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Abstract: This paper examines the limitations imposed by Right Half Plame)(Reros

and poles in multivariable feedback systems. The main result is to provide lower bounds
on||wxvi(s)|l,, whereX is S, Sr, T or T (sensitivity and complementary sensitivity).
Previously derived lower bounds on thig,-norm of S andT" are thus generalized to the case
with matrix-valued weights, including bounds for reference tracking, disturbance rejection,
and input usage.
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1. INTRODUCTION The basis of our results is the work by Zames
(1981), who made use of the interpolation constraint

It is well known that the presence ofHR zeros and %2’ S(z) = y!’ and the maximum modulus theorem
poles pose fundamental limitations on the achievableto derive bounds ofi..-norm of S for plants with
control performance. This was quantified fors§  one RiP-zero. The results by Zames were generalized
systems by Bode (1945) more thaf years ago, !0 plants with RiP-poles by Doyleet al. (1992) in
and most control engineers have an intuitive feel- the Sso case, and by Skogestad and Postlethwaite
ing of the limitations for scalar systems. Rosenbrock (1996), Havre and Skogestad (1996; 18pih the
(1966; 1970) was one of the first to point out that MIMO case.

multivariable RipP-zeros pose similar limitations. In this paper we extend the work of Zames (1981)

The main results in this paper are explicit lower and Havre and Skogestad (1996; 18pand quantify
bounds on thé{..-norm of closed-loop transfer func- the fundamental limitations imposed byHR zeros
tions. Of course, it is relatively straightforward to and poles in terms of lower bounds on thg,-norm
compute the exact minimum value of thg,-norm of important closed-loop transfer functions. The main
for a given case using standard software, and a direcgeneralization of the previous result is that from the
computation of the value of thé{.,-norm is also results in this paper we can derive lower bounds on
possible, e.g. using the Hankel-norm as explained in #-norm of other closed-loop transfer functions than
(Francis, 1987). Therefore, we want to stess that thesensitivity and complementary sensitivity. To do this
objective is to derive explicit (analytical) bounds that it was necessary to generalize the previous results
yield direct insight into the limitations imposed by to include multivariable, unstable and non-minimum
RHP-poles and zeros. phase weights.

One important application of the lower bounds, is
that we canquantify the minimum usage needed to
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paper is that we prove that the lower boundstaget  directionu, € C™ and one output directiop, € C
in a large number of cases. That is, we give analytical with infinite gain fors = p.

expressions for controllers whicachievean H .-

norm of the closed-loop transfer function which is

equal to the lower bound. For a systemG(s) with minimal state-space real-

ization [%%] the pole directions:, andy, for a

distinct pole p can be computed from (Havre, 1998,
2. ZEROS AND POLES IN MIMO SYSTEMS Section 2.4)

Zeros and zero directions. Zeros of a system arise - "

when competing effects, internal to the system, are up =B " zpi/ | B pill 3)
such that the output i_s zero even when the inputs Yp = CTpo/ | Cpolly 4)
and the states are not identically zero. Here we apply

the following definition of zeros (MacFarlane and Wwherez,; € C* andz,, € C" are the eigenvectors

Karcanias, 1976). corresponding to the two eigenvalue problems

DEFINITION 1. (ZEROS). z; € C is a zero ofG(s) if A = pryi; Atpo = prp

the rank ofG(z;) is less than the normal rank 6i(s). Note, that the pole directions are normalized, i.e.
llupll, = 1 and||y,|l, = 1. For the sake of sim-

The normal rank ofi (s) is defined as the rank 6#(s) plicity we will only consider distinct poles in this pa-

per, for computation and definition of pole directions
in the case when the poleis not distinct refer to
(Havre, 1998, Chapter 2).

at all s except a finite number of singularities (which
are the zeros).

DEFINITION 2. (ZERO DIRECTIONS). If G(s) has a
zero fors = z € C then there exist non-zero vectors,
denoted the input zero directiam, € C™ and the
output zero directiony, € C', such thatuu, = 1,
yHy, =1and

All-pass factorizations of RHP zeros and poles. A
transfer function matrixB(s) is all-pass ifB7 (—s) B(s) =
I, which implies that all singular values &(jw) are
equal to one.

