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Abstract

By controllability (dynamic resilience) we generally mean the best closed-loop per-
formance achievable using any controller. Since the controllability can not be altered by
change of the control algorithm, but only by design modi�cations, it follows that the term
controllability provides a link between process design and process control. In this paper
we focus on two aspects of controllability: The plants sensitivity to disturbances and the
limitations imposed by interactions when using decentralized control. We use simple tools
such as the RGA, the PRGA (Performance RGA) and the closely related Closed Loop
Disturbance Gain (CLDG). For example, if k'th column of the CLDG is large, then this
indicates that disturbance k will be di�cult to reject. This may pinpoint the need for
modifying the process. The PRGA provides a measure of interaction which also includes
one-way coupling. In the paper we apply these measures to distillation column control
and 
uid catalytic cracker (FCC) control.

1 Introduction

In engineering practice, a system is called controllable if it is possible to achieve the speci�ed
aims of the control, whatever these may be (Rosenbrock, 1970, p. 171). Unfortunately, in
standard state-space control theory the term \controllability" has a rather limited de�nition
in terms of Kalman's state controllability, which mainly has to do with realization theory. In
this paper we will use a broader de�nition:

Controllability (of a plant) is the (best) quality of the response which can be obtained for
the plant by use of feedback control.

(Admittedly, this de�nition is not very precise, since, for example, \best" is not de�ned.)
Closely related (if not identical) terms are \dynamic resilience" (Morari, 1983) and \achiev-
able performance". Our de�nition of controllability is similar to that used by Perkins (1989).
A key idea in the term \controllability" is that it is an inherent property of the plant, and is
independent of the selected controller parameters (it is assumed that the optimal tunings are
used). Of course, one may restrict the class of allowed controllers, and consider, for example,
\controllability using linear controllers" (which we do throughout this paper) or \controlla-
bility using decentralized control" (which we consider in most parts of this paper). Since
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the controllability can not be altered by change of the control algorithm, but only by design
modi�cations, it follows that the term controllability provides a link between process design
and process control. \Design modi�cations" of course include modi�cations of the process
units (eg., adding bu�er tanks, increasing the number of trays in a column), but they also
include selection of control objectives (eg., control temperature or composition), selection
of manipulated variables (eg., placing of bypass streams) and selection of measurements.
Stephanopolous (1984, p. 512) give some examples of how process modi�cations may change
the controllability. Seborg et al. (1989, p. 682) give some guidelines for the control structure
selection, that is, selection of controlled, manipulated and measured variables.

What limits controllability? Perfect control can only be achieved if the plant is invertible
(Morari, 1983). Several authors (eg., Rosenbrock, 1970) discuss the deteriorating e�ect of
Right-half plane (RHP) zeros and time delays which make it impossible to invert the plant
and retain stability of the closed-loop system. Constraints make it impossible to implement
in practice the inputs that a perfect inversion requires. Model uncertainty results in mismatch
between the model used by the controller and the actual plant. Large RGA-elements imply
sensitivity to model uncertainty for multivariable systems (Skogestad and Morari, 1987b).

In this paper we will focus on two additional aspects of controllability: The plants sensi-
tivity to disturbances and the limitations imposed by interactions when using decentralized
control. We will concentrate on simple measures which depend on the plant model only such
as the RGA, PRGA and CLDG. The advent of the computer has largely removed the need
to develop simpli�ed tools in order to save computation time. However, there is still a need
for simple tools to yield insight and to assist the engineer in prescreening the large number
of alternative control structures, and to get initial estimates of a systems controllability. For
example, the RGA is an ideal tool in this respect; it may be computed using only limited
information and one calculation is su�cient for screening a large number of alternatives.

However, there are of course limitations with such simple tools, and more powerful and
exact methods must be used after the initial screening. Such methods generally involve
performing a controller design. For example, one method is to obtain an upper bound on
performance by adjusting the performance weight such that the optimal controller satis�es
the performance objective. One speci�c approach, which also takes model uncertainty into
account, is to adjust the performance weight such that the structured singular value (mu) for
robust performance is 1 (eg., see \Approach 2" in Skogestad and Lundstr�om, 1990).

