respectively.
This method require that, for each candidate set
the singular value of the matrix M is calculated.
The second method, the singular value rule, is
based on scaling the candidate set of controlled
variables, and select controlled variables that
maximize the minimum singular value of the gain
matrix G.

Mahajanam et al. (2001) propose a “short-cut”
method to eliminate poor choices and to generate
rank alternatives without solving the optimization
problem. The method is based on scaling all
candidate controlled variables so that they have
similar effects on the steady-state profit.

3. PROPOSED METHOD FOR SELECTING
CONTROLLED VARIABLES AS LINEAR

COMBINATIONS OF THE MEASUREMENTS

We here consider the remaining unconstrained
optimization problem in (6), and the objective
is to find variables c to be kept at constant set-
points. In general, we have

c = h(y) (15)

where y ∈ y0 is the subset of all available
measurements which we choose to make use of.
Note that y0 generally also includes the input
variables u. Previous work (Skogestad, 2000) has
mainly focused on using single measurements as
controlled variables, ie. c = y. The generally non-
linear function h is free to choose, except that
the controlled variables are assumed independent
and that the number of controlled variables (c’s)
equals the number of remaining unconstrained
degrees of freedom (u’s). In this paper, we consider
only linear combinations of the measurements

∆c = H∆y (16)

where the matrix H is free to choose. Skoges-
tad et al. (2003) use (12) to search for the opti-
mal measurement combination (matrix H), taking
into account both disturbances and implementa-
tion errors, but this is generally a very difficult
problem. However, as shown below, it is actually

trivial to find the optimal H for the case with
no implementation error (n = 0). We use the
following insight: With no implementation error,
the constant set-point policy (c = cs) is optimal if
copt(d) is independent of d. Of course, the optimal
values of the individual measurements y depend
on d, which for a small disturbance change may
be written

∆yopt = yopt(d) − yopt(d
∗) = (17)

F (d − d∗) = F∆d

where F =
(

dyopt

dd

)∗

. For example, F may be

obtained numerically by solving the optimiza-
tion problem (4) for small changes in the dis-
turbance, and from this obtaining uopt(d) as
well as yopt(d). F must be understood as an
constrained optimal linear mapping. Ganesh and
Biegler (1987) give an efficient and rigorous strat-
egy for finding the optimal sensitivity based on
a reduced Hessian method. From (16) the corre-
sponding change in the optimal value of c is

∆copt = H∆yopt (18)

Now require that

∆copt = HF∆d = 0 (19)

This needs to be satisfied for any ∆d so

HF = 0 (20)

For this to hold, Hshould be in the left null
space of F (H ∈ N (F T )). This requirement is
always possible to fulfill, if there are enough mea-
surements available in the plant. There are nu

unconstrained degrees of freedom (the length of
vectors u and c are nu), ny independent measure-
ments used when forming c, and nd independent
disturbances. Then F is a ny × nd matrix and H
a nu × ny matrix. The fundamental theorem of
linear algebra (Strang, 1988) gives that N (F T ),
the left null space of F has rank ny − r, where
r = rank(F ) = nd. Since H ∈ N (F T ) it follows
that rank(H) = ny − nd and by assuming that
the number of controlled variables must be equal
to the number of inputs, rank(H) = nu.

ny − nd = nu ⇔ ny = nu + nd (21)

so that the minimum number of measurements
needed, is equal to the number of inputs plus the
number of disturbances.

3.1 Comparison with the exact local method

The linearized models at the nominal point is

∆y = Gy∆u + Gy
d∆d (22)



where Gy = (∂fy/∂uT )∗ and Gy
d = (∂fy/∂dT )∗.

For a disturbance change we have (Skogestad et
al., 2003).

uopt(d) − uopt(d
∗) = −J∗−1

uu J∗
du(d − d∗ (23)

Thus

∆yopt =
[

−GyJ∗−1
uu J∗

du + Gy
d

]

(d − d∗) (24)

By using G = HGy and Gd = HGy
d in (13),

setting Md = 0, assuming no implementation
error and rearranging we get GJ−1∗

uu J∗
du −Gd = 0

and inserting into (24) we re-derive ∆copt =
H∆yopt = 0. Note that

F = −GyJ−1
uu Jdu + Gy

d (25)

4. A TWO-STEP METHOD CONSIDERING
DISTURBANCES AND IMPLEMENTATION

ERRORS.

From the analysis in Section 3, see (12) to (14), it
is evident that even if Md = 0 the loss may still be
large, since Mn is non-zero due to the implementa-
tion error. As stated, the selection matrix H is not
unique, since there is freedom in selecting another
sub-set of measurements. This may be utilized in
order to reduce the effect of the implementation
error, while still ensuring Md = 0. The selection
of a sub-set y of the available measurements y0,
should reflect two goals. First, since the feedback
structure must correct for disturbances in order to
keep the plant optimal, the disturbances must be
observable in the process (high gain in Gd). Sec-
ond, in order to reduce the implementation error,
it is evident from (14) that G−1 should be small
in all directions (e.g σ(G) should be large). Based
on these observations, it is proposed here to se-
lect measurements sequentially, that maximize the
minimum singular value of the scaled augmented
plant ∆y′ = G̃y∆̃u = [Gy′ Gy′

d ][∆u′ ∆d′]T .

