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PROCESS DESIGN AND CONTROL 

Inconsistencies in Dynamic Models for 111-Conditioned Plants: 
Application to Low-Order Models of Distillation Columns 

Elling W. Jacobsent and Sigurd Skogestad’ 
Chemical Engineering, University of Trondheim (NTH), N-  7034 Trondheim, Norway 

The paper addresses the problem of obtaining consistent dynamic models for certain ill-conditioned 
plants like distillation columns. Due to  strong interactions there is often a single dominating slow 
mode (pole) that  results in similar first-order responses for all outputs. Typically, models are 
identified on the basis of fitting individual responses, but unless special care is taken this will result 
in an inconsistent overall model with the slow pole repeated. It is shown that  such models with 
excessive slow poles, although a reasonable approximation for open-loop dynamics, yield a poor 
prediction of the closed-loop behavior of the process, in particular under partial control. 

1. Introduction 

The objective of this paper is to discuss some funda- 
mental aspects of linear dynamic models for ill-conditioned 
multivariable processes (plants). Most published work 
on the identification of dynamic models from experimental 
data has been concentrated on the single-input-single- 
output (SISO) case. This is also reflected in the literature 
on process dynamics and control, where linear dynamic 
models usually are obtained by fitting input-output data 
from a plant or nonlinear simulation to a low-order transfer 
function, e.g., of the kind first order plus dead time. In 
cases where the process is multivariable, the transfer matrix 
is usually obtained by fitting the transfer matrix elements 
independently. 

However, this is often a poor approach. Skogestad and 
Morari (1988) argue that it may easily lead to poor models 
for ill-conditioned processes unless one explicitly takes 
into account the coupling between the steady-state gains 
of the different elements. In particular, one is not able to 
obtain a good model of the low-gain direction of the plant 
(Skogestad and Morari, 1988; Andersen et al., 1989), and 
the model will easily have the wrong sign of the determinant 
at steady state. 

Another and more fundamental problem with this 
identification approach is that the model may be incon- 
sistent in that a single physical state is repeated in the 
model. By inconsistent we here mean that there is a 
fundamental modeling error in that the model contains 
too many slow modes. This issue is the main topic of this 
paper. 111-conditioned plants often have a single domi- 
nating “slow” mode (with a large time constant) which is 
a result of interactions in the process, and is thus shared 
by all the transfer matrix elements. However, by fitting 
the elements of an n X n process independently, such that 
they all contain the dominant pole, one may get an 
inconsistent model with at  least n poles similar to the 
single dominating pole of the process. As shown in this 
paper, the inconsistency will usually result in a poor 
prediction of the closed-loop behavior of the process, in 
particular under partial feedback control. 
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The transfer matrices of multivariable processes are 
often fitted using different time constants in the different 
elements without considering whether the time constants 
actually originate from a single state (pole). This is for 
instance common practice in the distillation control 
literature (e.g., Shunta and Luyben, 1972; Hammarstrom 
et al., 1982; Waller et al., 1988). Such an approach will 
again result in a model with an excessive number of slow 
modes. The minimal realization will in this case contain 
n2 large time constants, all in the order of magnitude of 
the dominant time constant of the process, and thus an 
inconsistent model. 

The general literature on identification theory has so 
far not focused very much on multivariable issues, and 
the particular problems mentioned above which may be 
encountered when identifying the poles for ill-conditioned 
plants do not seem to have been discussed. 

In the paper we refer to the relative gain array (RGA) 
(Bristol, 1966,1978) and the condition number. The RGA 
matrix is a t  each frequency defined as A = G X (G-l)T 
where X denotes element-by-element multiplication. In 
this paper when we refer to “the RGA” we usually mean 
the 1,l element, X11(G). 

The condition number r(G) of the matrix G is the ratio 
between its largest and smallest singular value. By 
definition an ill-conditioned plant has a large value of  
the condition number r(G). Physically this means that 
the effect on the outputs to changes in the inputs is strongly 
dependent on the input direction and we say that the 
plant has strong “directionality”. For example, in distil- 
lation columns the effect on the compositions (outputs) 
to individual changes in refluxand boilup (these individual 
changes correspond to specific “input directions”) is very 
large. However, if we simultaneously increase reflux and 
boilup by the same amount (this is a another input 
direction), then the two inputs may counteract each other 
such that the effect on the outputs is small. 

Note that plants with large elements in the RGA matrix 
always are ill-conditioned (i.e., r(G) is also large), but the 
opposite is not always true. Actually, the problems 
discussed in this paper mainly appear when the RGA 
elements are large (see section 4) and thus may not be 
serious for all ill-conditioned plants. 

We start the paper with an example of an inconsistent 
low-order model of a heat exchanger. The model, although 
seemingly a good open-loop description of the plant, is 
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Table 1. Steady-State Data for Heat-Exchanger Example (See Also Figure 1). 
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1 0.01 25 100 61.59 

cp and p are equal for the hot and cold sides. 

I 

Figure 1. Simplified representation of heat exchanger with one 
mixing tank on each side. 

shown to yield unexpected behavior when one control loop 
is closed (“one-point control”). The results in this example 
are subsequently explained using analytical results. We 
then briefly discuss what types of processes that are likely 
to be modeled with an excessive number of slow poles. 
The last part of the paper is devoted to the specific problem 
of obtaining low-order models of distillation columns. 