2 Some simple tools: RGA, PRGA and CLDG

Notation. Let y(s) denote the output response and let e(s) = y(s)� r(s) denote the output
error. The closed loop response to a setpoint r and a disturbance z becomes

e(s) = �S(s)r(s) + S(s)Gd(s)z(s); S = (I + GC)�1 (1)

The Laplace variable s is often omitted to simplify notation. G is assumed to be a n � n
square matrix, but Gd may be nonsquare. In most of this paper we consider decentralized
control, and the controller C(s) is diagonal with entries ci(s) (see Fig. 1). This implies that
after the variable pairing has been determined, the order of the elements in y and u has been
arranged so that the plant transfer matrix G(s) has the elements corresponding to the paired
variables on the main diagonal.

RGA. The RGA was �rst introduced by Bristol (1966) as a measure of interaction and
as a tool for pairing selection for decentralized control. However, later it has become clear
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that the RGA is a useful controllability measure also when decentralized control is not used
(eg., Skogestad and Hovd, 1990). The RGA was originally de�ned at steady-state, but
it may easily be extended to higher frequencies (Bristol, 1978). Shinskey (1967,1984) has
demonstrated practical applications of the steady-state RGA. The book by McAvoy (1983)
yields a good introduction to interactions in multivariable systems, and demonstrates the
usefulness of the frequency-dependent RGA. For n�n plants the RGA is de�ned by the ratio
of the \open-loop" and \closed-loop" gains between input j and output i

�ij(s) =
(@yi=@uj)ul6=j

(@yi=@uj)yl6=i

= gij(s)[G
�1(s)]ji (2)

Thus, a RGA matrix can be computed using the formula

�(s) = G(s)� (G�1(s))T (3)

where the � symbol denotes element by element multiplication (Hadamard or Schur prod-
uct). The RGA matrix has some interesting algebraic properties (Bristol, 1966):

a) It is scaling independent (eg., independent of units chosen for u and y). Mathemati-
cally, �(D1GD2) = �(G) where D1 and D2 are diagonal matrices.

b) All row and column sums equal one.
c) Any permutation of rows or columns in G results in the same perturbations in the

RGA.
d) If G(s) is triangular then �(G) = I .

PRGA. One inadequacy of the RGA (eg., McAvoy, 1983, p. 166) is that it, because of
property d, may indicate that interactions is no problem, but signi�cant one-way coupling
may exist. To overcome this problem we introduce the performance relative gain array
(PRGA). The PRGA-matrix is de�ned as

�(s) = ~G(s)G(s)�1 (4)

where ~G(s) is the matrix consisting of only the diagonal elements of G(s), i.e., ~G = diagfgiig.
This matrix was originally introduced at steady-state by Grosdidier (1990) in order to un-
derstand the e�ect of directions under decentralized control. The elements of � are given
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by


ij(s) = gii(s)[G
�1(s)]ij =

gii(s)

gji(s)
�ji(s) (5)

Note that the diagonal elements of RGA and PRGA are identical, but otherwise PRGA
does not have all the nice algebraic properties of the RGA. PRGA is independent of input
scaling, that is, �(GD2) = �(G), but it depends on output scaling. This is reasonable since
performance is de�ned in terms of the magnitude of the outputs. Note that PRGA = G�1

s

where Gs is obtained by input scaling of G such that all the diagonal elements are 1 (at all
frequencies).

CLDG. A closely related measure, the closed loop disturbance gain (CLDG), was recently
introduced by Skogestad and Hovd (1990). For a disturbance k and an output i, the CLDG
is de�ned by

�ik(s) = gii(s)[G(s)
�1Gd(s)]ik (6)

The reason for the name CLDG will become clear later. A matrix of CLDG's may be
computed from

� = f�ikg = ~GG�1Gd = �Gd (7)

The CLDG is scaling dependent, as it depends on the expected magnitude of disturbances
and outputs. The CLDG is closely related to the relative disturbance gain (RDG), denoted
�ik, introduced by Stanley et al. (1985). We have �ik(s) = �ik(s)gdik(s).