G(2)u, = 0; yiG(z) =0 (1) A rational transfer function matrid/(s) with RHP-
polesp; € C,, can be factorized either at the input

(subscripti) or at the output (subscrip) of M (s) as
For a systend/(s) with state-space realizatic{ug‘ﬁ] , follows * =)

the zerosz of the system, the input zero directions

u, and the state input zero vectaes; € C* (n is -1
= = M(s)=Ms B, (M 5
the number of states) can all be computed from the () . pi (M(5) ©)
generalized eigenvalue problem M(s) =B, (M) Ms(s) (6)
S e —
C D|lwu, | |0 Ms,;, M, — Stable (subscript) versions ofM with
the RHP-poles mirrored across the imaginary

Similarly one can compute the zerosnd the output axis.

zero directiong. from G”, see (Havre, 1998, Sec- B,;(M), B,,(M) — Stable all-pass rational trans-

tion 2.3) for further details. fer function matrices containing theHR-poles

(subscriptp) of M as R4P-zeros.

Poles and pole directions. Bode (1945) states that The all-pass filters are (Havre, 1998, Appendix A)
the poles are the singular points at which the transfer

function fails to be analyticin this work we replace N,
[ H AN H 1A H o ” H H 2R i) . R
.falls. to be analytic” with “is |n.f|n|t'e , which _certalnly Byi(M(s)) = H(I _ e(zi ) i, ug) @)
implies that the transfer functioni®t analytic When iy 5+ Pi
we evaluaté the transfer functiorG(s) ats = p, 1

irecti i 2Re(p:) . .
G(p)is |nf|_n|t_e in some directions at tr_le input g_nd the Byo(M(s)) = (I - ¢ i Op; 5) (8)
output. This is the basis for the following definition of =N §+Pi

input and output pole directions.

DEFINITION 3. (PO'-E D'RECT'ONS)- ifs=peC 4 Note that the notation on the all-pass factorizations ePReros

is a distinct pole ofG(s) then there exist one input and poles used in this paper is reversed compared to the notation
used in (Green and Limebeer, 1995; Skogestad and Postlethwaite,
1996; Havre and Skogestad, 1996). The reason for this change
3 Strictly speaking, the transfer functi@ii(s) cannotbe evaluated of notation is to get consistent with what the literature generally
ats = p, sinceG(s) is not analytic a = p. defines as an all-pass filter.




B, (M) is obtained by factorizing at the output one
RHP-pole at a time, starting with

M = B;llo(M)MPlO
where
By (M(s)) = 1+ 22y, gu

andy,, = y,, is the output pole direction g/ for p; .
This procedure may be continued to factor putrom
M,,, whereg,, is the output pole direction a¥/,, ,
(which need not coincide witl,, , the pole directioh

of M) and so on. A similar procedure may be used
to factorize the poles at the input @ff. Note that

of the controllerk’. In general, we assume tHatX V'

is stable. The “weightsW andV must be indepen-
dent of K. They may be unstable, but it must be
possible to stabilize all transfer functions through the
outputs. This implies that the unstable modegi6f
andV also appear i = GK». Otherwise, the system

is not stabilizable. The results are stated in terms of
four theorems.

Theorems 1 and 2 provide lower bounds on the -
norm of closed-loop transfer functions on the forms
WSV and WSV caused by one or more HR-
zeros inG. By maximizing over all Rip-zeros, we

the sequence get reversed in the input factorizationfind the largest lower bounds dfiv SV (s)||, and

compared to the output factorization.

In a similar sequential manner, theiRzeros can be
factorized either at the input or at the output /af
(Havre, 1998, Appendix A)

M (s) = MyiB.i(M(s))
M(S) - Bzo(M)MmO(S)

9)
(10)

M iy M, — Minimum phase (subscript) versions
of M with the R4P-zeros mirrored across the
imaginary axis.

B.;(M), B.,(M) — Stable all-pass rational trans-
fer function matrices containing theHR-zeros
(subscriptz) of M.

3. LOWER BOUNDS ON THEH..-NORM OF
CLOSED-LOOP TRANSFER FUNCTIONS

We define the following sensitivity and complemen-
tary sensitivity functions

SE(I+GKy)™ (11)
TE2I-S = GKy(I+GKy)™ b (12)
S & (I+ K.@Q)™t (13)
Tr21—S; = KbG(I + KG) (14)

whereK, denotes the feedback part of the controller.