All the results presented in this paper are for 2 X 2 
processes, Le., two inputs and two outputs. However, the 
results are clearly of relevance also for higher dimensional 
processes. 

2. Introductory Heat-Exchanger Example 
The objective of this section is to present a simple 

physically motivated example of an ill-conditioned mul- 
tivariable process where a single slow pole is dominating 
all the responses. 

Consider the simplified heat exchanger in Figure 1, 
which is modeled using a single mixing tank for each of 
the hot side and cold side. Neglecting the heat accumu- 
lated in the walls yields a model with two states. The 
model is derived in Appendix, and data for the example 
are given in Table 1. There are no significant nonlinearities 
in this model, and in the following we only use the linearized 
form, y(s) = G(s) u(s). Here y = y2IT = [ATc AT HI^ 
is the cold and hot outlet temperatures and u = [u1 u2IT 
= [Aqc A q ~ 1 ~  is the cold and hot inlet flow rates. The 
linear model at this operating point is (denoted the “full” 
model in the following) 

7,  = 100; r2 = 2.44; z1 = z2 = 4.76; 
k,, = -kzl = 1785 k,, = -kZ2 = -1874; 

The model is ill-conditioned as it has a steady-state 
condition number of 41 and diagonal steady-state RGA 
values of 10.8. The physical explanation for the ill 
conditioning is simply that the heat transfer is very 
effective such that the two outlet temperatures (outputs) 
are almost the same (61.59 and 63.41 “C in our case), and 
it is very difficult to change them independently. In 
particular, it is difficult to make one outlet stream hotter 
and the other colder (this is the “weak” or “difficult” or 
“low-gain” direction of the plant), whereas we may easily 
make them both hotter or colder (this is the “strong” or 
“easy” or “high-gain” direction of the plant). 

63.41 300 500 3.0 

Open-loop responses obtained with model (1) to 10% 
step changes in the two inputs are shown by the solid lines 
in Figure 2. From the figure we observe that all the 
responses are close to first-order with a time constant 
around 100 min. We also note that the smallest time 
constant, 7 2  = 2.44 min, which we later show is associated 
with the low-gain direction of the plant, is very difficult 
to observe from the open-loop responses. Indeed, as seen 
from the dashed lines in Figure 2, an excellent fit is 
obtained with the following simplified model 

G(s) = - - 

Although it may appear that (2) only has a single pole, the 
state-space realization of course contains two poles a t  -1/ 

We now want to study the behavior of the process under 
partial (“one-point”) feedback control, Le., controlling one 
of the outlet temperatures. The cold outlet temperature 
Tc (y1) is controlled with the cold inlet flow qc (u1) using 
a P controller with gain K = 0.015 which yields a closed- 
loop time constant for this loop of about 3.5 min. Figure 
3 shows the responses to a 10% step change in hot inlet 
flow qH ( U Z )  with this loop closed. The solid lines are 
obtained with the “full” linear model (l), whereas the 
dashed lines are obtained with the fitted model (2). As 
seen from the figure, the responses for the uncontrolled 
output, TH (yz) differ significantly. The full model yields 
a “fast” response in TH (similar to that of the controlled 
output Tc) ,  whereas the fitted model yields a slow settling 
toward the new steady state. The reason for the large 
difference in behavior is, as we shall see, the different 
number of slow poles in the two models (1) and (2). 

71. 

3. Minimum Number of States and Inconsistency 

Consider a linear system described by the model 

i = A x + B u ;  y = C x + D u  (3) 

Here x denotes states, u inputs, y outputs and x the time 
derivative of x .  Laplace transformation of (3) yields the 
transfer matrix 

(4) 
For a system with n states, m inputs, and p outputs we 
have dim(A) = n X n, dim(B) = n X m, dim@) = p X n, 
and dim(D) = p X m. The maximum rank of G(s) is r,, 
= min@, m). Assume that G(0) has rank r > 1. With D 
# 0 we may define a model with a single state (time 
constant) by letting the dynamic part of the model, C(s1 
- A)-IB, have rank equal to 1 and use D to make the rank 
of G(0) = r. However, such a model yields an incorrect 
initial response for most processes and is therefore not 
considered. With D = 0, which is more reasonable from 
a physical point of view, it is easily seen from (4) that we 
need at  least r states for G(0) to have rank r. 

Heat Exchanger Example, Continued. In the heat- 
exchanger example we had a nonsingular steady-state 
matrix G(0) with rank r = 2, and consequently we need 
at least two states to describe the system using a state- 
space description with D = 0. Thus, when attempting to 

G(s) = C(s1- A)-’B + D 
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AqH (212) 

I 
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time [inin] time [min] 
Figure 2. Open-loop step responses of heat exchanger. Left: A q c  = u1 = 0.001 (10% increase in cold flow). Right: A q H  = uq = 0.001. Solid 
line: response of full model (1). Dashed line: response of fitted model (2). 

to move, and also the uncontrolled response to become 
fast as seen from the solid line for y2 in Figure 3. However, 
this is not the case when the simplified model (2) is used 
(dashed line), because here only one of the two poles a t  
-1/q is moved. This is shown in the next section. 

time [min] 

Figure 3. Dynamic response of heat exchanger with one loop closed. 
Responses in outlet temperatures to a 10% step increase in q H  (uz). 
Cold outlet temperature Tc (rl) is controlled by qc (u1) using a pure 
proportional controller with gain K = 0.015. Solid line: response of 
full model (1). Dashed line: response of fitted model (2). 

describe the system using only one time constant, we 
obtained the simplified model (2) with two poles a t  -UTI. 

