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Robust control of time-delay systems using the Smith predictor

Notation
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In this paper we study the robust performance of time-delay systems using the
structured singular value (g). By employing the properties of the Smith
predictor, we are able to convert it to a delay-free problem. This not only
simplifies the analysis and design but also avoids the problem of the rational
time-delay approximation, which is usually needed. A SISO design example is
given.
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1. Introduction

The dynamic behaviour of many industrial processes contains inherent
time-delays (dead times). Processes with time-delays are inherently difficult to
control, i.e. it is difficult to achieve satisfactory performance. The reason is that
time-delays limit the achievable bandwidth and the use of high gain feedback.
Time-delays also make the design problem more difficult since the presence of a
time-delay complicates the analytical and computational aspects of system
design. Moreover, some advanced analysis and design methods are incapable of
dealing directly with time-delay systems.

A standard feedback control system is shown in Fig. 1, where G, represents
the true (‘perturbed’) plant with uncertainty and K is the controller. Smith
(1957, 1959) proposed a control scheme for time-delay systems, shown in Fig.
2 (a), in which there is an additional feedback loop, called the Smith predictor,
around the ‘primary’ controller Ky. Here G represents the nominal plant and
Gy the model without time delay. The idea is that this feedback loop predicts
the response that would have been made without a delay. In the case of perfect
model (G = G,), the Smith predictor minimizes (but not eliminates) the
detrimental effect of the time-delay. Palmor (1982) showed that the Smith
predictor is an inherent result when minimum variance control is applied for
time delay processes. Morari and Zafiriou (1989) related the Smith predictor
structure to the IMC structure. The Smith predictor has been extended to
multivariable systems with single delay (Alevisakis and Seborg 1973) and with
multiple delays (Ogunnaike and Ray 1979).

Marshall (1979) and Palmor and Shinnar (1981), as well as many others,
noted that a Smith predictor controller may be very sensitive to model-plant
mismatch. The structured singular value (¢} was introduced by Doyle (1982) to
analyse the robust stability of multivariable feedback systems with structured
uncertainty. It is also used for the robust performance problem since the latter
can be transformed to an equivalent robust stability problem with structured
perturbations. y is a worst-case measure, so it provides reliable results. In this
paper we will address the problem of the robust performance of the Smith
predictor controllers using the structured singular value as our analysis and
design tool.

A few authors have worked on robust control of time-delay systems, e.g.
Laughlin ef al. (1987) who systematically studied the robust performance of the
SISO Smith predictor within the IMC structure using several design methods. In
the present paper, however, we employ the properties of the Smith predictor
and develop a delay-free design method. One well-known advantage of the
Smith predictor control structure is that it makes the ‘primary’ controller design
problem delay-free if we consider only nominal performance.

In §2, we give an introduction to p-analysis and synthesis. The main results
are presented in §3. In § 4, we illustrate our design method by a SISO design

ld
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Figure 1. Standard feedback system.
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Figure2. (a) Smith predictor control structure; (b) rearranged Smith predictor; (c) MC
structure.

example which was also studied by Laughlin er al. (1987). Results are compared
and discussed.

2. Review of y-analysis and synthesis for robust performance

Let us first review some results for the standard feedback system shown in
Fig. 1. Robust performance means that the performance objectives are achieved
for all possible plants. In the y-analysis the set of all possible plants G(s) is
specified by a nominal plant model G(s) and a normalized perturbation block A
with magnitude {w(jw)| (we assume a scalar ‘weight’ w(s)). We shall consider
uncertainty to be multiplicative or additive. The uncertainty may also have
‘structure’, and in this case the specific structure of A should be given.
Performance requirements are put on sensitivity matrix S = (I + GK Y71, ie. the
transfer matrix from disturbance d or command r to control error e. A small
sensitivity matrix corresponds to a small control error.

In order to achieve robust performance we also need nominal stability,
robust stability and nominal performance.