In this section we derive general lower bounds on
the H,-norm of closed-loop transfer functions when
the plantG has one or more Rp zeros and/or poles,
by using the interpolation constraints and the maxi-
mum modulus principle. The bounds are applicable to
closed-loop transfer functions on the form

W(s)X(s)V (s) (15)

whereX may beS, T', Sy or T7. The idea is to derive
lower bounds o w xVv (s)||, which are independent

N -H
5 In fact: g, = Bpio (M)|,—,,Ups. Here B|,_, means the
rational transfer function matrix3(s) evaluated at the complex
numbers = sq. Thus, it provides an alternative 18(so), and it
will mainly be used to avoid double parenthesis.

IW STV (s)||,, which takes into account oneHR-
zero and all Rip-poles in the plant.

THEOREM1. (LOWER BOUND ON [|[WSV(s)|l.,)-
Consider a planty with N, > 1 RHP-zerosz;, output
directionsy., and N, > 0 RHP-polesp; € C,.
Let W and V' be rational transfer function matrices,
and assume thatl has noRHP-poles at locations
corresponding toRHP poles or zeros inG. Assume
that the closed-loop transfer functidi SV is (in-
ternally) stable. Then the following lower bound on
IWSV(s)l., applies:

[WSV(s)lloe =  max

~ RHP-zerosz; in G

HWmo(Zj) Yz, “2 ) HyZVB;il (Bpo(G) V) |s:zj||2 (16)

Proof. The main steps in the proof of (16) are given in Section 3.

THEOREM 2. (LOWER BOUND ON ||[WSV(s)|l.,)-
Consider a plantZ with NV, > 1 RHP-zerosz;, input
directionsu., and N, > 0 RHP-polesp; € C,.
Let W and V' be rational transfer function matrices,
and assume that” has noRHP-poles at locations
corresponding toRHP poles or zeros inG. Assume
that the closed-loop transfer functidiv S;V" is (in-
ternally) stable. Then the following lower bound on
IW STV (s)l., applies:

WSV (s)llo = max

~ RHP-zeros,z; inG

IBZ (W Bpi(G) W1, us Iy - llull Vini(2) I, (A7)

Theorems 3 and 4 provide lower bounds on the -
norm of closed-loop transfer functions on the forms
WTV and WT;V caused by one or more HR-
poles inG. By maximizing over all Rip-poles, we
find the largest lower bounds dfiv TV (s)||., and
IWTrV(s)||,, which takes into account oneHR-
pole and all Rip-zeros in the plant.

THEOREM 3. (LOWER BOUNDS ON [|[WTV(s)]|..)-
Consider a planty with N, > 1 RHP-polesp;, output
directionsy,, and N, > 0 RHP-zerosz; € Cj.
Let W andV be rational transfer function matrices,
and assume that’ has noRHP-poles at locations



corresponding toRHP zeros or poles inG. Assume
that the closed-loop transfer functio T’V is (in-
ternally) stable. Then the following lower bound on
IWTV(s)||,, applies:

IWTV(s)ll =, max

~ RHP-poles,p; inG

1825 (WB=o(G) W, Ui b

2" ||ypl-

Vimi(pi)ll, (18)

THEOREM4. (LOWER BOUNDS ON [WT;V(s)|l.,)-
Consider a plantG with IV,, > 1 RHP-polesp;, input
directionsu,, and N. > 0 RHP-zerosz; € C,.
Let W and V' be rational transfer function matrices,
and assume thatl has noRHP-poles at locations
corresponding toRHP zeros or poles inG. Assume
that the closed-loop transfer functidi IV is (in-
ternally) stable. Then the following lower bound on
IWTrV(s)|,, applies:

IWTrV (s)ly > RHP-poleap: in G
1Wono (1) e - g VB (Bai(G) V)]l (19)

Remarks:

1) The somewhat messy notation can easily be in-
terpreted. As an example take the last factor of
(16): Factorize the Rp-poles at the output of
into an all-pass filteB,,, (@) (yields R4p-zeros),
multiply on the right withV" (may add RiP-zeros

if V' is non-minimum phase), then factorize at the
input the R4P-zeros of the product into an all-
pass transfer function, take its inverse, multiply
on the left with ygv and finally evaluate the
result fors = z;.