Some readers might believe that also the full model (1) 
has two poles a t  -1/r1 = -1/100 since there are two mixing 
tanks which isolated would have a time constant of V / q  
= 100 min each. However, an analysis of the full model 
(1) reveals that there is a multivariable zero that cancels 
one of the apparent poles at -1/~1. The single slow pole 
at -1/q, which is shared by all the transfer function 
elements, is a result of the interactions between the two 
sides of the heat exchanger. Applying one-point feedback 
control to the full model (1) causes the shared pole -UTI 

4. Analytical Treatment of Model with One Loop 
Closed 

Consider applying the control law 

u1 = -Kb, -YlJ  (5) 
to the simplified model (2) (here subscript s denotes 
setpoint). This is denoted “one-point” control since only 
one output is controlled. The closed-loop transfer-matrix 
becomes 

Kkll 
1 + Kk,, -( 1 + Kk2, Kk,, 

where 

rcL = rl/(l + Kk,,) (7) 
Thus, three of the elements are first-order with the time 
constant, TCL, whereas the transfer function g22(s) from up 
to the uncontrolled output y2 is second order, as it in 
addition contains the open-loop dominant time constant, 
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71. To see how the two time constants contribute to the 
overall response in the uncontrolled output y2, write g&) 
in the form 

Ind. Eng. Chem. Res., Vol. 33, No. 3, 1994 

The ratio X1/XcL expresses the importance of the excessive 
slow pole -1/q under partial control and is given by 

(9) k12kZl 
XCL kllk,, 
-- Xl - (1 + Kkll)(+- 1); Y = - 

where Y is the ratio between the off-diagonal and diagonal 
steady-state gains, and is a well-known measure of 
interactions (e.g., Balchen, 1958; Rijnsdorp, 1965). It is 
also related to the 1,l element of the RGA for 2 X 2 systems 

1 
1 - Y  A,, = - 

The model is ill-conditioned when Y is close to unity, which 
corresponds to a large value of X11. 

From (9) we see that the ratio X1/XcL depends on the 
gain K used in the controller. The higher the gain is, the 
larger is the ratio X ~ X C L .  This means that the faster the 
response in the controlled output is, the more marked is 
the large time constant 71 in the uncontrolled output, yz. 

Consider Y in the range 0 to 1. For cases with Y = 1 
(A11 = m )  we see from (9) that X1/XcL becomes zero, i.e., 
there is no gain related to 71, and only TCL remains in 
g22(s). This is as expected since Y = 1 implies that the 
model is singular at all frequencies and the minimal 
realization of (2) will only contain one state. On the other 
hand, if Y = 0 (111 = 1) we see from (9) that X1/XcL = m 

and only 71 will be left in gzz(s). This is also as expected 
since Y = 0 implies that the steady-state matrix is 
triangular or diagonal, in which case it is likely that the 
identified process actually contains two poles at -1/71 (see 
discussion below). For values of Y between 0 and 1 (A11 
> l), both time constants will be present in g d s )  and 
their relative importance is determined by the size of XI/ 
XCL. 

This analysis seems to suggest that it is for weakly 
interactive processes; Le., where Y is close to zero, we get 
the largest error when an inconsistent model with excessive 
slow poles is used. However, this conclusion is misleading 
as it is for ill-conditioned processes we most likely will 
identify a model with too many slow poles. To see this, 
consider a 2 X 2 model which is reduced to have two states. 
If a proper model reduction method is employed, the two 
poles left should be the ones with the largest effect on the 
input-output behavior of the full model. Each of the two 
poles will have an input direction related to them, that is, 
a set of inputs that cancels the other pole. A similarity 
transformation of the state-space model, so that the A 
matrix becomes diagonal, will reveal these directions in 
the rows of the transformed B matrix. Changes in one 
input at a time, i.e., the input vectors [l OIT and [O 1IT, 
will span the input space. If one of the poles dominates 
the responses to both these input perturbations, it means 
that the gain related to the “hidden” pole must be small 
compared to the gain related to the dominating pole. This 
implies that the system has two directions with widely 
differing gains; Le., the system is ill-conditioned. (Note 
that some ill-conditioned systems may have the directions 
of the poles closely aligned with the input vectors of the 
perturbations. In this case both poles will show up in the 
simulations.) From this we conclude that it is only for 
ill-conditioned systems that the open-loop responses are 
likely to be well approximated using an inconsistent model 

-2.5 t 
i 100 150 200 250 300 

50 
-3.50 

time [min] 
Figure 4. Open-loop step response of heat exchanger illustrating 
ill-conditioned behavior. Solid lines: Aqc = - A ~ H  = 0.001 (u1= -uz). 
Dashed lines: Aqc = A ~ H  = 0.001 (u1 = UZ). Responses obtained 
with full model (1). 

with a single time constant. A diagonal or triangular 2 X 
2 process which has Y = 0 (A11 = 1) and is well described 
using only one time constant 71 is thus likely to actually 
contain two poles a t  -1/71. 

Heat-Exchanger Example,Continued. For the heat- 
exchanger example we have Y = 0.907 and Kkll = 28.1, 
which yields X1/XcL = 2.98 for the simplified model (2). 
That is, a major part of the response in the uncontrolled 
output y2 is related to 71, which is confirmed by the slow 
settling for yz (dashed line) in Figure 3. For the full model 
(1) the single time constant 71 is affected by the feedback 
control, and y~ has no slow settling (solid line in Figure 
3). 

