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Abstract: This paper examines the limitations imposed by Right Half Plane (RHP) zeros
and poles in multivariable feedback systems. The main result is to provide lower bounds
on kWXV (s)k

1
whereX is S, SI , T or TI (sensitivity and complementary sensitivity).

Previously derived lower bounds on theH1-norm ofS andT are thus generalized to the case
with matrix-valued weights, including bounds for reference tracking, disturbance rejection,
and input usage.
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1. INTRODUCTION

It is well known that the presence of RHP zeros and
poles pose fundamental limitations on the achievable
control performance. This was quantified for SISO

systems by Bode (1945) more than50 years ago,
and most control engineers have an intuitive feel-
ing of the limitations for scalar systems. Rosenbrock
(1966; 1970) was one of the first to point out that
multivariable RHP-zeros pose similar limitations.

The main results in this paper are explicit lower
bounds on theH1-norm of closed-loop transfer func-
tions. Of course, it is relatively straightforward to
compute the exact minimum value of theH1-norm
for a given case using standard software, and a direct
computation of the value of theH1-norm is also
possible, e.g. using the Hankel-norm as explained in
(Francis, 1987). Therefore, we want to stess that the
objective is to derive explicit (analytical) bounds that
yield direct insight into the limitations imposed by
RHP-poles and zeros.

1 Present address: ABB Corporate Research, P.O.Box 90 N-
1361 Billingstad, Norway. Fax: (+47) 66 84 35 41, E-mail:
Kjetil.Havre@nocrc.abb.no.
2 Fax: (+47) 73 59 40 80, E-mail: skoge@chembio.ntnu.no.

The basis of our results is the work by Zames
(1981), who made use of the interpolation constraint
yHz S(z) = yHz and the maximum modulus theorem
to derive bounds onH1-norm of S for plants with
one RHP-zero. The results by Zames were generalized
to plants with RHP-poles by Doyleet al. (1992) in
the SISO case, and by Skogestad and Postlethwaite
(1996), Havre and Skogestad (1996; 1997a) in the
MIMO case.

In this paper we extend the work of Zames (1981)
and Havre and Skogestad (1996; 1997a) and quantify
the fundamental limitations imposed by RHP zeros
and poles in terms of lower bounds on theH1-norm
of important closed-loop transfer functions. The main
generalization of the previous result is that from the
results in this paper we can derive lower bounds on
H1-norm of other closed-loop transfer functions than
sensitivity and complementary sensitivity. To do this
it was necessary to generalize the previous results
to include multivariable, unstable and non-minimum
phase weights.

One important application of the lower bounds, is
that we canquantify the minimum usage needed to
stabilize an unstable plant in the presence of the worst
case disturbance, measurement noise and reference
changes. An additional important contribution of this



paper is that we prove that the lower bounds aretight
in a large number of cases. That is, we give analytical
expressions for controllers whichachievean H1-
norm of the closed-loop transfer function which is
equal to the lower bound.

2. ZEROS AND POLES IN MIMO SYSTEMS

Zeros and zero directions. Zeros of a system arise
when competing effects, internal to the system, are
such that the output is zero even when the inputs
and the states are not identically zero. Here we apply
the following definition of zeros (MacFarlane and
Karcanias, 1976).

DEFINITION 1. (ZEROS). zi 2 C is a zero ofG(s) if
the rank ofG(zi) is less than the normal rank ofG(s).

The normal rank ofG(s) is defined as the rank ofG(s)
at all s except a finite number of singularities (which
are the zeros).

DEFINITION 2. (ZERO DIRECTIONS). If G(s) has a
zero fors = z 2 C then there exist non-zero vectors,
denoted the input zero directionuz 2 Cm and the
output zero directionyz 2 C l , such thatuHz uz = 1,
yHz yz = 1 and

G(z)uz = 0; yHz G(z) = 0 (1)

For a systemG(s) with state-space realization
h
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the zerosz of the system, the input zero directions
uz and the state input zero vectorsxzi 2 C n (n is
the number of states) can all be computed from the
generalized eigenvalue problemh
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Similarly one can compute the zerosz and the output
zero directionsyz from GT , see (Havre, 1998, Sec-
tion 2.3) for further details.

Poles and pole directions. Bode (1945) states that
the poles are the singular points at which the transfer
function fails to be analytic. In this work we replace
“fails to be analytic” with “is infinite”, which certainly
implies that the transfer function isnot analytic. When
we evaluate3 the transfer functionG(s) at s = p,
G(p) is infinite in some directions at the input and the
output. This is the basis for the following definition of
input and output pole directions.