The lower bounds (16)—(19) are independent of
the feedback controllek’, if the weightsi?” and

V are independent ots.

The internal stability assumption on the closed-
loop transfer functionsW XV, where X €

2)

3)

{S, S1, T, Tr}, means thatVX'V" are stable, w15\ W, (2)V; B, (G)|

and we have no Rp pole/zero cancellations be-
tween the plantG and the feedback controller
K.

Main steps in the proof of Theorem 1. To pro-
vide some more insight to the results, we give the
main steps in the proof of the lower bound (16) on
IWSV(s)||l- The main steps in the proof of the
lower bounds (17)—(19) are similar.

1) Factor out RHP zeros inW SV to obtain (W SV )y,.
(a) Factor out RpP-zeros ofS due to RiP-poles inG at the
input of S.
(b) Factor out Rip zeros of B,;(G)V at the input of
WSV.

(c) Factor out RiP zeros ofiV at the output ofV/ SV,
Note, make sure that noH®-zeros inS due to poles i,
which cancel Rip-poles inV andW, are factorized:

1) We avoid factorizing RP-zeros in S which cancel

poles inV, by factorizing the zeros d8,,(G) V.

2) With the assumption on the poles in Theorem 1 we
avoid factorizing RiP-zeros inS which cancel poles
in W.
2) Introduce the stable scalar function f(s) on the mini-
mum phase version(W SV) ., of WSV.
3) Apply the maximum modulus theorem to f(s) at the
RHP-zeros of G.
4) Resubstitute the factorization of R4P-zeros in S.
5) Use the interpolation constraint for RHP-zeros inG.
6) Evaluate the lower bound.

4. TIGHTNESS OF LOWER BOUNDS

The theorems provide lower bounds|gi XV (s)||
whereX € {S, Sy, T, Tr}. The question is whether
these bounds are tight, meaning that there exist con-
trollers which achieve these bounds? The answer is
“yes” if there is only one Rip-zero or one RP-pole.
Specifically, we find that the bounds i SV (s)|| .

and ||WS;V(s)|,, are tight if the plantG has
one R4P-zero and any number of H®-poles. Simi-
larly, we find that the bounds g7V (s)||, and
IWTrV(s)| ., are tightif the plantG has one RP-
pole and any number of H-zeros. We prove tight-
ness of the lower bounds by constructing controllers
which achieve the bounds.

THEOREMS. Consider a planti with oneRHP-zero
z, output directiony., and N, > 0 RHP-polesp; €
C4 . LetW andV be rational transfer function matri-
ces, and assume thHf has noRHP-poles at locations
corresponding tdRHP poles or zeros ird7. A feedback
controller (possible improper) which stabiliz88SV/,
is given by

Ka(s) = Go,(s) P(s) Q' (s) (20)
where
Qs) =
;ol s=z Mml(z) Mr:nl(s) (21)
P(S) = Bz_ol(Gso) (I - Bpo(G) Q) (22)
Vo =yy+RUUE and
Mpi(s) = (Bpo(G) V(8))mi
where the columns of the matri, € R/>(-1)

together withy. forms an orthonormal basis faR!
andky is any constantP(s) is stable since th&Hp-
zero fors = zin I — B,,(G) Q cancels theRHP-pole
for s = zin B (Gs,), in @ minimal realization of.
With this controller we have

i
Jim WSV ()]l

-1

[Wino(2) yZ||2 : ”yfVB;i (BPO(G) V)|s:Z||£23)

From Theorem 5 it follows that the bound (16) is tight
when the plant has oneHR-zero.



We can proove that the three other bounds in Theo-Disturbance rejection. Apply the equalityK,S =
rems 2, 3 and 4 are tight, under conditions similar to T;G 1, selectiV. = W,, V = G~'G4, and use the
those givenin Theorem 5 (see Havre, 1998, for further bound (19) to obtain

details).
||VVUKQSG(1(S)||OO 2 RH;ISgié(S,Pi
5. APPLICATIONS OF LOWER BOUNDS W (pi) el - 1, G~ GaBLH (GriGa) ozl (26)
5.1 Output performance where we have used the identlfy; (G) G~ = G, ;.

