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Abst rac t - -A procedure for sequential design of decentral- 
ized controllers for linear systems is presented. It is shown 
how to include a simple estimate of the effect of closing 
subsequent loops into the design problem for the loop which 
is to be closed. In the examples the robust performance in 
terms of the structured singular value is used as the measure 
of control performance, but the procedure may be applied 
also for other performance measures. 

1. Introduction 
DECENTRALIZED CONTROL REMAINS popular in the industry, 
despite developments of advanced controller synthesis 
procedures leading to full multivariable controllers. 

The design of a decentralized control system consists of 
two main steps: 

(1) control structure selection, that is, pairing inputs and 
outputs; and 

(2) design of a single-input-single-output (SIO) controller 
for each loop. 

In this paper we consider Step (2) and assume that Step (1) 
has already been completed, for example, by help of such 
tools as the RGA (Bristol, 1966; Hovd and Skogestad, 
1992a,b). 

A lot of the literature on decentralized control is 
concerned mainly with stability and uses of the time domain 
(e.g. Siljak, 1991). The focus in this paper is on design for 
performance where frequency-domain methods prove to be 
very useful. 

Standard optimal controller synthesis algorithms (e.g. 142 
or H~ synthesis) lead to multivariable (centralized) 
controllers, and cannot handle requirements for controllers 
with a specified structure. Siljak (1991; p. 208) notes that 
despite a relatively long history, the optimization methods 
for decentralized control of stochastic systems are unsatisfac- 
tory. Recently, several parametrizations of all stabilizing 
decentralized controllers have been proposed (e.g. Mano- 
usiouthakis, 1989; Ozgiiler, 1990), but they are difficult to 
apply for synthesis. Date and Chow (1993) propose a 
two-stage design approach where in the first stage an /42 or 
Ha-centralized controller is obtained, and in the second step 
the parametrization of Manousiouthakis (1989) is used to 
optimize a parameter which decentralizes the controller. 
However, a fundamental problem is that the optimal 
decentralized controller is generally of infinite order (the 
"second guessing problem" as discussed by Sandell et al., 
1978). 

Instead, some practical approaches to the design of 
decentralized controllers have evolved. 
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• Simultaneous design using parameter optimization for a 
fixed controller structure (e.g. Sandell et al., 1978; 
Davison and Ferguson, 1981). 

• Independent design (Skogestad and Morari, 1989). 
° Sequential design (e.g. Mayne, 1973). 
Simultaneous design using parameter optimization is very 

difficult numerically, and it does not provide some of the 
advantages that are usually the reason for using decentralized 
control in the first place, such as the ability to bring the 
system into service by closing one loop at a time, and the 
guarantee of stability in the case of failures. In the 
independent design procedure of Skogestad and Morari 
(1989), used also by Hovd and Skogestad (1993) and Braatz 
et al. (1992), the issue of interaction between the loops is 
considered first, and the SISO controllers are then designed 
independently, using bounds that guarantee stability and 
performance. The disadvantage is that performance may be 
poor because the method does not use detailed information 
about how the other loops are designed. 

Luyben (1986) has proposed a simple procedure (called 
BLT) which is a combination of independent and 
simultaneous design, where all the loops are first tuned 
independently using the Ziegler-Nichols procedure, and then 
a common detuning factor is applied in order to take care of 
the interactions. 

In this paper we discuss sequential design, which is 
probably the most common design procedure in real 
applications. In spite of this, there exist very few, if any, good 
design methods. In the paper we present a new design 
procedure based on obtaining simple a priori estimates of the 
final loop shapes. 

In the example we use the structured singular value, 
introduced by Doyle (Doyle et al., 1982), as the measure of 
control quality. However, the procedure can be applied also 
for other performance measures. 

1.1. Notation. The matrix G(s)  denotes a square plant of 
dimension n × n, and go(s) is the ijth element of G(s) .  The  
decentralized controller is assumed to be diagonal with 
diagonal elements ci(s) (see Fig. l). The matrix consisting of 
the diagonal elements of G is denoted 0 =diag{gii}. The 
sensitivity function is S = (1 + GC)  ~ and the complementary 
sensitivity i s H = I - S = G C ( I + G C )  i L o o p i i s  the SISO 
feedback system consisting of ga and ci. The sensitivity 
functions and complementary sensitivity functions for the 
individual loops are collected in the diagonal matrices 

= diag {~,} = diag {1/(1 + giici)} =(1  - G C )  ~ and /7/= 
diag{hi} = diag{giici/(1 + giici)} = GC(1 - G C )  -L. Two fre- 
quency-dependent measures which we make use of are the 
Performance Relative Gain Array, PRGA = F = OG ~ (with 
elements yij), and the Closed-loop Disturbance Gain, CLDG 
G G  IG a (with elements 6~k ). 