A similarity transformation of the state-space realization 
of the full heat-exchanger model (1) shows that the input 
direction cancelling 7 2  is [l -1IT and the input direction 
cancelling 71 is [l 1IT. A singular value decomposition of 
the model gives a (minimized) condition number y = 41 
with the high-gain input direction being [ l - l ] T  and the 
low-gain input direction being [l 1IT. In this case we 
therefore have a perfect alignment of the singular input 
vectors and the pole-canceling vectors, Le., the high-gain 
input direction has a pole -1/q and the low-gain input 
direction a pole -1/72. The gain in the direction of the 
slow pole -1/71 is consequently 41 times the gain in the 
direction of the fast pole - l / ~ ,  and the fast pole is thus 
only weakly visible in open-loop simulations with per- 
turbations in single inputs. This explains why a model 
using only one time constant yields an excellent fit of the 
open-loop responses in Figure 2. 

Figure 4 shows the responses in the outlet temperatures 
of the heat exchanger to the inputs u1= -u2 (input direction 
canceling 7 2 )  and u1 = u2 (input direction canceling 71) 
obtained with the full model (1). From the figure we see 
that, as expected from the analysis, the gain related to the 
small time constant 72 is much smaller than thegain related 
to the dominant time constant 71. 

5. Low-Order Models of Distillation Columns 
The model features of distillation columns are similar 

to the ones discussed above for the simplified heat- 
exchanger model. In this section we discuss the problem 
of obtaining low-order linear dynamic models for high- 
purity distillation columns. 

High-purity distillation columns operating with reflux 
L and boilup V as independent variables (see Figure 6) 
may be strongly ill-conditioned. Furthermore, it is well- 
known that the individual open-loop responses may be 
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time [min] 

Figure 5. Wahl and Harriot column with one loop closed. Response 
in YD and x4 to a disturbance in feed composition with x4 controlled 
by reflux. Dashed lines: simulations with low-order model given by 
Wahl and Harriot (1970). Solid lines: simulations with full linear 
model. 

well approximated using only one dominant time constant. 
This has been shown both from plant data (McNeill and 
Sachs, 1969) and in several theoretical papers (e.g., 
Davidson, 1956; Moczek et al., 1965; Wahl and Harriot, 
1970; Kim and Friedly, 1974; Skogestad and Morari, 1987). 
Due to this, first-order models are commonly used in the 
distillation control literature. 

We shall first discuss an example from the literature 
that demonstrates that such simplified models may yield 
poor results, particularly when one-point feedback control 
is applied. We shall then consider another example of a 
high-purity column, and use this as an illustration of the 
difficulty involved in deriving consistent low-order models 
for distillation columns. 

Inconsistent Distillation Models from the Liter- 
ature. Wahl and Harriot (1970) used a simple low-order 
model to study the behavior of a high-purity column under 
one-point control. Their low-order model is somewhat 
more complicated than the pure first-order transfer- 
function matrix given in (2), but the minimal realization 
of their model contains two time constants equal to 365 
min, while the full model only has one time constant a t  
365 min. 

The dashed lines in Figure 5 show the response in top 
composition YD (yz) of the Wahl and Harriot low-order 
model to a step change in feed composition with the 
composition on plate 4 (511) under feedback control. The 
controller tuning (PI controller) used here is somewhat 
different than the one used by Wahl and Harriot, but the 
responses resemble closely the ones shown in Wahl and 
Harriot (1970) (actually Wahl and Harriot have the wrong 
sign on the change in top composition), Le., a fast response 
in the composition on plate 4 (y1) with a slow settling 
toward steady state for the uncontrolled top composition 
(yz). The slow settling in yz is noticed by Wahl and Harriot, 
but they assume it to be a property of the process. 
However, the slow settling to steady state is simply a result 
of a modeling error; that is, the model has an excessive 
slow pole. This is seen from the solid lines in Figure 5 
which show the responses obtained using the full linear 
model. The full model yields a fast response in both 
compositions. 

Also several other authors (e.g., Skogestad et al., 1990a; 
Sandelin et al., 1991) have used inconsistent models for 
studies of partial feedback control in distillation. This 
may be seen from their figures by observing the slow 
settling in the uncontrolled output. Indeed, as we discuss 

B, XB 

Figure 6. Two-product distillation column with refluxL and boilup 
V as independent variables. 

Table 2. Steady-State Data for Distillation Column (See 
Also Figure 6). 

MJF TL 

ZF a! N NF 1 - y ~  XB DIF LIF VIF (min) (rnin) 
0.5 1.5 40 21 0.01 0.01 0.500 2.706 3.206 0.5 0.063 

a Feed F is liquid. 

o'o'2' 

O.O1 t *z* 

0.008 - 

0.006 - 

time [rnin] 

Figure 7. Open-loop responses of distillation column in Table 2 to 
1% step change in reflux L. Solid lines: responses of full linear 
model. Dashed lines: responses of fitted low-order model N1 (11). 

below, obtaining simple and consistent low-order models 
for high-purity distillation columns is a challenging 
problem. 