Nominal stability (NS)
The feedback system shown in Fig. 1 should be internally stable.
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Robust stability (RS)

If nominal stability holds for the standard feedback system, then (Doyle et
al. 1982)

(1) robust stability will be guaranteed for additive uncertainty,
Gp = G+ waA,, of magnitude w,(s) if and only if

tia,(WaK(I + GK)™Y) = pa, (waKS) <1, Vo (1)

(2) robust stability will be guaranteed for input multiplicative uncertainty,
Gp = G(I + wiA}), of magnitude wi(s) if and only if

pa(wiK(I + GK)7'G) = up (wKSG) < 1, Vo )

(3) robust stability will be guaranteed for output multiplicative uncertainty,
Gp = (I + woA,)G, of magnitude wy(s) if and only if

#a (WoGK(I + GK)™1) = pup (W,GKS) <1, Vo (3)

where Au, A; and A, denote uncertainty structures. The weights may easily be

generalized to be matrix-valued although we have assumed scalar uncertainty
weights.

Nominal performance (NP)

Nominal performance is here defined in terms of the weighted nominal
sensitivity matrix S = (7 + GK)~!. We have

NP « &(wp(I + GK)™ 1) <1, Vo (4)

where wp is the performance weight. The inverse of wp(w) represents the
required performance bound of 5(S) at each frequency.

Robust performance (RP)
The robust performance requirement can be expressed as
RP <« &(wp(l + GK)™) <1, Vo VG, (5)

Equation (5) is difficult to test. An equivalent but computationally more useful
alternative to (5) is the following u~condition (Doyle ef al. 1982)

RP < us(N) <1, Yo {6)
or equivalently
RP <« ugp = sup pp(N) < 1 (7)
(]
here A is the block structure including the true uncertainty structure and the
ficticious uncertainty from the performance block.

(1) In the case of additive uncertainty N is given by

_| —waKS ~waKS |
NA—[ wpS wpS | ®)

(2) In the case of input multiplicative uncertainty

| -wKkSG  —wKS]
Nl _|i WPSG WPS | (9)
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(3) In the case of output multiplicative uncertainty

N, = [ WPSSSKS WPESSKS] (10)

From the above definition of N, we see in each case
RS« u(Njp) <1, Vo {11)
NP = u(Ny) = d(Np) <1, Vo (12)

Since @(Ny;) and u(No,) are always less or equal to u(N), RP will automatically
guarantee RS and NP. p provides a useful tool for robustness analysis. It can
also be used for robustness synthesis by minimizing urp to obtain the ‘p-optimal’
controlier.

w-optimal controller

The D—-K iteration is a combination of g-analysis and H o-synthesis, and is
supposed to give approximately the p-optimal controller (Doyle 1982). The
objective is to solve

min | DN(K)D ™| (13)
K.D

by iteratively solving for K and D: for fixed D, we obtain the H .-optimal
controller. For fixed K, we compute p(N(K)) and get the optimal D-scaling.
The software used in this paper is the p-toolbox for MATLAB developed by
Balas ef al. {1991).

Direct application of u to time delay systems

The above u analysis and synthesis procedures also apply to plants with time
delays. However, in order to synthesize the p-optimal controller, we need to
approximate the time delay by a rational transfer function, because the H.
synthesis software we use cannot deal with irrational terms. We will show in the
design example, that this rational time-delay approximation may cause serious
performance deterioration. Therefore, we will, in this paper, use the Smith
predictor structure where p can be used in a much simpler way. In the
p-analysis, it is not necessary to approximate the time delay.