2. Sequential design 
Sequential design involves closing and tuning one loop at a 

time. The method is very well suited for on-line tuning, but 
in this paper we explicitly make use of a process model 
(possibly uncertain) to improve the design. 

The introduction of sequential design into the control 
literature is usually attributed to Mayne (1973), although he 
mainly considered precompensator design, and not the 
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FIG. 1. Block diagram of feedback system with decentralized 
controller. 

design of the decentralized controller. In any case it is 
probably fair to say that sequential design has always been 
the most popular design method for decentralized control of 
real multivariable processes. Relatively few theoretical 
results are available, although the method has attracted somc 
attention more recently (e.g. Bernstein, 1987; Nett and 
Uthgenannt,  1988: Viswanadham and Taylor, 1988: Skog- 
estad and Hovd, 1990; Chiu and Arkun, 1992). 

2.1. Advantages of  sequential design 
1. Each step in the design procedure involves designing 

only one single-input-single-output (SISO) controller. 
2. A limited degree of failure tolerance is guaranteed: if 

stability has been achieved after the design of each 
loop, then the system will remain stable if loops fail or 
are taken out of service in the reverse order of how 
they were designed. 

3. Similarly, during startup the system will bc stable if the 
loops are brought into service in the same order as they 
have been designed. 

2.2. Problems with sequential design 
1. The final controller design, and thus the control quality 

achieved, may depend on the order in which the 
controller in the individual loops are designed. 

2. Only one output is usually considered at a time, and the 
closing of subsequent loops may alter the response of 
previously designed loops, and thus make iteration 
necessary. 

3. The transfer function between input u~ and output Yk 
(which is considered when designing loop k) may 
contain right half-plane (RHP) zeros that do not 
correspond to RHP transmission zeros of G(~ ). 

The usefulness of a sequential design procedure will 
depend on how successfully it addresses the above issues. 
The conventional rule for dealing with problem I is to close 
the fast loops first, the reason being that the loop gain and 
phase in the bandwidth region of the fast loops is relatively 
insensitive to the tuning of the lower loops. While this 
argument is reasonable for loop k itself (involving only r k, uk 
and y~), the response of output k may still be sensitive to the 
tuning of the controller in a slower loop /, if tq has a large 
effect on Yk. 

Wc will attempt to rcducc the severity of problem 2 by 
using simple estimates of how the undesigned loops will 
affect the output of the loop to be designed. 

Problem 3 may affect the order of loop closing since we 
will require that the system is stable after the closing of each 
loop. Thus, it may not be possible to close thc fast loop (k) 
first, if the corresponding transfer function element has a 
significant RHP zero thai is not a transmission zero of the 
plant G. However,  such RHP zeros in thc individual 
elements of G may disappear when the other loops are 
closed (as the RHP zero is not a transmission zero), and it 
may therefore bc possible to achieve fast control in loop k if 
the controller for this loop is designed at a later stage. 

3, E.stimates of inwractions 
In this section we use some simple facts to derive a priori 

estimates of the individual loop shapes (in tcrms of g, ci), and 
show how this may be used to estimate the interactions 
caused by the undesigned loops. 

3.1. Bandwidth estimates. We lirst derive estimates of the 
final loop shapes, and in particular, of the bandwidth in each 

loop, Note that all rcsulls gi,,c11 bclo~.', asstHilc L)lat Ihc 
inputs, outputs and disturbance,,, have been scaled approprl  
a i c ly .  In t h e  l n o r c  g e n e r a l  case ,  weighting lllalrict_:s In ; i t  {~+.} 
tised instead. 