Development of Consistent Distillation Models. 
The discussion in this section is based on a case study of 
a relatively high-purity distillation column. Data for the 
column (denoted "column A" in Skogestad and Morari 
(1987,1988)) are given in Table 2. We will consider reflux 
L and boilup V as independent variables (LV configura- 
tion). The model is ill-conditioned at  steady state where 
the condition number is 142 and the RGA is 35.5. 

Open-loop responses in product compositions YD and 
XB to step changes in reflux L (keeping boilup V fixed) 
using a full linear model with 82 states are shown in Figure 
7. The states are the mole fraction of light component 
and the total holdup on each stage. Note that liquid flow 
dynamics, which were neglected in Skogestad and Morari 
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frequency [rnin-’1 
Figure 8. RGA as a function of frequency for distillation column 
example. N1: fitted low-order model without flow dynamics (11). 
F1: fitted low-order model with flow dynamics included (13). Full: 
full 82th-order linear model. 

(1987,1988) are included in this “full” model. It is critical 
to include flow dynamics if the model is used for Ywo- 
point” control studies where both top and bottom com- 
positions are controlled (e.g., Skogestad and Lundstrom, 
1990). The reason is that the flow dynamics provide for 
varying holdup of liquid and thereby introduce a liquid 
lag which decouples the high-frequency responses of the 
top and bottom parts of the column. For the example 
column the liquid lag from the top to the bottom of the 
column is about OL = 2.5 min. 

Model N1. Despite the high order of the model, the 
responses in Figure 7 seem to be almost pure first-order 
with a time constant of approximately 7 1  = 194 min. Fitting 
each transfer matrix element to a first-order response with 
time constant TI  = 194 min yields a model on the same 
form as in (2): 

1 0.878 -0.864 dL (2)  = -( 1.082 -1.096 ) (dV) 

(The “standard” approach would be to fit the responses 
independently and obtain four slightly different time 
constants. However, the results would have been very 
similar.) This model is denoted N1. N means no flow 
dynamics (since we have made no attempt to fit the initial 
part of the response where the flow dynamics are impor- 
tant), and 1 indicates one time constant. As seen from 
Figure 7 ,  this simple model gives an almost perfect fit of 
the overall open-loop responses of the full model with 82 
states. However, as will become clear, the model N1 has 
two fundamental flaws. 

First, an analysis of the full 82 state model reveals that 
it has only a single pole a t  -UTI, so the model N1 is 
inconsistent in that it contains two poles a t  -1/~1. From 
the previous section it seems clear that this inconsistency 
will give a poor prediction of the behavior of the full plant 
under one-point control, and this is indeed confirmed by 
simulations (not shown). 

Second, it has been shown before (Skogestad and 
Lundstrom, 1990; Skogestad et al., 199Oa-c) that the type 
model (11) is poor also for the case with both compositions 
under feedback control (“two-point control”). The main 
reason is that the flow dynamics are not included such 
that the directionality of the process, in particular at 
intermediate and high frequencies, is poorly predicted. 
To see this, consider Figure 8, which shows the RGA plotted 
as a function of frequency for both the full model with 82 
states and the fitted model N1. Model N1 has A11 = 35.5 

over all frequencies, that is, strong directional dependence 
at  all frequencies. On the other hand, the RGA for the 
full model breaks off a t  intermediate frequencies and 
becomes unity a t  approximately frequency l / 0 ~  where OL 
is the liquid lag from top to bottom. The real process is 
therefore only weakly directionally dependent at high 
frequencies. 

We now want to study how to develop an improved 
simple low-order model of a distillation column which (1) 
does not contain excessive slow poles, and (2) has correct 
directions at  intermediate and high frequencies. However, 
let us first consider the low-order models most commonly 
presented in the distillation literature. 

Standard Low-Order Models. Most low-order models 
of distillation columns presented in the literature are 
obtained by fitting responses to a model of the type first 
order plus dead time, that is, with elements 

(12) 

If the delays were only associated with the inputs (e.g., 
valves) and/or outputs (e.g., measurements), the sum of 
delays would be equal in the diagonal and off-diagonal 
elements. However, a study of models reported reveals 
that most of them have a larger sum of delays in the off- 
diagonal elements than in the diagonal elements (e.g., 
Wood and Berry, 1973; Hammarstrom et al., 1982; Waller 
et al., 1988). This seems reasonable and is probably a 
result of the flow dynamics. For example, it takes time 
for the reflux L to affect XB and the 2,l element, gzl(s), of 
the transfer matrix should contain an additional lag. Most 
authors use pure dead times to represent this, while the 
flow dynamics physically is a high-order lag. 

Model F1. Let us now try to improve the simplified 
model N1 (11) by including explicitly the flow dynamics 
which yield a liquid lag (delay) from the top to the bottom 
of the column of OL = 2.5 min. We do this by simply 
“adding” a lag term gL(s) to the off-diagonal2,l element 
as discussed above, and obtain model F1 (F denotes flow 
dynamics) 

where in our case (time is in minutes) 

For our column with 39 stages (plus reboiler and total 
condenser), the best representation of the liquid lag would 
be to use gL(s) = (1 + O L / N ) ~  with N = 39. However, we 
here use a fifth-order approximation to obtain a model of 
reasonably low order. 