DEFINITION 3. (POLE DIRECTIONS). If s = p 2 C

is a distinct pole ofG(s) then there exist one input

3 Strictly speaking, the transfer functionG(s) cannotbe evaluated
at s = p, sinceG(s) is not analytic ats = p.

directionup 2 Cm and one output directionyp 2 C l

with infinite gain fors = p.

For a systemG(s) with minimal state-space real-

ization
h
A B

C D

i
the pole directionsup and yp for a

distinct pole p can be computed from (Havre, 1998,
Section 2.4)

up =BHxpi= kB
Hxpik2 (3)

yp =Cxpo= kCxpok2 (4)

wherexpi 2 C n andxpo 2 C n are the eigenvectors
corresponding to the two eigenvalue problems

xHpiA = pxHpi; Axpo = pxpo

Note, that the pole directions are normalized, i.e.
kupk2 = 1 and kypk2 = 1. For the sake of sim-
plicity we will only consider distinct poles in this pa-
per, for computation and definition of pole directions
in the case when the polep is not distinct refer to
(Havre, 1998, Chapter 2).

All-pass factorizations of RHP zeros and poles. A
transfer function matrixB(s) is all-pass ifBT (�s)B(s) =
I , which implies that all singular values ofB(j!) are
equal to one.

A rational transfer function matrixM(s) with RHP-
polespi 2 C+ , can be factorized either at the input
(subscripti) or at the output (subscripto) of M(s) as
follows4

M(s) =Msi B
�1
pi (M(s)) (5)

M(s) =B�1po (M)Mso(s) (6)

Msi, Mso – Stable (subscripts) versions ofM with
the RHP-poles mirrored across the imaginary
axis.

Bpi(M), Bpo(M) – Stable all-pass rational trans-
fer function matrices containing the RHP-poles
(subscriptp) of M as RHP-zeros.

The all-pass filters are (Havre, 1998, Appendix A)

Bpi(M(s)) =

NpY
i=1

(I �
2Re(pi)

s+ �pi
ûpi û

H
pi
) (7)

Bpo(M(s)) =
1Y

i=Np

(I �
2Re(pi)

s+ �pi
ŷpi ŷ

H
pi
) (8)

4 Note that the notation on the all-pass factorizations of RHP zeros
and poles used in this paper is reversed compared to the notation
used in (Green and Limebeer, 1995; Skogestad and Postlethwaite,
1996; Havre and Skogestad, 1996). The reason for this change
of notation is to get consistent with what the literature generally
defines as an all-pass filter.



Bpo(M) is obtained by factorizing at the output one
RHP-pole at a time, starting with

M = B�1p1o(M)Mp1o

where

B�1p1o(M(s)) = I +
2Re(p1)
s� p1

ŷp1 ŷ
H
p1

andŷp1 = yp1 is the output pole direction ofM for p1.
This procedure may be continued to factor outp2 from
Mp1o whereŷp2 is the output pole direction ofMp1o

(which need not coincide withyp2 , the pole direction5

of M ) and so on. A similar procedure may be used
to factorize the poles at the input ofM . Note that
the sequence get reversed in the input factorization
compared to the output factorization.

In a similar sequential manner, the RHP-zeros can be
factorized either at the input or at the output ofM
(Havre, 1998, Appendix A)

M(s) =MmiBzi(M(s)) (9)

M(s) = Bzo(M)Mmo(s) (10)

Mmi, Mmo – Minimum phase (subscriptm) versions
of M with the RHP-zeros mirrored across the
imaginary axis.

Bzi(M), Bzo(M) – Stable all-pass rational trans-
fer function matrices containing the RHP-zeros
(subscriptz) of M .

3. LOWER BOUNDS ON THEH1-NORM OF
CLOSED-LOOP TRANSFER FUNCTIONS

We define the following sensitivity and complemen-
tary sensitivity functions

S , (I +GK2)
�1 (11)

T , I � S = GK2(I +GK2)
�1 (12)

SI , (I +K2G)�1 (13)

TI , I � SI = K2G(I +K2G)�1 (14)

whereK2 denotes the feedback part of the controller.