3. Robust performance of time-delay systems using the Smith predictor

In Fig. 2(a), Gp(s) = {gze~ "} is the actual plant, G(s) = {gye %"} is the
nominal model, and Go(s) = {g;} is the delay-free part of G. The overall
controller K(s) includes the ‘primary’ controller Kq(s) for the delay-free system
and the Smith predictor as shown in Fig. 2 (2). We have

K(s) = Ko(I + (Go — G)Ko)™* (14
We also introduce the delay-free sensitivity matrix
So = (I + GoKo)™ (15)

(The corresponding delay-free system is here defined as the feedback control
system consisting of Gy and the ‘primary’ controller Xy.)
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Nominal stability (NS)

The time delay control system with the Smith predictor shown in Fig. 2 (a)
should be (internally) stable.

To consider stability, we rearrange the Smith predictor as shown in Fig.
2 (b). This is equivalent to the IMC-structure of Morari shown in Fig. 2 {c), and
we see that the Smith predictor and the IMC control are equivalent when
Q0 = Ko(I + GoK()™'. Hence we have nominal stability of the time-delayed
control systems if and only if both Q and G are stable, i.e. the corresponding
delay-free control system and the plant G must be stable,

Conclusion: Since the Smith predictor can only be applied for stable plants, the
nominal stability of the closed loop feedback system shown in Fig. 2 (a) is
equivalent to the nominal stability of the corresponding delay-free control
system. Q

Robust stability (RS)

The following robust stability results are obtained from (1)-(3) by noting
that (see Fig. 2)

Q=K+ GK)™! = Ko{I + GoKy)t {16)
If nominal stability holds, then

(1) robust stability will be guaranteed for additive uncertainty bounded by
wa(s) if and only if

.uAA(WAKOSO) <1, Yw (17)

(2) robust stability will be guaranteed for input multiplicative uncertainty
bounded by wi(s) if and only if

ta(wiKoSpG) <1, Vo (18)

If we assume G = GoD, D = diag{e~%}, i.e. the time delays are on the
inputs only, then (18} is equivalent to

‘LLAI(W;KOSQG(_,) <1, Ve (19}

(3) robust stability will be guaranteed for output multiplicative uncertainty
bounded by wy(s) if and only if

pa,(woGKSg) <1, VYu (20)
If, similarly, we assume G = DGy, D = diag {¢~%°}, i.e. the time delays
are on the ousput only, then (20) is equivalent to

#a(woGoKoSp) <1, Vo (21)

Note that (17), (19) and (21) are conditions on the delay-free systems only.
(19) and (21) follow from the following property of u since D is a unitary
matrix.

Lemma (Doyle 1982): If U is a unitary matrix and has the same block structure
as A, then

Ha(UM) = pp(M) = pa(MU) (22)
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Note that (19) and (21) hold for both the cases when the uncertainiy is
unstructured (A is a full matrix) and structured (A is a block-diagonal matrix).
This follows since the structure of D is contained in the structure of A in both
cases.

Conclusion: When the Smith predictor is used, it is interesting to note that not
only is the nominal stability of the time-delay control system exactly equivalent
to that of the corresponding delay-free control system, but also the robust
stability conditions (17), (19) and (21) are the same as those of the delay-free
system. O

Nominal performance (NFP)
As defined before

NP < F(wpS) <1, Yo (23)

However, we want to obtain a delay-free design procedure. We then have to
define performance in terms of the corresponding delay-free system

NP, < 6(wppSo) <1, Vaw (24)

Here the subscript 0 in wpp is used to show explicitly this weight is on the delay
free sensitivity function.

Of course, NP is our real objective, and we will try to achieve this by
satisfying NPy. We need to obtain a reasonable weight wpg. Ideally we want to
select wpy such that NP and NPg are equivalent, that is such that G(wpoSo) =
5(wpS). However, this is not possible before we start the design, because Sy
and § are unknown at this point. Intuitively we expect that we must use tighter
performance specifications on Sy than on S, that is, wpy must be larger in
magnitude than wp. This is confirmed by considering the following identity

S=1-GK(+GK)™ =1I—- GGl ~ 8 =(I - GG5") + GGg'Sy
(25}
We want § small. The first term in the right side of (25) is an unavoidable error,
and the second term is a ‘delayed’ error of the delay-free system. We can affect
this second term by selecting Ky, and in the limiting case, without model
uncertainty, we may even approach perfect control (Sy = 0).