We see from the RGA plot in Figure 8 that we now 
obtain a much better fit of the directionality of the process. 
The modelF1 has been studied by Skogestad et al. (1990a) 
and Jacobsen et al. (19911, and they concluded that it was 
a reasonably good model when both outputs are controlled 
simultaneously (“two-point” control). However, we find 
that including the flow dynamics does not correct the 
fundamental error of excessive slow poles, and the model 
will be poor for studies of partially controlled distillation 
columns. This is seen from Figure 9, which shows the 
response of the model under one-point control. Top 
composition YD is controlled by reflux L using a PI 
controller while XB is left uncontrolled. As seen from curve 
F1, the model yields an incorrect slow settling toward 
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where we again get an incorrect slow settling towards the 
new steady-state for the uncontrolled output. 

Conclusion Analytic Low-Order Models. We have 
not been able to obtain a simple “analytic” (in the meaning 
that all parameters have physical significance) low-order 
model for high-purity columns which is consistent in terms 
of the number of slow poles (and is then useful for one- 
point-control studies) and at  the same time includes flow 
dynamics (and is then useful for two-point-control studies). 
In addition, it seems difficult to include the effect of 
disturbances in F and ZF in a consistent manner (see 
discussion below). 

Model Reduction. On the other hand, by mathematical 
model reduction of the full linear model it is possible for 
this example to obtain low-order models with only two 
states which are good for both one- and two-point-control 
studies (Jacobsen et al., 1991). For instance, applying the 
optimal Hankel approximation without balancing (Safonov 
et al., 1987) to reduce the full 82nd-order linear model 
(with flow dynamics included) to a 2nd-order model yields 
the model 

(2:) = (1.61s + 1)(194s + 1) 
0.871(2.17s + 1) -0.861(0.721s + 1) 

X 1 

)(E) (16) ( 1.089(0.45~ + 1) -1.101(3.48~ + 1) 
Note that the small time constant of 1.61 min is much 
smaller than the value 7 2  = 15 min used in model 14 which 
applies when flow dynamics are neglected. Model 16 has 
a minimal realization with only one slow pole a t  -1 /~1  and 
is a good model for both one- and two-point-controlstudies. 
However, the model structure resulting from mathematical 
model reduction is not “analytic” in the sense that it is 
parametrized in terms of physical parameters. For in- 
stance, in model 16 the decoupling at  intermediate and 
high frequencies, physically caused by the flow dynamics, 
is described by letting the zeros in the off-diagonal elements 
be smaller than in the diagonal elements. 

Proposed Low-Order Structure for Distillation 
Columns. Based on model 16, one possible model 
structure for obtaining consistent low-order models is the 
following: 

d 0-4 

2 1  A ’ 

Ayo (controlled) 

(Y1) -2 O t  I..’- 

-l6!l 50 I00  150 200 250 300 350 4hO 
time [rnin] 

Figure 9. Dynamic response of distillation column with one loop 
closed. Response to a 1 % increase in boilup. Top composition YD 
controlled by reflux L using a PI controller. Full: full 82th-order 
linear model. F1: fitted low-order model with flow dynamics included 
(13). N2: two-time-constant model (14). F2: two-time-constant 
model (14) with flow dynamics included. 

steady state for the uncontrolled output XB. As model F1 
is similar to the standard low-order model most commonly 
used in the literature for fitting data, it follows that most 
simple models presented in the literature are inconsistent 
in that they contain excessive slow poles. 

Model N2. Skogestad and Morari (1988) studied the 
case without flow dynamics and suggest to use a two- 
time-constant model with the dominant time constant 71 
for the high-gain direction (dL = -dV) and a smaller time- 
constant 7 2  for the low-gain direction (dL = dV) (model 
N2) 

For our example column 71 = 194 min and 72 = 15 min. 
The minimal realization of this model contains only one 
“slow” pole a t  -1 /~1  and is thus consistent in this respect, 
and it also gives an excellent fit of a full 41th-order model 
which results from neglecting the flow dynamics. The N2 
model also agrees well with the 82th-order full model with 
flow dynamics for the case of one-point control. This is 
seen from the curve N2 in Figure 9. However, model N2 
(14) does not include flow dynamics and may therefore be 
relatively poor for two-point control studies (Skogestad 
and Lundstrom, 1990; Jacobsen et al., 1991). 

Model F2. To improve the model N2, one may try to 
“add” flow dynamics gL(s) to (14) as we did for model N1 
above. 

kll  + k12 kll  

kZl+ k22 k21 )(E) (15) 
+ ” + ‘lS 

This model, denoted F2, is used by Skogestad and 
Lundstrom (1990) and Skogestad et al. (1990b,c) and yields 
good results for two-point-control studies. However, 
adding the lag term gLfs) to the 2,l element of (14) does 
again result in a minimal realization with two slow poles 
a t  -UTI, and therefore the model is poor for one-point- 
control studies. This is seen from curve F2 in Figure 9 

(17) 

There are 10 parameters in this model, but only 8 of these 
are independent since the model should only have two 
states; that is, we must have two multivariable zeros at 
-1/q and -1/72, respectively. [Alternatively, we may use 
a state space formulation, G(s)  = C(s1- A)-lB with two 
states. This formulation also has eight independent 
parameters; consider for example a canonical form with 
C = I and where each of the matrices A and B contains 
four parameters.] We now discuss how the parameters in 
(17) may be obtained. 