In this section we derive general lower bounds on
theH1-norm of closed-loop transfer functions when
the plantG has one or more RHP zeros and/or poles,
by using the interpolation constraints and the maxi-
mum modulus principle. The bounds are applicable to
closed-loop transfer functions on the form

W (s)X(s)V (s) (15)

whereX may beS, T , SI or TI . The idea is to derive
lower bounds onkWXV (s)k

1
which are independent

5 In fact: ŷp2 = B�Hp1o (M)js=p2yp2 . HereBjs=s0 means the
rational transfer function matrixB(s) evaluated at the complex
numbers = s0. Thus, it provides an alternative toB(s0), and it
will mainly be used to avoid double parenthesis.

of the controllerK. In general, we assume thatWXV
is stable. The “weights”W andV must be indepen-
dent of K. They may be unstable, but it must be
possible to stabilize all transfer functions through the
outputs. This implies that the unstable modes ofW
andV also appear inL = GK2. Otherwise, the system
is not stabilizable. The results are stated in terms of
four theorems.

Theorems 1 and 2 provide lower bounds on theH1-
norm of closed-loop transfer functions on the forms
WSV and WSIV caused by one or more RHP-
zeros inG. By maximizing over all RHP-zeros, we
find the largest lower bounds onkWSV (s)k

1
and

kWSIV (s)k
1

which takes into account one RHP-
zero and all RHP-poles in the plant.

THEOREM 1. (LOWER BOUND ON kWSV (s)k
1

).
Consider a plantG withNz � 1 RHP-zeroszj , output
directionsyzj and Np � 0 RHP-polespi 2 C+ .
LetW andV be rational transfer function matrices,
and assume thatW has noRHP-poles at locations
corresponding toRHP poles or zeros inG. Assume
that the closed-loop transfer functionWSV is (in-
ternally) stable. Then the following lower bound on
kWSV (s)k

1
applies:

kWSV (s)k
1
� max

RHP-zeroszj in G

kWmo(zj) yzj k2 � ky
H
zj
V B�1zi (Bpo(G)V )js=zjk2 (16)

Proof. The main steps in the proof of (16) are given in Section 3.

THEOREM 2. (LOWER BOUND ON kWSIV (s)k
1

).
Consider a plantG withNz � 1 RHP-zeroszj , input
directionsuzj and Np � 0 RHP-polespi 2 C+ .
LetW andV be rational transfer function matrices,
and assume thatV has noRHP-poles at locations
corresponding toRHP poles or zeros inG. Assume
that the closed-loop transfer functionWSIV is (in-
ternally) stable. Then the following lower bound on
kWSIV (s)k

1
applies:

kWSIV (s)k
1
� max

RHP-zeros,zj in G

kB�1zo (WBpi(G))W js=zjuzj k2 � ku
H
zj
Vmi(zj)k2 (17)

Theorems 3 and 4 provide lower bounds on theH1-
norm of closed-loop transfer functions on the forms
WTV and WTIV caused by one or more RHP-
poles inG. By maximizing over all RHP-poles, we
find the largest lower bounds onkWTV (s)k

1
and

kWTIV (s)k
1

which takes into account one RHP-
pole and all RHP-zeros in the plant.

THEOREM 3. (LOWER BOUNDS ON kWTV (s)k
1

).
Consider a plantG withNp � 1 RHP-polespi, output
directionsypi and Nz � 0 RHP-zeroszj 2 C+ .
LetW andV be rational transfer function matrices,
and assume thatV has noRHP-poles at locations



corresponding toRHP zeros or poles inG. Assume
that the closed-loop transfer functionWTV is (in-
ternally) stable. Then the following lower bound on
kWTV (s)k

1
applies:

kWTV (s)k
1
� max

RHP-poles,pi in G

kB�1zo (WBzo(G))W js=piypik2 � ky
H
pi
Vmi(pi)k2 (18)

THEOREM 4. (LOWER BOUNDS ON kWTIV (s)k
1

).
Consider a plantG withNp � 1 RHP-polespi, input
directionsupi and Nz � 0 RHP-zeroszj 2 C+ .
LetW andV be rational transfer function matrices,
and assume thatW has noRHP-poles at locations
corresponding toRHP zeros or poles inG. Assume
that the closed-loop transfer functionWTIV is (in-
ternally) stable. Then the following lower bound on
kWTIV (s)k

1
applies:

kWTIV (s)k
1
� max

RHP-poles,pi in G

kWmo(pi)upik2 � ku
H
pi
V B�1zi (Bzi(G)V )js=pik2 (19)

Remarks:

1) The somewhat messy notation can easily be in-
terpreted. As an example take the last factor of
(16): Factorize the RHP-poles at the output ofG
into an all-pass filterBpo(G) (yields RHP-zeros),
multiply on the right withV (may add RHP-zeros
if V is non-minimum phase), then factorize at the
input the RHP-zeros of the product into an all-
pass transfer function, take its inverse, multiply
on the left with yHzjV and finally evaluate the
result fors = zj .

2) The lower bounds (16)–(19) are independent of
the feedback controllerK2 if the weightsW and
V are independent ofK2.