Consider the tccdback system m Fig. i. The collliol ciro:  
(offset) is given by 

I ..... v r S r  ~ S(;dd. ( l )  

Assume that the plant transter function (; and the 
disturbance transfer function O~t arc scaled such that the 
largest tolerable offset (el in any controlled w~riablc has 
magnitude 1 and the largest individual disturbance (d) 
expected has magnitude 1 at any frequency. For simplicity wc 
assume that the largest expected changes in the sctpoints (r} 
arc equal to the allowed magnitude of e. To satisfy our 
perfl~rmancc objectives, wc must Ihcn for any single sctpoint 
Ir, I < 1 at least requirc 

IS ,  l! ~ I, (2 )  

a n d  f o r  any  s ing le  d i s t u r b a n c e  idol < 1 at least r e q u i r c  

I[S(&J,~- I. (3) 

(Here [AI, denotes the 0th clement of A.) We want to 
express these performance requirements in terms of the 
individual designs (loops). 

A key step is to first factorize thc sensitivity S in terms of 
the sensitivity of the individual designs, ,~ ( / +  (~'C) ~ (e.g. 
Grosdidier and Morari, 1986): 

3': (I ÷ ( ; ( ' )  ' : :  ,~,'(/ + 1:'/-/) E (4) 

where E =  ( G -  0 ) G  * represents the relative interactions. 
For frequencies (~o<w. )  below the bandwidths of the 
individual loops wc have f / = l  and we get ( I~  El f )  ' 

"% " I def , GO = 1. The control error bccomcs 

e v t ,¢l'r : S;I'Gd: w<:~ol~ (5) 

where F={Tv} is the Performance Relative Gain Array 
(PRGA) and IY&=Ia,~} is thc Closed-loop Disturbance 
Gain (CLDG) (Skogestad and Hovd, 1990). At frequencies 
o~<wu we also have ,~ ~ ( G C )  1 and the performance 
requirements in equations (2) and (3) may then be rewritten 
in tcrms of bounds on the individual loop gains, g,c,: 

Setpoints: Y~ < lCvL~,,c,i" y , l :  ,0 • ,,,. i6) 
,giiCe 

D i s t u r b a n c e s :  - -  < I ¢:>Jg~,~,i > ]6iki: ~o < . m -  (7 )  
I , G f ,  : 

Thus at frequencies ~ < w, ,  the PRGA element ly,j(#o)i is 
the minimum loop gain requirement for a change in setpoint 
j to cause an acceptably small offset in output i. Likewise, the 
CLDG element J6,~(ja0! is the minimum loop gain 
requirement in loop i for rejecting disturbance k. Specifically, 
from frequency-dependent plots of J%i and 16~, l, we can get a 
good estimate of the required bandwidth in the individual 
loops, tou~. In the simplest case we may consider the 
frequency where the magnitudes iY, I or i6~,l cross one. In the 
example at the end of the paper we discuss a case where a 
more careful analysis is needed. The bandwidth estimates are 
later used for two purposes: 

1. determine the order of loop closing (first closing loops 
that are required to bc fast): and 

2. estimate the complemcnta U. sensitivity iunctions (1~,) 
for the individual loops. 

3.2. Effect of undesigned loops. The above relationships 
may be used to independently design each loop in terms of 
performance, at least at lower frequencies. However, when 
the controllers in some loops havc already been designed, we 
have gained more knowledge about the closed-loop system, 
and we want to take advantage of this new knowledge when 
designing subsequent loops. 

In the following, we will assume without loss of generality 
that the loops are closed (and controllers designed) in the 
order 1.2 . . . . .  k, k + I . . . . .  and that the loop to be 
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designed is k. Let Gk denote the submatrix of dimension 
k × k  in the upper left corner of G. Let Ck= 
diag{cl,c2 . . . . .  ce} and let S k = ( l + G e C k )  1 and He=  
GeCk(I + GkCk )-I .  Introduce Gk = diag{Ge, gii}, Sk = 
diag{&, g/}, and H k = diag {Hk, hl}, i = k + 1, k + 2 . . . . .  n. 