The steady-state gains kij and the dominant time 
constant 71 are physically motivated and may be obtained 
directly from specific experiments. However, some care 
must be exercised when obtaining the gains since it is 
difficult to observe the low-gain direction of the plant 
(Skogestad and Morari, 1988; Andersen et al., 19891, and 
one may for high-purity columns with large RGA values 
easily get the wrong sign of the RGA (and the determinant) 
of the steady-state gain matrix, K. The model will then 
be useless for feedback control purposes. This may be 
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corrected by performing separate experiments for changes 
in internal flows [e.g., by using the DV configuration as 
suggested by Skogestad and Morari (1988) Alsop and Edgar 
(19901, Andersen and Kiimmel (19911, and Kuong and 
McGregor (1991)1, or by adjusting the steady-state gains 
to match an estimated steady- state RGA value as suggested 
by Jacobsen et al. (19911, or by using a “perturbed model” 
(Kapoor et al., 1986) based on steady state where the RGA 
elements are smaller. The basis for the two last suggestions 
is that the steady-state behavior is not of primary 
importance for feedback control. 

The remaining five parameters, 72 and the four zeros (of 
which only three are independent), may be obtained based 
on fitting time responses for the compositions. It is also 
advisable to obtain separate data for the flow dynamics 
so as to get the correct decoupling at  intermediate and 
high frequencies. 

6. Discussion 
Identification. The general literature on identification 

has so far not treated multivariable issues in much detail. 
In the process control literature some discussion is given 
by Andersen et al. (1991). There do not seem to exist 
identification algorithms that are well suited to identify, 
on the basis of “realistic” (noisy) data generated from the 
model in eq 1, a model that is consistent in terms of the 
number of slow poles. In particular, this is the case if the 
model structure and order is unknown. Indeed, we have 
proposed (Jacobsen and Skogestad, 1993) to use the heat 
exchanger described by eq 1 as a benchmark problem for 
identification. 

The identification problems are mainly associated with 
the weak direction. The 2 X 2 processes studied in this 
paper contain only one slow pole, and since a rank 2 model 
requires a t  least two states, we need to identify a t  least 
one more time constant. For the heat-exchanger example 
the small time constant 72 appears in the weak (low-gain) 
direction, and may in theory be identified by doing a 
simultaneous step increase in hot and cold flow of the 
same magnitude, Le., applying an input vector 11 1IT. 
However, due to input errors, this is difficult to realize in 
practice, and only small errors will yield changes in the 
high-gain-input direction and make it difficult to observe 
the time constant 72. 

If the model structure is known, such that one explicitly 
models the “weak” direction, the problem becomes much 
simpler. For the heat-exchanger example, the exact model 
structure is given by eqs 26 and 27 in the Appendix. We 
note, for example, that the effect of disturbance 2 on output 
1 is a/(m + 1)(rs + 1 + 2 4 ,  and it should be possible to 
estimate the parameters T and a from a single open-loop 
experiment. The entire matrices Gd(S) and G(s) may then 
be obtained. 

Number of Slow Modes. Although all the processes 
studied in this paper contain only a single slow pole, there 
are of course many processes that contain several slow 
poles. When doing open-loop identification, it is necessary 
to know in advance how many slow poles the process 
actually contains. In a well-designed high-purity distil- 
lation column there will usually only be one slow pole, 
while an overdesigned high-purity column with a pinch in 
the composition profile usually will have two slow poles. 
The reason is that the pinch tends to decouple the column 
into two sections with relatively little interaction, resulting 
in one slow pole related to each of the two column sections. 
An open-loop blackbox identification method will not be 
able to discriminate between the two cases, and some 
physical knowledge needs to be added. Closed-loop 

identification, on the other hand, is likely to reveal the 
fact that there indeed is a single dominant time constant 
in the process. Thus, for ill-conditioned processes where 
physical knowledge is lacking, one should apply some 
closed-loop identification method when obtaining low- 
order models. 

Disturbance Modeling. The linear process model is 
often written 

Y(s) = G(s) u(S) + Gd(s) d ( s )  (18) 
In this paper we have only discussed obtaining low-order 
models, G(s), for the effect of inputs. However, the main 
purpose of process control is usually to reject the effect 
of disturbances, d ,  entering the process, so a disturbance 
model, Gd(S), is usually also required. The common 
approach is to identify the disturbance model Gd(S) 
independently of G(s) (e.g., Shunta and Luyben, 1972; 
Waller et al., 1988), as is suggested from the model form 
in (18). However, in reality, these models are usually 
coupled and share the same states. For the processes 
studied in this paper the single dominating pole seen in 
G(s) will also appear in Gd(S) and will also dominate the 
open-loop responses to disturbances. If the fitted dis- 
turbance model Gd(S) is inconsistent with the input model 
G(s), then these inconsistencies may appear under feed- 
back control. For instance, for our distillation example 
using the low-order model Fl(13)  with time constant 71, 
we find using two-point control that the responses to 
setpoint changes are reasonably correct compared to the 
full model. However, witha simple first-order model with 
the same time constant 71 for disturbances in feed flow 
rate F, we find that the simulated response to a disturbance 
in F is erroneous due to inconsistent slow poles left in the 
disturbance model. 

Thus, care needs to be taken also when identifying the 
disturbance model of an ill-conditioned process. One 
approach is to use a state space form as the basis for 
parameter fitting, that is, use 

i = A r + B u + E d ;  y = C x  

This approach will ensure that the models G = C(s1 - 
A)-’B and Gd = C(s1 - A)-’E share the same states. 