The reason for using σ(G̃y) rather than σ(G) and
σ(Gd), is that H is not known a priori. To justify
this, the following applies:

σ(H)σ(G̃y) ≤ σ(HG̃y) = (26)

σ([G Gd]) ≤ min(σ(G), σ(Gd))

(Skogestad and Postlethwaite, 1996), (Horn and
Johnson, 1991), where it is alway possible to select
σ(H) = 1. Thus, σ(G̃y) provide a lower bound on
σ(G) and σ(Gd). In addition, if σ(G̃y) is nonzero
this guarantees that F has full rank nd, see (19),
which is required to ensure that F 6= 0 for all d.
This follows from (25) since Gy and Gy

d has full

rank nu and nd respectively, and G̃y has full rank
nu + nd.

The proposed method of selecting controlled vari-
ables as linear combinations of the measurements
is summarized in Section 4.1.

4.1 Details of procedure

Assume that ny0
≥ nu + nd and the nominal

optimal point is uopt(d
∗)

(1) Linearization. Linearize the process model
around the nominal optimal point. This give
Gy0and Gy0

d for all measurements y0.
(2) Scaling Scale each measurement y0,i with its

corresponding implementation error (|ny0,i
|),

each input uj with its corresponding allow-
able range (∆uj,max) and each disturbance
dk by its corresponding expected distur-
bance. This give the scaling matrices Wny0

=
diag(|n0,i|), Wu = diag(∆uj,max) and Wd =
diag(|dk|)

(3) Selection of measurements.
(a) Augmented process model. Calcu-

late the scaled process model ∆y′
0 =

Gy0′∆u′+Gy0′

d ∆d′ = W−1
ny0

Gy0Wu∆u′+

W−1
ny0

Gy0

d Wd∆d′ and obtain a new pro-
cess matrix

∆y′
0 = G̃y0∆̃u = [Gy0′ Gy0′

d ][∆u′ ∆d′]T

(b) Selection of the first measurement.

Calculate the row norm ‖G̃i
y0

‖2 for all
rows i and sort by decreasing row norm.
Select the row with highest norm and
add the corresponding row of the pro-
cess matrix to a selection process matrix
G̃y

1 = maxi‖G̃
y0

i ‖2

(c) Selection of the additional mea-

surements. Until ny = nu + nd add
measurements to the selection process
matrix one-by-one

G̃y
j+1,i =

[

G̃y
j

G̃y0

i

]

for all i and calculate the minimum sin-
gular value for all the combinations. Se-
lect the new measurement which has the
highest minimum singular value and add
to the selection process matrix.

(4) Null space of F and selection of con-

trolled variables.
(a) Obtain F , for example, numerically from

the non-linear equations, F =
(

dyopt

dd

)∗

,

or from (24).
(b) Calculate the null space N (F T ).
(c) Select H such that H ∈ N (F T ) and the

rows of H form a orthonormal basis. This
ensure that ∆copt = H∆yopt = 0



5. EXAMPLE: “PETLYUK” (DIVIDING
WALL) DISTILLATION COLUMN

The thermally integrated divided wall (“Pet-
lyuk”) arrangement has several advantages com-
pared to the traditional arrangements. Smith and
Triantafyllou (1992) report typical savings in the
order of 30% in both energy and capital costs
compared to traditional arrangements with two
columns in series. The Petlyuk column shown
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Fig. 2. The Petlyuk Distillation column imple-
mented in a single column shell.

in Figure 2 has at steady state five degrees of
freedom, which may be selected as the following
inputs u = [V L S Rl Rv]

T (boil-up, reflux,
mid product side-stream flow, liquid split and va-
por split). The product quality constraints corre-
spond to the top purity (xD,A), the bottom purity
(xB,C), the side-stream purity (xS,B). The main
contribution to the operational cost is the reboiler
vapor flow, so the plant objective is to minimize:

J(x, u, d) = V (27)

The model of the column is based on the assump-
tion of constant relative volalities (α = [9 3 1]T ),
constant pressure, equilibrium on all stages, total
condenser and constant molar flows. The tray
temperatures are calculated based on the compo-
sitions using Antoine’s equation.

Nominal data: Feed flow F ∗ = 1, liquid frac-
tion q∗ = 0.477, feed compositions z∗

A = z∗B =
z∗C = 1/3 and product inequality constraints
[xD,A xS,B xB,C ]T ≥ 0.97. The nominal optimal
inputs are uopt(d∗) = [L∗ V ∗ S∗ R∗

l R∗
v]

T =
[0.718 0.5810 0.3227 0.3792 0.5123]T . Only eco-
nomically important disturbances should be in-
cluded in the analysis, which correspond to the
disturbances zA and q, the composition of com-
ponent A the liquid fraction in the feed respec-

tively, where d = [zA q]T = [z∗A ± 0.1 q∗ ± 0.1]T .
Since only intensive measurements are considered,
feed flow rate is neglected as a disturbance. The
implementation error is assumed to be |n| =
[|nTj,i

| |nRl
| |nRv

|]T = [0.4 0.05 0.05]T .