We then have the following generalization of equation (4): 

S = S k ( I + E j t e )  ' ;  E e = ( O - - 0 k ) O k  ', (8) 

which is the basis for our design procedure. Note that: 
1. (I + Ekl?lk) - t  represents the estimated interactions from 

the undesigned loops: 
2. to see this, note that Sk = (I + GkCk) 1, the upper left 

k x k block of Sk, yields the response for loops 1 to k 
with the remaining loops open, while the upper left 
k x k block of S yields the response of loops 1 to k with 
the remaining loops closed; 

3. (I + Ee/i/k) t is in general a full matrix. To evaluate this 
matrix we need an estimate of /~, for the undesigned 
loops; 

4. for k = l  we have (~1=(~, S , = S ,  E l = E a n d  /2/l=/q 
and rederive (4); 

5. in our sequential design^procedure we will consider the 
first k rows of (1 + Ej, Hk) ~ as an input weight when 
evaluating performance in terms of & = (I + GkCe) 1; 
and 

6. it is important to note that although we will take these 
estimated interactions (1 + Ee.Hk) 1 into account when 
evaluating performance, we will not take them into 
account when evaluating stability, during the design of 
loop k. The reason is that we will require lhe system to 
be stable after the closing of each loop. 

4. A new sequential design procedure 
The objective of the controller design is to design SISO 

controllers, c,, that minimize some performance objective. As 
the performance objective we usually consider a norm (e.g. 
H~-norm or H2-norm) of the weighted sensitivity function of 
the overall system, and get the following design problem: 

min II WpSWDII. (9) 
ci 

The performance weights W~P ×~ and W~ ×"o need not be 
square, but We is often a square diagonal matrix used to 
weigh each individual output e~, that is, in most cases 

W~ ×" = diag {win, wm . . . . .  Wp~}. 

For a case where we consider both command following and 
disturbance rejection (see Fig. 1) the input weight is typically 
selected as 

w~ . . . . .  [* G~I. 

Note that S can be expressed in terms of Sk as shown in 
equation (8). Obviously, we can only have a performance 
requirement for an output where we have a controller. For 
this reason, define 

rip×e, Wpk . first k columns of Wp. (10) 

Likewise, define 

e x"o" of( l+Eel21e) ' - lWD. (11) WDe . first k rows 

Note that WDe includes the term (l + Ek/qk) 1 as an input 
weight to express the interactions from the undesigned loops. 

4.1. Summary  o f  procedure. Our proposed sequential 
design procedure is for step k to design a SISO controller c e 
that minimizes IIWpkSkWoelJ where S e = ( l  + GkCk) -I 
depends on ck, and WDk is evaluated using an estimate of hl 
for i -> k. At each step Se is required to be stable. The main 
steps are as follows: 
Step O. Initialization. Determine the order of loop closing by 

estimating the required bandwidth in each loop. Also 
estimate the individual loop designs in terms of their 
complementary sensitivity H = diag{h}. For this step the 
loop gain requirements given in equations (6) and (7) in 
terms of the PRGA and CLDG are very helpful. 

Step 1. Design of controller cl by considering output 1 only. 
We have Ge = (~ = diag {gli} and Hi, = H. Wm is the first 
column of Wp, and WD1 is the first row of (I + E k # ) -  1WD. 

Step k. Design of controller ck by considering outputs 1 to k. 
Here Gk = diag {Gk, gii}; i = k + 1 , . . . ,  n. We use /~/k = 
diag{Hk 1,hi}; i = k  . . . . .  n, where Hk-1 is the com- 
plementary sensitivity function for the k -  1 loops that 
have been designed and/~i is the estimate from Step 0 for 
the loops that are yet to be designed. 

Step n. Design of the last controller c,,. This is done by 
considering the overall problem in (9). 
4.2, Remarks and discussion 

1. The design procedure may be generalized to cases 
where performance is defined in terms of closed-loop 
transfer functions other than S. 

2. One objective with our procedure is that the use of the 
input weight WDk (using the estimate of/~i for i -> k) 
should reduce the need for iteration (redesigning 
loops), and this has indeed been confirmed by 
examples. 

3. A choice has to be made as to what design method 
should be used for design of the SISO controllers. 
Alternatives are synthesis (with no restriction on the 
controller parametrization) and parametric optimiza- 
tion (with fixed controller parametrization). If we use 
an optimal design method, like H2- or H~-synthesis, 
then the order of the controller ck will increase for 
each step k. The reason is that for 112- and H~-control, 
the order of the optimal controller equals the order of 
the plant including weights, and this order doubles for 
each step (this argument is used by Sandell et aL 
(1978) to justify that the optimal decentralized 
controller is infinite order since, in general, iteration is 
needed to find the optimal controller). We, therefore, 
prefer parameter optimization which yields simple 
low-order controllers, e.g. a PID-controller. The main 
disadvantage is that the achievable control quality 
depends on the controller parametrization. 