3) The internal stability assumption on the closed-
loop transfer functionsWXV , where X 2
fS; SI ; T; TIg, means thatWXV are stable,
and we have no RHP pole/zero cancellations be-
tween the plantG and the feedback controller
K2.

Main steps in the proof of Theorem 1. To pro-
vide some more insight to the results, we give the
main steps in the proof of the lower bound (16) on
kWSV (s)k

1
. The main steps in the proof of the

lower bounds (17)–(19) are similar.

1) Factor out RHP zeros inWSV to obtain (WSV )m.
(a) Factor out RHP-zeros ofS due to RHP-poles inG at the

input ofS.
(b) Factor out RHP zeros ofBpi(G)V at the input of

WSV .
(c) Factor out RHP zeros ofW at the output ofWSV .

Note, make sure that no RHP-zeros inS due to poles inG,
which cancel RHP-poles inV andW , are factorized:

1) We avoid factorizing RHP-zeros inS which cancel
poles inV , by factorizing the zeros ofBpo(G) V .

2) With the assumption on the poles in Theorem 1 we
avoid factorizing RHP-zeros inS which cancel poles
in W .

2) Introduce the stable scalar function f(s) on the mini-
mum phase version(WSV )m ofWSV .

3) Apply the maximum modulus theorem to f(s) at the
RHP-zeros ofG.

4) Resubstitute the factorization of RHP-zeros inS.
5) Use the interpolation constraint for RHP-zeros inG.
6) Evaluate the lower bound.

4. TIGHTNESS OF LOWER BOUNDS

The theorems provide lower bounds onkWXV (s)k
1

whereX 2 fS; SI ; T; TIg. The question is whether
these bounds are tight, meaning that there exist con-
trollers which achieve these bounds? The answer is
“yes” if there is only one RHP-zero or one RHP-pole.
Specifically, we find that the bounds onkWSV (s)k

1

and kWSIV (s)k
1

are tight if the plantG has
one RHP-zero and any number of RHP-poles. Simi-
larly, we find that the bounds onkWTV (s)k

1
and

kWTIV (s)k
1

are tight if the plantG has one RHP-
pole and any number of RHP-zeros. We prove tight-
ness of the lower bounds by constructing controllers
which achieve the bounds.

THEOREM 5. Consider a plantG with oneRHP-zero
z, output directionyz, andNp � 0 RHP-polespi 2
C+ . LetW andV be rational transfer function matri-
ces, and assume thatW has noRHP-poles at locations
corresponding toRHP poles or zeros inG. A feedback
controller (possible improper) which stabilizesWSV ,
is given by

K2(s) = G�1smo(s)P (s)Q�1(s) (20)

where

Q(s) =

W�1
mo(s)Wmo(z)V0 B

�1
po (G)js=zMmi(z)M

�1
mi (s) (21)

P (s) = B�1zo (Gso) (I �Bpo(G)Q) (22)

V0 = yzy
H
z + k20U0U

H
0 and

Mmi(s) = (Bpo(G)V (s))mi

where the columns of the matrixU0 2 Rl�(l�1)

together withyz forms an orthonormal basis forRl

andk0 is any constant.P (s) is stable since theRHP-
zero fors = z in I �Bpo(G)Q cancels theRHP-pole
for s = z in B�1zo (Gso), in a minimal realization ofP .
With this controller we have

lim
k0!0

kWSV (s)k
1

=

kWmo(z) yzk2 � ky
H
z V B

�1
zi (Bpo(G)V )js=zk2(23)

From Theorem 5 it follows that the bound (16) is tight
when the plant has one RHP-zero.



We can proove that the three other bounds in Theo-
rems 2, 3 and 4 are tight, under conditions similar to
those given in Theorem 5 (see Havre, 1998, for further
details).

5. APPLICATIONS OF LOWER BOUNDS

5.1 Output performance

The previously derived bounds in terms of theH1-
norms ofS andT given in (Zames, 1981; Skogestad
and Postlethwaite, 1996) and in Havre and Skogestad
(1996; 1997a) follow easily, and further generaliza-
tions involving output performance can be derived.
Here we assume that the performance weightsWP and
WT are stable and minimum phase.

Weighted sensitivity,WPS. SelectW = WP , V =
I , and apply the bound (16) to obtain

kWPS(s)k1 � max
RHP-zeros,zj

kWP (zj) yzj k2 � ky
H
zj
B�1po (G)js=zjk2 (24)

Disturbance rejection and reference tracking. Se-
lectW = WP , V = Gd, and apply the bound (16) to
obtain

kWPSGd(s)k1 � max
RHP-zeros,zj

kWP (zj) yzj k2 � ky
H
zj
Gd B

�1
zi (Bpo(G)Gd)js=zjk2 (25)

For reference tracking the same bound applies (but
hereGd is usually a diagonal matrixR representing
the magnitude of the reference changes).