) ) ) Again, reference tracking si included by replacitg
The previously derived bounds in terms of the,- by R.

norms ofS and7 given in (Zames, 1981; Skogestad

and Postlethwaite, 1996) and in Havre and Skogestad

(1996; 1993) follow easily, and further generaliza-

tions involving output performance can be derived. -3 Two degrees-of-freedom control
Here we assume that the performance weigtitsand

Wy are stable and minimum phase. For a 2-DoF controller the closed-loop transfer func-
tion from references to outputsz; = W,(y — r)
becomes

Weighted sensitivity,WpS. Selecti = Wp,V =

I, and apply the bound (16) to obtain Wp(SGK, — )R (27)

IWpS(s)|l,, > max We then have the following “special” lower bound on
RHP-zer0s,2; this transfer function.

IWp(2)) =1l - 195 B (@)=, ll,  (24) _ _
THEOREM6. Consider a planty with N, > 1 RHP-
zerosz; and N, > 0 RHP-polesp; € C,. Let the

Disturbance rejection and reference tracking. Se- performance weightV» be minimum phase and let
lectW = Wp, V = Ga, and apply the bound (16) o (for simplicity) R be stable. Assume that the closed-
obtain loop transfer functionWp(SGK; — I)R is stable.

Then the following lower bound ofiWp(SGK; —
IWpSGa(s)|l,, > _ max I)R(s)||., applies:

RHP-zeros,z;
IWe(2) yz; Il - ||ngdB;il(Bp0(G) Gd)|s:;j||2 (25) IWp(SGK, — I)R(s)||., > max
>~ Rup- z; InG

For reference tracking the same bound applies (but ;P ceross
hereG, is usually a diagonal matri® representing WP (2j)yz;1ls - lyz; Bmi(25) [l (28)
the magnitude of the reference changes). The bound (28) is tight if the plant has oReiP-zero

Note, we can also look at the combined effect of dis- z.
turbances and references by selecling: [G, R].

Note that this bound does not follow directly from
Theorems 1-4. The bound in (28) should be compared
to the following bound for a 1-DF controller (which
follows from Theorem 1, assuming thHfp is mini-
mum phase).

5.2 Input usage

The above provide generalizations of previous results,
but we can also derive some new bounds in terms
of input usage from Theorems 3 and 4. These new
bounds provide very interesting insights, for example, |[WpSR(s)||, > A
into the possibility of stabilizing an unstable plant with o
inputs of bounded magnitude. IWe(2)ys; |l - Ny RBZ (Bpo(G) R) |, [l (29)

The basis of these new bounds is to note that theWe see that for the 2-®F controller only the Rip-
transfer function from the outputs to the inpuks, S, zeros pose limitations.

can be rewritten a&»,S = T7G~ ! or K»S = G~'T.
When G is unstable,G~! has one or more Re-
zeros, so it is important that the bounds in Theorem 4
can handle the case whéh= G~! has Rip-zeros.
OtherwiseG~' evaluated at the pole @&, would be
zero in a certain direction, and we would not derive

6. EXAMPLE

Consider the following multivariable plagt

any useful bounds. Here we assume that the weight s—z  _0.lstl
y : . - g G(s)=| 2 =P |, z=25andp=2
W, on the input: is stable and minimum phase. s5—2 1




The plantG has one multivariable RP-zeroz = 2.5
and one RiP-polep = 2. The corresponding input and
output zero and pole directions are
1
9 yp = 0

1 10371 _10.385
ol° Yz = , Up =

0.928 0.923
The RHP-pole p can be factorized intd3(s)
B3 1 (G)Gs,(s) where

po

U =

z

s=p % _0~1+;+1
= | st = sTp STP
@ = [ ] cuo= [ 22 T ]

From the lower bound (16), with/ = I andV = I,
we find

1S ()Mo > 1ly2" Bpo (@)l
— 3.4691

= H[o.371 0.928] [
2

9 0
01

Next, consider to minimize the input usage, i.e. to
minimize the# ,-norm of K»,S. We have two lower
bounds on|K»S(s)||.,, but they are identical since
the bounds are tight. We use the equaliy S
T;G~! and the lower bound (19) withi’ = I and
V = G71, to obtairf

1525 (5) o0 > [Juy G™' B (G

mi)|s:p||2

= [luy G5 (D)l = 3.077

In (Havre, 1998, Section 5.7) reference tracking is
also considered, and the benefit of applyirpor
controller when the plant is unstable is illustated.
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