4. With the possible exception of Step 0, the procedure is 
easily automated. One problem is that the parameter 
optimization, even though we consider only one 
controller at a time, is difficult and time-consuming. 
Typically, multiple local solutions may exist, and there 
is a need for research to find parametrizations where 
these problems are avoided. 

5. With the exception of Step n, we propose to use the 
initial estimate of hk to evaluate H a (and WDk ) during 
the design of c e, that is, we use Hk =diag{Hk 1,hi} 
rather than He =diag{Hk,/~}. This is not strictly 
necessary, but it simplifies the problem set-up since He 
is then independent of ce. 

6. The limited degree of failure tolerance mentioned in 
Section 2 is guaranteed since Sk is required to be stable 
at each step in the design. 

7. Because of this additional requirement that the system 
is stable after closing each loop, it is not possible, in 
general, to obtain the optimal decentralized controller 
by sequential design. However, for the examples we 
have studied, our procedure achieved a control quality 
almost equivalent to that achieved using parameter 
optimization for all loops simultaneously. 

8. Although our design procedure is new, the idea of 
using a simplified estimate of the effect of closing the 
other loops is not new. For example, Balchen and 
Mumm6 (1988, Appendix C) derive an estimate for 
the transfer function in loop k using an estimate of /~  
for the other loops, and use this to find pairings. 

9. It is easier to estimate the complementary sensitivity 
function for the individual loops than to estimate the 
controller in the individual loops. This holds especially 
at low frequency, where control is almost perfect, and 
we know that h i ~ 1. 

10. In the example we use an H~ performance objective, 

II w p s w t ,  ll = II wesw~,kb. 

= sup ~-(WpSWD). (12) 

In the example we also include model uncertainty, and 
to satisfy robust performance (RP) the requirement 
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IIWpSWD[i~<l should be satisfied Ior all possible 
values of S allowed for by the uncertainty description. 
With H~-bounded model uncertainty this may bc 
reformulated as an equivalent structured singular 
value test. For example, for the case with multiplica- 
rive input uncertainty (see Fig. 2) we get the robust 
performance condition (e.g. Skogestad and Morari, 
1989) 

[ W, CSG w, cswo] < 
~aL WpSG W~SWD J I, v,,~. (t3) 

where /z is the structured singular value (Doyle et al., 
1982) and &-d iag{2h ,  Ap}. A l is a diagonal matrix 
representing the input uncertainty, and Ap is a full 
matrix representing the performance requirement.  Our 
sequential design procedure is then for step k to design 
a S1SO controller that minimizes 

[W,,C~S,G~ W,~C,S, WD~ 1 (14) 
I~*L Wp, S ,G,  Wp, S, WD, J' 

with A k -diag{Ajk,  Ap}. Here Alk a diagonal k × k 
matrix and A e is a full no  × n p  matrix. 

5. Example 
We shall here consider an example from Chiu (1991). The 

plant is given by 

0.66 -0.61 -0.005 
[ 6.7~-~+ 1 8.4s + 1 9.06~, + 1 
[ 1.11 -2.36 -0.01 (15) 

G(s) = [ ~ - I  5s + I 7.09s + 1 
| -34.7 46.2 0.87(11.61s + 1) 

L 8 . 1 5 s + l  lO.9s+l  ( 3 . 8 9 s + l ) ( 1 8 . S s + l )  

The outputs are assumed to be scaled correctly with 
respect to each other. We immediately note the strong 
one-way interaction in the system represented by the large 
off-diagonal elements in row three. In Chiu (1991) only 
robust stability is considered, with independent,  multiplica- 
tive input uncertainty (see Fig. 2) with uncertainty weight 

5 s+  1 
W ~ ( s ) = O . 1 3 ~ L  This uncertainty weight reflects a 

steady state gain uncertainty of 13% and a maximum 
neglected time delay of 0.5 rain. We add the performance 
requirement ~(WpS)< 1, Vw, which should be satisfied for 
all possible plants allowed by the input uncertainty. We 
choose the performance weights 

W D = 1; Wp = wpl; Wp(S) = 0.4 rds + 1 (16) 
rcl 

The objective is to make the system as fast as possible in a 
robust sense, by minimizing r~ in the performance weight 
subject to / tap(M ) <  1 (/X~e meaning /z for robust 
performance),  where M is as given in equation (13). 