For the case with time-delays on the plant outputs only we have G = DG,
where D = diag{¢~%} and GG, = D. It then follows that

S=(—-D)+ DS (26)
and
|6(S) — 5(Sp)} < 6(I — D) (27)

Here 8(I — D) = {1 — e71%®| where 8 is the largest time-delay in the output
channels. This term is approximately |6,s| at low frequencies, reaches 1 at
w=1/6,,, and oscillates between 0 and 2 at high frequencies. It then follows for
the case of output time-delays, that the difference between &(S) and 3(So) is
relatively small. Hence, specifying NPy is a reasonable and often simpler
alternlative. Obviously this always holds for SISO systems where we have
GGy =D =¢e™",
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For the general MIMO case (i.e. the time-delays may not be on the output}),
we can still try to specify performance in terms of NPy. From (25) we have

6(S) = &(I — GGg') + 6(GG'Sp) < 6(1 — GGyY) + 5(GGFH(S,) (28)
By choosing
lweol = (jwp'| - 51 — GG")/5(GGY (29)

NP will be guaranteed if NPy is satisfied. Note that: (1) this does not mean that
we choose wpg such that [wpS| = |wpeSol; (2) we may have to modify wpi at
high frequencies since we must have |wpy|=1 at high frequencies for real
systems; (3) with this weight NPy is only a sufficient condition for NP, and it
may result in a too tight performance weight if 3(GGy") is large (3> 1). The
conservativeness comes primarily from the second inequality in (28).

Robust performance (RP)
Robust performance is defined as

RP < 5’(11"pSp) < 1, VCU, VAA, A{ or AO (30)

The corresponding p-tests in terms of the system with time-delay are given in
(6)-(10).

For the same reason as mentioned for nominal performance, we would like
to have p-tests on the delay-free system which guarantee RP. One approach is
first to consider RP of the delay-free system

RPQ - 6(WPUSp0) < 1, V(I), VAA, A] or Ao (31)
We get the following equivalent p-condition
RPg <> pigp, = sup ua(Ng) <1 (32)
W

where Ny is the same as N in (8)—(10) except that all K and G should be
replaced by K¢ and Gy. Detailed expressions for Sps Spo and their relationship
are given in Appendix A. For example, we have for additive uncertainty

Sp = (I = GGI"WI + waAsKo(I + GoKp) ™)™t + GG;'Spw  (33)

This is the same as (25) except that the first term on the right-hand side is
changed with a factor (1 + waA s Ko(I + GgK )™)Y~ By choosing

[wed| < (wr'| = 8 ~ GGy sup 5((I + wada Kol + GoKo) ™) ™))/a(GGyY)

(34)

RP will be guaranteed if RPy is satisfied. Comparing (34) with (29), we see that
it requires tighter performance weight wpq to satisfy RP than to satisfy NP, since
S((I + waAsKo(I + GoKo)™")"! is always larger than 1. Although this term
involves the controller Ky, it is generally independent of K at low frequencies
where K,8q= Gy !, such that we are able to obtain wpy before starting the
design. If the additional term G((I + waA 4 K(Sp) 1) is not too large (relative to
1), or equivalently if o(I + waA 4 K;Sg) is not too small (relative to 1), then the
weight wpy for RP will not be much different from that for NP. The term
o((I + waAaKSp) ™) is indeed close to 1 for SISO systems with a reasonable
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margin to RS, but it may be very large for some MIMO systems, particularly
when A is structured. However, for most MIMO systems our design approach in
terms of RP is expected to work well.