Practical Implications of Inconsistency. The in- 
consistency we present in this paper represents a funda- 
mental model error. However, one may question whether 
it has any important practical implications. First, in the 
case of partial control the inconsistency mainly has 
implications for the uncontrolled output and does not 
affect the tuning of the control loop significantly if one 
considers the response in the controlled output only. 
Second, we concluded above that some models which are 
inconsistent, e.g., model F2 for the distillation column, 
yield good results when used for tuning two-point con- 
trollers based on setpoint changes only. 

However, we argue here that there are many practical 
situations where the inconsistency presented may yield 
misleading results. Consider first the case with partial 
control. In industrial practice partial control is commonly 
employed and in many situations the control is applied to 
an output which is not of primary importance. As an 
example, consider the control of distillation columns. Few 
industrial columns have feedback control of the primary 
outputs, i.e., the product compositions, due to significantly 
delayed or even lack of composition measurements. 
Instead, a temperature on a plate inside the column is 
controlled in order to reduce sensitivity to disturbances 
entering the column. Thus, one applies feedback control 
to an output which is of little importance in order to 
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VH = liquid volume hot side (ma) 
XB = bottoms composition 
Y = k12k21/kllk22 = interaction measure 
YD = distillate composition 
y i  = process output i (deviation variable) 
ZF = feed composition 
Greek Symbols 
a! = relative volatility 
y = condition number 
A11 = 1,l element of RGA 
r1 = dominant (largest) process time constant (min) 
r2 = smaller process time constant (rnin) 
rcL = closed-loop time constant (rnin) 
TL = lag in liquid response for individual tray (rnin) 
OL = lag in liquid response from top to bottom of column 

(min) 
Subscripts 
s = setpoint change 

improve the dynamic characteristics of some uncontrolled 
outputs which are of primary importance. If an incon- 
sistent model is used to study the closed-loop behavior, in 
this case one will end up with erroneous conclusions 
regarding the effect of the feedback controller on the 
primary outputs (see, e.g., Wahl and Harriot, 1970). 

In addition, as discussed above, if a two-point controller 
is tuned for disturbance rejection based on input and 
disturbance models that are inconsistent, the resulting 
controller is likely to yield a poor performance when 
applied to the process. 

7. Conclusions 
The open-loop responses of ill-conditioned processes 

often take the form of almost pure first-order dynamics. 
The responses are dominated by a single slow pole resulting 
from interactions in the process. The open-loop dynamics 
of such processes are seemingly well approximated by a 
low-order model containing only the dominant time 
constant. However, the model will contain an excessive 
number of slow poles and is therefore physically incon- 
sistent. 

The inconsistency results in a poor prediction of the 
process behavior under partial feedback control. It is 
sufficient to close one feedback loop to move the single 
slow pole of the process, and thus make all outputs respond 
quickly. However, for models with excessive slow poles, 
a t  least one slow pole will be left when one feedback loop 
is closed, causing erroneous slow responses in the uncon- 
trolled outputs. 

We have found that it is difficult to define a physically 
motivated low-order model structure for high-purity 
distillation columns which contains the flow dynamics and 
is consistent in terms of the number of slow poles. 
Obtaining consistent low-order dynamic models of high- 
purity distillation columns is therefore an open research 
problem. 
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Nomenclature 
A = heat-transfer area (m2) 
A = Jacobian state matrix 
c p  = heat capacity (kJ/("C kg)) 
D = distillate flow (kmol/min) 
d = process disturbance vector 
F = feed flow (kmol/min) 
G(s) = process transfer matrix for effect of inputs u 
G&) = process transfer matrix for effect of disturbances d 
gij(s)  = transfer matrix element i, j 
k i j  = steady-state process gains 
I = identity matrix 
K = controller gain 
L = reflux rate (kmol/min) 
N = number of theoretical trays 
NF = feed tray 
qc = cold inlet flow (m3/min) 
qH = hot inlet flow (m3/min) 
TC = cold outlet temperature ("C) 
TH = hot outlet temperature ("C) 
U = heat-transfer coefficient (kJ/(m2 "C min)) 
ui = process input i (deviation variable) 
V = boilup rate (kmol/min) 
Vc = liquid volume cold side (ma) 

Appendix. Simple Model of Heat Exchanger 
Consider a very simplified heat exchanger with one 

mixing tank on each side as shown in Figure 1. Assume 
constant volumes, V, on each side, and constant values of 
p and cp. A heat balance for the cold and hot side then 
yields 

where q* denotes the nominal (steady-state) flow, and 

V C  UA 

V H  UA 

rc =y; c y c =  
4c PCQC*CFc 

qH*) f f H =  
pHqH*cPH 

TH = -' 

Linearizing the model assuming UA and thus a! constant 
(independent of flow and temperature), introducing de- 
viation variables, and taking Laplace transforms yields 

4c(s) + r@Tc(s) = Tci(s) - TC(s) + (Tci* - Tc*)- 
QC* 

f f H ( T H ( s )  - T C ( s ) )  (24) 
where the superscript * denotes steady-state values. In 
this paper we consider a symmetric case with rc = 7 H  = 
r ,  ac = CYH = a and qc* = q H *  = q*. Rearranging yields 

where 

G,~(s )  = 

) (26) TS+l+a! 
1 

( r s  + 1)(rs + 1 + 2a) 
and 
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Inserting the numerical values T = 100 (min), a = 20, q* 
= 0.01 (m3/min) (see data in Table 1) finally yields 

= 
0.02439 (21(1 + 4.76s) 20 

(100s + 1)(2.439s + 1) 20 21(1 + 4.765) 
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