We follow Chiu (1991) and choose to pair on the diagonal 
elements of G. We first want to estimate the required 
bandwidth, roB,, in each loop. 

The P R G A  for this example is shown in Fig. 3 (solid lines), 
together with the uncertainty weight (dashed lines). PRGA 
elements larger than 1 imply interactions, and the figure 
shows that there is, as expected, severe interaction from 
loops 1 and 2 into loop 3. The loop gain in loop 3 must 
consequently be high at the frequencies where the feedback 
in loops 1 and 2 are effective to reject the 'disturbances'  
entering from loops 1 and 2. This means that the bandwidth 
in loop 3 has to be higher than the bandwidth in loops 1 and 
2. 

The bandwidth in loop 3 will be limited by the time delay 

' I I 

L , - 

. . . . . . . . .  ! 

FIG. 2. Multiplicative input uncertainty. 

of 0.5 min allowed by the input uncertainty. We therefore 
estimate wal3 = 1 [rad/min], which is slightly below the 
frequency where the input uncertainty weight, IW d, crosses 
o n e .  

Next consider the 'disturbance" from loop 1 into loop 3, as 
expressed by the PRGA element Y3~. We have y3~ ~ 50 for 
frequencies lower than approximately 0.1 [rad/min]. Thus, at 
the bandwidth frequency for loop 1, tOBy, we must from 
equation (6) require ]g33c3(jwBi)l > 731(jwB0 = 50. If 1g33c3l 
has a slope of - p  on the log-log Bode magnitude plot, this 
yields (OJaZ/WBIY' > 1731(jwm)l. For p = 2 (i.e. 
40dB_B_.~_ecade) and WB2=I [rad/min] we get wB~- 
1/V1"/311 = 1/7.1 [rad/min] (7.1 min is then the best response 
time we can have for loop 1, since in practice the slope for 
loop 2 will be less than -2 ) .  A similar discussion applies for 
the interaction from loop 2 into loop 3. We have lY321 ~- I0 at 
low frequencies, and if we assume that loop 3 has a slope - 2 
in the frequency region between ¢oB~ and wB2 (which indeed 
turns out to be correct for our design), then for the 
interactions of loop I and loop 2 into loop 3 to bc of equal 
significance, we get wBzlwBt = \/'W3~II[v32F ~2.2,  which is 
used in the following. 

From the above discussion the controller parametrization 
is chosen to allow a high roll-off 

"/is + 1 T e s + l  
ci(s) = k (17} 

7"is 10T~s+l" 

Note that this is not a PID controller since the pole in the 
last term is at a lower frequency (s = 0.1/T2) than the zero. 

We have now obtained sufficient information to proceed 
with our design procedure. 
Step O. From the above discussion we conclude that the 

order of loop closing should be: loop 3 (fastest), loop 2, 
loop 1. The initial estimates for the complementary 
sensitivity functions for the individual loops are chosen to 
be second order of the form 

f i , ( s )  - 1 2. (18) 
-~1 

As estimates of the loop bandwidths win, wa2 and wa3, we 
select based on the above discussion the following: 
1. loop 3 is the fastest and we estimate WB3 = 1 [rad/min]; 
2. ~oB2/~oa~ ~ 2.2; 
3. ~o m = 1/~d where %~ is minimized at each step such that 

~ = 1. This choice follows since loop 1 is the slowest 
loop, and has little interactions from the other  loops. 
Thus the response of this loop by itself will determine 
the performance of the overall system. 

Step 1. Controller design for loop 3. WD~ is the third row of 
( I +  Ek/4k) 1, and there is one 1 × 1 perturbation block 
for the input uncertainty, and one 3 × 1 perturbation block 
for the performance specification. Iterating on zd (and 
changing tom and ~OB2 correspondingly, as explained 
above) we obtain Ix = 1.(1 for r~l =8.5(rain) ,  and the 
corresponding controller is 

4,70s + I 4.01s + 1 
c3(s ) = 84.9 4.70s 40.1s + 1 (19) 

Step 2. Loop 2. In /)k we replace the estimate of/~3 by the 
actual design for loop 3. WD2 is the second and third row of 
(I + Ek/2/k) 1. There is one diagonal perturbation block of 
dimension 2 x 2  for the input uncertainty, and a 3 x  2 
perturbation block for performance. # = 1.0 is obtained 
for rd = 11 (rain), with 