Similar results exist for input maultiplicative uncertainty with input time-
delays and output multiplicative uncertainty with output delays (see Appendix
A). For example, for the case with input multiplicative uncertainty and input
time-delays, the equivalent condition to (34) is

weol <
(wp'| = 8 = GGi™) sup 5((1 + witiGoKo(I + GoKo) ™) ™))/5(GGy)
1
(35)

Robustness of the Smith predictor controller

For SISO systems, the NS and RS conditions of the time-delay systems with
the Smith predictor controller are exactly the same as those of a corresponding
delay-free system; the differences between NP and NPy, and between RP and
RPy are small; so we would expect the same robustness. However, it is
commonly accepted that the Smith predictor controller may lead to poor
robustness. Possible explanations are the following.

(1) Although the conditions are the same, the uncertainty weights w4(s),
wy(s) and wy(s) are generally larger for time-delay systems because the
time delay itself is uncertain.

(2) In design as well as implementation analysis, time delays are often
approximated by rational transfer functions. This introduces additional
uncertainty. Indeed, we have found that time-delay systems may be very
sensitive to this approximation error.

(3) The use of a Smith predictor enables the use of a high gain controller.
Hence, we may use too high a gain if we consider only nominal
performance.

4. Design example
We consider an SISO example from Laughlin ef al. (1987). The plant model
is a first-order process with time delay:

k —6s k
G(S):rs-i-le " GO(S)Ets+1

The nominal values of %, = and 6 are all equal to 1. We use the same
multiplicative uncertainty weight as given by Laughlin ez al.:

s+ 1 41+ 0255
L5 (O-Ss + 1)(1 ~ 0-255) -1 S

(36)

which is derived from a simultaneous 50% parameter uncertainty in k, 7 and 8.
This weight is unstable and we multiply it by an all-pass to get the following
equivalent weight:

452 + 135 + 4

38
s+ 65+ 8 (38)

wi(s) =
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The performance weight on the sensitivity function § is
1 Tps + 1 _ 133975 + 1

RS = G T T3 3307 (39)
The RP-condition (7) becomes for this special case
prp = sup (|wpS| + |wiGKS|) < 1 (40)
(]

and the objective of the controller design is to minimize ygp.
Performance weight for delay-free system. From (35) we get that the correspond-
ing performance weight for the delay-free system must satisfy
whol = (Iwi'| = |1 = e™*|o) (1
where
o =sup 5({/ + wiA1GoKoSo) ) (42)
1

Note that if we were to satisfy NP then o = 1. For RP the exact value of « is
difficult to evaluate. However, at low frequencies GoK Sy = I so

w=(1-|w)t=2 (43)
and |1 — e77%¢| = G so condition (41) reduces to
lweo| = [wp'| ~ 260 (44)

where 8 = 1 in our case. At high frequencies the upper bound on |wgg| given by
condition (41) is smaller than one, which is meaningless. We thus disregard this
bound and instead select some reasonable value no less than M = 2. We assume
that wpg(s) is of the following form:

1 Tpof +1

W =
rols) = 37

(45)
and choose as a ‘reasonable’ value M, = 1-5. To make the inequality (44) hold
exactly at low frequencies, we get tpy = 3-196 and hence

1 319s + 1

wrol) = 77573 706s

The performance weights wp', wpy and the uncertainty weight |wi| are shown
in Fig. 3.

(46)

Smith predictor design for Mp=1-5

We now design a p-optimal Smith-predictor controller based on the delay
free plant. Using DK-iteration, we obtain a six-order ‘w-optimal primary
controller’, Kg,, for the delay-free plant Gg=1/(s + 1) using the uncertainty
weight wy (38), and the performance weight wpy (46). The corresponding u-plot
is very flat at all frequencies (confirming that the DK-iteration has converged)
with a peak value of ugp, =1-0557. We then apply this controller in a Smith
predictor scheme to get the ‘real’ controller K = Ky(I + (G — G)Ky)™}. The
corresponding real and delay-free sensitivity functions for the nominal case, S
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and S, are shown in Fig. 4. When we analyse for robust performance of the

real system with delay using wp (38) we obtain a peak value ugp = 1-0802.