For the disturbance range considered here, the
optimally active constraints that need to be con-
trolled, are the product compositions for the top,
bottom and side-stream ([xD,A xS,B xB,C ]T =
0.97), removing three degrees of freedom (L, V
and S).

Based on the observation that the objective func-
tion has one “strong” and one “weak” direction,
Halvorsen and Skogestad (1999) stated that in
order to track the optimal trajectory only one
of the remaining degrees of freedom need to be
adjusted, so they propose to fix Rv . This is also
reasonable from a practical point of view, due
to the practical difficulties of implementing the
vapor split. For the remaining degrees of freedom,
only temperature measurements or combinations
thereof are considered.

Halvorsen and Skogestad (1999) studied sev-
eral candidate controlled variables for good self-
optimizing properties, where the most promising
control structure was to control DTS , a measure
of the temperature profile symmetry across the
dividing wall, and Rv . DTS is defined as DTS =
∑

T1,i − T4,i −

∑

T2,i − T5,i , where Tj,i is the tem-
perature of tray i in section j.

For the remaining degree of freedom, only temper-
ature measurements or combinations thereof are
considered. In addition to the structure (Rv ,DTS)
proposed by Halvorsen and Skogestad (1999), sev-
eral other structures are considered; (Rv , T1,7),
(Rv , T1,2) and the open loop structure (Rv , Rl).

In addition, two structures based on the methods
proposed in this paper, are compared for self-
optimizing properties.

1. (Rv ,cLC,3) with Rv fixed and the implemen-
tation error in Rv is added as a disturbance.
Thus, d = [zA q nRv

] and the number of mea-
surements needed is ny = nu + nd = 1 + 3 =
4. Maximizing the minimum singular value of
the scaled augmented plant give that the subset
T5,5, T2,2, T4,2, T2.1 of the temperature measure-
ments should be combined. Selecting c = Hy such
that H is in the left null space of F , result in
cLC,3 = −0.959T5,5 + 0.1969T2,2 + 0.00956T4,2 +
0.1770T6,3.

2. (cLC,1,cLC,2). This case was included in order
to check if there is any additional economic advan-
tage of using both degrees of freedom as inputs.
Here we have two unconstrained degrees of free-
dom and the number of required measurements is



ny = nu + nd = 2 + 2 = 4. The temperatures
T5,5, T2,3, T4,2, T2,1 minimized the singular value
of the augmented plant and the corresponding
optimal measurement combinations are cLC,1 =
0.222T5,5− 0.7052T2,3 + 0.490T4,2 + 0.462T2,1 and
cLC,2 = −0.946T5,5 − 0.003T2,3 + 0.1592T4,2 +
0.2821T2,1. For the controlled variables that are
linear combinations of the measurements it is as-
sumed that the implementation error is nc,i =
‖HiWy‖2.

In calculating the loss in Table 1, it is assumed
that the combined implementation and distur-
bance vector is 2-norm bounded and that there
is no implementation error in enforcing the active
constraints. The average loss is calculated as a
weighted sum of all combinations of the imple-
mentation and disturbance vector in which each
disturbance and implementation error has a low,
nominal and high value, with equal weighting.

Table 1. Loss for the different controlled
variables in the Petlyuk Column case

c1 c2 Average loss (%) Worst case loss (%)

cLC,1 cLC,2 0.01 0.02
Rv cLC,3 0.16 0.87
Rv DTs 2.40 11.9
Rv Rl 18.0 123.0
Rv T1,7 22.7 118.4
Rv T5,2 infeasible infeasible

As seen from Table 1, control structures (cLC,1,
cLC,2) and (Rv , cLC,3) track the optimal trajec-
tory and give near-optimal operation. Control-
ling structure (Rv,DTs) also give acceptable op-
eration, while controlling the single temperatures
(T1,7 and T5,2) give a very high loss or infeasible
operation, which is expected since a change in
the inflow composition is one of the disturbances.
From Table 1 it is evident that fixing Rv gives only
a small increase in the loss, but this is necessarily
not true for all liquid fractions in the feed.

6. CONCLUDING REMARKS

Selecting the right variable to control is of great
importance to overcome uncertainty in operation.
A new method for selecting controlled variables
as linear combinations of a subset of the available
measurements has been proposed in addition to a
method for selecting the subset of measurements.
The idea is to find a linear combination of the
measurements such that ∆copt = H∆yopt = 0
by using as many measurements as there are
unconstrained inputs and disturbances. From a
linear point of view, the proposed method guar-
anty perfect self-optimizing properties if we ne-
glect implementation error. The proposed method
has been illustrated on a simulated Petlyuk dis-
tillation column, which show that the proposed

method give controlled variables with good self-
optimizing properties.
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