1.32s + 1 0.186s + 1 
c2(s ) = -0.079 1 . 3 ~  1.86s + 1 ' (20) 

Step 3. Loop 1. Now all loops are included and we consider 
the overall design problem with a diagonal 3 ×3  
perturbation block for the input uncertainty and a full 
3 × 3  perturbation block for performance. # : 1.0 is 
obtained for % = 18 (min) with 

0.385s + 1 0.898s + 1 
cl(s) 0.94 0.385s 8.98s + 1 " (21) 
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Note that r d, which was obtained in the last step, is the 
value of r~ which will apply to all outputs in the overall 
problem. In comparison, the best decentralized controller 
found using simultaneous parametric optimization with the 
same controller parametrization in equation (17) gave /x : 1 
for zd = 16 (min). This demonstrates that there is little to be 
gained by iterating on the design. 

The final complementary sensitivity functions (solid lines) 
for the individual loops, hg are shown in Fig. 4, together with 
the estimates (dashed lines) used in Step 1 of the design. 
These differ considerably, and this illustrates that the design 
method does not require very accurate a priori estimates of 

In Fig. 5(a) we show the response to a unit setpoint change 
in output 1 (the most ditficult direction). The interactions are 
pronounced,  but acceptable. As seen from the dashed lines 
the responses are insensitive to adding 0.5 min time delay in 
all channels. 

5.1. Comparision with conventional design. For this 
example, conventional sequential design, e.g. based on 
Ziegler-Nichols tunings, will yield unacceptable designs, 
because conventional sequential design only considers one 

output at a time. Thus, there is no incentive tor restricting 
the bandwidths of loops 1 and 2 in order to avoid interactions 
into loop 3. This is seen from the simulations in Fig. 5(b) 
where we use the BLT PI-tunings of Luyben (1986) (Table 
i), which are based on detuning the Ziegler-Nichols tunings 
by a common factor for all loops. 

Note that although the BLT PI controller is found to 
perform poorly on this example, there does exist a 
decentralized PI controller with almost as good a robust 
performance as the controller obtained using the proposed 
sequential design procedure. For r~ = 18 (min) we obtained 
by simultaneous parameter  optimization PI-tunings (0.032, 
0.26min; 0.044, 1,01min: 9.30, 2.36min} which gave 
~U, Rp 1.08. 

5.2. Other examples. In the thesis by Hovd (1992) our 
sequential design procedure is applied to the open-loop 
unstable 3 × 3 polypropylene reactor example presented by 
Lie and Balchen (1992). In the example, disturbances are 
important and the CLDG is used to estimate the loop gain 
requirements. The example has no multivariable RHP zeros, 
but presence of RHP zeros in the individual element makes it 
necessary to design the fastest loop last. We find also for this 
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FIG. 5. Responses with decentralized control. (a) Sequential design. (b) BLT-detuned Ziegler-Nichols 
Pl-tunings (note scale on y-axis). Solid: nominal responses. Dashed: 0.5 rain time delay on inputs. 
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TABLE 1. ZIEGLER-NICHOLS PI TUNING 
FOR EXAMPLE (FOR THE LOOPS TUNED 
INDEPENDENTLY). THE BLT PI 
CONTROLLER HAS GAIN kff f  AND 

INTEGRAL TIME CONSTANT T~f 

Loop kl Ti 

1 14.75 1.65 
2 -3.11 1.64 
3 10.71 1.63 

BLT detuning factor: f = 2.23 

example that our sequential design procedure yields results 
which are only marginally different to those obtained by 
simultaneous design of all controllers. 

6. Conclusion 
We propose a new sequential design procedure that 

involves minimizing the performance criterion at each design 
step. The key basis for our design procedure is the 
factorization of the overall system in terms of the individual 
designs (equations (8)), and the use of estimates for the 
complementary sensitivity functions (/~i) of the loops that are 
yet to be designed. By use of equations (6) and (7), which 
use the PRGA and CLDG to quantify the interactions for 
setpoint tracking and disturbance rejection, we are able to 
obtain good initial estimates of the required loop gains 
(giici), and thus estimate the required bandwidth in each loop 
(tOBi), which in turn is used to estimate hi (e.g. see equation 
(18)). 
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