Improved design by adjusting My

Note that with our simple performance weight, wp;, we still have one degree
of freedom, Mg, which can be used to adjust the high frequency performance.
Above, we selected more or less arbitrarily My = 1-5. In the Table, we show
results with different values of M. For each (M, tpy) pair, the performance
weight wpq is the same at low frequencies, but it becomes tighter and thus more
difficult to satisfy at high frequencies as M, decreases. Hence pugp, increases
monotonically as Mg decreases, while upp initially decreases before it starts
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Figure 4. Sensitivity functions § and Sp.
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Mg Tpo Hrp, URP
2-00 2:397 0-9727 1-1620
1-70 2:820 1-0142 11114
1-50 3196 1-0557 1-0802
1-45 3.306 1-0686 1-0703
1-40 3-424 1-0823 1-0593
1-35 3351 1-0979 1-0639
1-30 3-688 1-1157 1-G816

Effect of Mg on controller design.

increasing. In our example, the lowest value is ugp = 1-0593, which is obtained
for My = 1-4. The corresponding ‘g-optimal primary controller’ can be reduced
from order six to order five without affecting prp, and pgp. The state space
realization of this reduced controller, denoted Ky, is given in Appendix B. The
corresponding u-plot when applied to the original problem using a Smith
predictor is given by the dashed line in Fig. 5. We see that the p-curve is flat,
just above one at low frequencies, and drops off at higher frequencies.

Other designs

(a) Smith predictor. Laughlin et al. (1987) used a Smith predictor with K as
a simple Pl-controller, and obtained by parameter optimization a controller with
prp = 1-122. Note that Laughlin et al. minimized pgp for the real system with
time delay, while we minimize pgp, for the delay-free system.

(b) u-Optimal controller. The p-optimal controller is the controller that
minimizes prp. Laughlin e al. obtained a w-optimal controller with upp about
1-08 (observed from their plot), but using newer software (Balas et al., 1991),
we were able to get a 14th-order p-optimal controller, K, with ugp = 1-0525.

13 B i e o L LA I o o 2 e

121

L1} {

091
08} “
07f
------- Smith predictor with K \
06 Ky, using Padé approximation E
———— K using time delfay .
05 PPN T T R AW T TSN S A ST Lealtbion PRI oo i3
102 107 e 103 102 103 I04 (rad min-1}

Figure 5. pgp curves with |wp| on sensitivity function §.
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(¢) Comparison. We note that our Smith predictor design with Mgy =1-4
yields a value pgp = 1-0593 which is only 0-6% higher than for the p-optimal
controller. Responses for the two controllers are compared in Fig. 6 for (a) the
nominal plant, and (b) one perturbed plant (which is the worst case among the
extreme parameter values). We see that in the nominal case the responses are
very similar, while in the perturbed case the Smith-predictor controller yields
slightly less overshoot.

The problem with rational time-delay approximation

In order to synthesize the y-optimal controller, one needs to approximate the
time-delay by a rational function. Laughlin et al. (1987) used a fourth-order

08

04

—— Smith predictor with Kg;

-0.2
0

08

04

0.2
0

(b)