Note, we can also look at the combined effect of dis-
turbances and references by selectingV = [Gd R ].

5.2 Input usage

The above provide generalizations of previous results,
but we can also derive some new bounds in terms
of input usage from Theorems 3 and 4. These new
bounds provide very interesting insights, for example,
into the possibility of stabilizing an unstable plant with
inputs of bounded magnitude.

The basis of these new bounds is to note that the
transfer function from the outputs to the inputs,K2S,
can be rewritten asK2S = TIG

�1 orK2S = G�1T .
When G is unstable,G�1 has one or more RHP-
zeros, so it is important that the bounds in Theorem 4
can handle the case whenV = G�1 has RHP-zeros.
Otherwise,G�1 evaluated at the pole ofG, would be
zero in a certain direction, and we would not derive
any useful bounds. Here we assume that the weight
Wu on the inputu is stable and minimum phase.

Disturbance rejection. Apply the equalityK2S =
TIG

�1, selectW = Wu, V = G�1Gd, and use the
bound (19) to obtain

kWuK2SGd(s)k1 � max
RHP-poles,pi

kWu(pi)upik2 � ku
H
pi
G�1GdB

�1
zi (G

�1
miGd)js=pik2 (26)

where we have used the identityBzi(G)G�1 = G�1mi .
Again, reference tracking si included by replacingGd

byR.

5.3 Two degrees-of-freedom control

For a 2-DOF controller the closed-loop transfer func-
tion from references~r to outputsz1 = Wp(y � r)
becomes

WP (SGK1 � I)R (27)

We then have the following “special” lower bound on
this transfer function.

THEOREM 6. Consider a plantG withNz � 1 RHP-
zeroszj andNp � 0 RHP-polespi 2 C+ . Let the
performance weightWP be minimum phase and let
(for simplicity)R be stable. Assume that the closed-
loop transfer functionWP (SGK1 � I)R is stable.
Then the following lower bound onkWP (SGK1 �
I)R(s)k

1
applies:

kWP (SGK1 � I)R(s)k
1
� max

RHP-zeroszj in G

kWP (zj)yzj k2 � ky
H
zj
Rmi(zj)k2 (28)

The bound (28) is tight if the plant has oneRHP-zero
z.

Note that this bound does not follow directly from
Theorems 1–4. The bound in (28) should be compared
to the following bound for a 1-DOF controller (which
follows from Theorem 1, assuming thatWP is mini-
mum phase).

kWPSR(s)k
1
� max

RHP-zeroszj in G

kWP (zj)yzj k2 � ky
H
zj
RB�1zi (Bpo(G)R)js=zjk2 (29)

We see that for the 2-DOF controller only the RHP-
zeros pose limitations.

6. EXAMPLE

Consider the following multivariable plantG

G(s) =

� s�z
s�p

� 0:1s+1
s�p

s�z
0:1s+1 1

�
; z = 2:5 andp = 2



The plantG has one multivariable RHP-zeroz = 2:5
and one RHP-polep = 2. The corresponding input and
output zero and pole directions are

uz =

�
1
0

�
; yz =

�
0:371
0:928

�
; up =

�
0:385
0:923

�
; yp =

�
1
0

�

The RHP-pole p can be factorized intoG(s) =
B�1po (G)Gso(s) where

Bpo(G) =

�
s�p
s+p 0
0 1

�
; Gso(s) =

� s�z
s+p � 0:1s+1

s+p
s�z

0:1s+1 1

�

From the lower bound (16), withW = I andV = I ,
we find

kS(s)k
1
� kyHz B

�1
po (G)js=zk2

=





[ 0:371 0:928 ]

�
9 0
0 1

�




2

= 3:4691

Next, consider to minimize the input usage, i.e. to
minimize theH1-norm ofK2S. We have two lower
bounds onkK2S(s)k1, but they are identical since
the bounds are tight. We use the equalityK2S =
TIG

�1 and the lower bound (19) withW = I and
V = G�1, to obtain6

kK2S(s)k1 � kuHp G
�1B�1zi (G

�1
mi)js=pk2

= kuHp G
�1
so (p)k2 = 3:077

In (Havre, 1998, Section 5.7) reference tracking is
also considered, and the benefit of applying2-DOF

controller when the plant is unstable is illustated.
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