Figure 6. Response (o unit step disturbance at the output: (4) nominal case with
k=1t=8=1; (b) Perturbed case with k=7=8=1-5.
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Padé approximation, and so did we. Generally, one would believe that a
fourth-order Padé approximation should be sufficiently accurate, but this ap-
pears not to be true. Figure 5 also shows the p-plots with the w-optimal
controller, K, applied to a plant with the Padé approximation and with the real
time-delay, respectively. In the latter case, the u-plot is seen to contain several
large peaks, whose locations are identical with the peaks of Padé approximation
error. The bandwidth of our system is about 0-2, while the fourth Padé
approximation is quite accurate for frequencies less than 5. Hence one may
think that it is sufficiently accurate. However, if we consider the p-plot, we find
that u for robust performance is very flat up to a frequency of about 100; this
requires the approximation to be good at least up to frequency 100. This means
that the robust performance problem may put a much more severe restriction on
the approximation of the time-delay. To overcome this, one may add a filter to
the p-optimal controller or combine the approximation error explicitly into the
model uncertainty. One simple method is to let the uncertainty weight approach
infinity at high frequency (whereas wi(s) levels off at 4). Since the method
proposed in this paper is completely delay-free, it does not suffer from those
problems. This is another advantage of our method.

5. Conclusions

In this paper we have used the Smith predictor structure to convert the
robust performance problem of a time delay system into a delay-free problem.
This not only makes the analysis and synthesis easier but also avoids the
problem resulting from rational approximation of time-delays. Rational approxi-
mation of time-delays may sometimes cause problems even if we think that we
have used a very good approximation. The design example shows that our
delay-free approach works well at least for SISO systems, and we were able to
obtain a less complex controller with the same performance as the true
p-optimal controller.
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Appendix A
Relationships between S, and Sy

The perturbed (actual) sensitivity function for the time-delay system with the
Smith predictor controller is

S =+ G,K)!
=S(I + (G, — G)K(I + GK)™)™!
= S(I + (G, — GYKo(I + GgKg)™1)!
= S(I + waA Kol + GoKg)™)7!
= S(I + wiGAK (I + GoKg) !
= S + weAoGKo(I + GoKg)~H)™? (47)
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The perturbed sensitivity function for the delay-free system is
Spg B So(I + WAAAKU(I + G{]Kg)wl)_l
= So(I + wiGoAKo(I + GoK) ™)™}

= Sy(I + wogGoKo(I + GOKU)_I)‘I {48)
It is easy to see from the expressions that we have for additive uncertainty
S, = 88580 (49)
For input multiplicative uncertainty and input delays, note
GA; = GoDA; = GoAf (50)

where D = diag e~ Hence, A has the same structure and the same bound as

A;. In this sense, (49) still holds for the case of input multiplicative uncertainty
and input delays. Similarly, (49) also holds for the case of output multiplicative
uncertainty and oufput delays.

By straightforward derivation, we can also develop the following relation-
ships between S, and Sy. For additive uncertainty

Sy = (I = GGTYI + waAnKo(I + GoKo) ™)™ + GGq'Syy  (51)
For input multiplicative uncertainty and input delays

Sp = (I — GG + wiGoAK (I + GoKo) ™)™ + GG5'Sp  (52)
For output multiplicative uncertainty and outpuf delays

S, = (I — GG YU + wohoGoKo(l + GoKo) ™)™ + GGi'Spe  (53)

Appendix B
The p-optimal primary controller for My = 1-4
The reduced fifth-order ‘u-optimal primary controller’ for My = 1-4 is

Ko = C(sI — A)'B+ D (54)
where

—2.9206 x 10-7 4:3856 x 10—+ 2-9463 x 10-%  —3-6367 x 103 2777493 x 1077

4.3856 x 10~* ~-3.2245 X 10° —1-3259 x 10° 5-4805 x 102 —4-0820
A =7 —2:9466 x 10-¢ 13259 x 10° —1-5042 x 10! 3.6225 —2-8323 x 102
3-6367 x 10~%  —5.4805 X 107 36225 —9:1324 x 102 1-3704 X 10
—2-7749 x 1077 4.0820 —2-8323 x 102 13704 x 10 —-3-1279

BT = (5.9856 x 10-! —4.4943 x 102  3.0191 -—3.7266 x 10  2.8435 x 1071)
C = (59856 x 10! —4.4943 x 102 -3.0191 3.7266 x 10 —2.8435 x 10-1)
D =1.1708 x 104
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