Note that the PRGA and CLDG have to be recomputed whenever another choice of
pairings is selected, whereas the RGA need only be rearranged in accordance with the rear-
rangement of G (because of property c).

3 Scaling

The RGA has the advantage of being scaling dependent, but for the other measures it is
crucial that the variables are scaled properly. In general, the variables should be scaled to be
within the interval -1 to 1, that is, their desired or expected magnitudes should be normalized
to be less than 1. Recommended scalings:

� Inputs (u): An uj of magnitude 1 should correspond to the allowable input signal (eg.,
the input reaching its constraint).

� Outputs (y): An ei of magnitude 1 should correspond to the largest allowed control
error.

� Disturbances (z): A zk of magnitude 1 should correspond to the largest expected dis-
turbance.

The measures depend on scaling as follows: RGA: independent of scaling; PRGA: depends
on scaling of y; Gd, CLDG and RDG: depends on scaling of z and y; Condition number and
Disturbance condition number: depends on scaling of u and y. All interpretations and
examples in this paper assume that appropriate scaling has been performed.

Comment: Note that the outputs, yi, have been scaled in terms of the allowed control
error, ei. For use of the PRGA this implicitly assumes that also the setpoint changes, ri, are
of the same magnitude as the allowed control error. If this is not the case, then one should
use the diagonal matrix Dr to scale the setpoints such that they all are of magnitude 1, and
use the matrix PRGAr = ~GG�1Dr to evaluate the performance for setpoint tracking.
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4 Performance requirements imposed by disturbances

Some plants have better \built-in" disturbance rejection capabilities than others, that is, their
controllability with respect to disturbance rejection is better. For SISO systems, the sensi-
tivity to disturbances is directly given by Gd(s). We have when we consider only disturbance
rejection (r = 0)

e(s) = y(s) = S(s)Gd(s)z(s) (8)

If we assume that scaling has been applied to Gd such that at each frequency the expected
z(j!) is less than 1 in magnitude, then the requirement to achieve e(j!) less than 1 in
magnitude is that at each frequency

jS(j!)Gd(j!)j < 1 or jS(j!)j< 1=jGd(j!)j (9)

This is a performance requirement on the sensitivity function S imposed by disturbance
rejection. If jGdj is large (larger than 1) then feedback is needed to reject this disturbance. A
plant with a small Gd is preferable (better controllability) since the need for feedback control
then is less, or alternatively, with a given feedback controller (given S) the e�ect on e of the
disturbance is less.

Example: Assume that the appropriately scaled Gd(s) = kd=(1+�ds), and assume kd > 1.
Then the required bandwidth, !B, imposed by the requirement of disturbance rejection, is
the frequency at which the asymptote of jGd(j!)j is 1. We get !B = kd=�d. We want the
required !B to be small. That is, we get the obvious result that a \large" (kd large) and
\fast" (�d small) disturbance requires a large bandwidth and is di�cult to reject.

For multivariable systems we get

e = SGdz � (GC)�1Gdz (10)

where the approximation holds at low frequencies where control is e�ective and S is small.
In this case we cannot only consider Gd, but need also consider the directions of Gd relative
to those of S or GC. These issues are discussed by Skogestad and Morari (1987a) who
introduced the disturbance condition number. There are two cases when things are relatively
simple: 1) When C(s) is diagonal (discussed in the next section on decentralized control),
2) When a perfect decoupler is used such that the responses in all channels are identical, i.e.
C(s) = k(s)G(s)�1 where k(s) is a scalar transfer function (note that such a controller cannot
be used for plants with large RGA-elements). Then GC(s) = k(s)I and at low frequencies
e � 1

k
Gdz, and similar to the SISO case the magnitude of the elements of Gd(j!) (when

appropriately scaled) directly gives us the necessary loop gain, k(j!), needed for disturbance
rejection.

5 Performance relationships for decentralized control

Assume that G and Gd have been scaled such that 1) the expected disturbances, jzk(j!)j, are
less or equal to one at all frequencies, and 2) the outputs yi are scaled such that the allowed
errors, jei(j!)j, are less or equal to one at all frequencies (we do not here scale separately the
setpoints, ri, and therefore implicitly assume that these are of the same magnitude as the
allowed errors).

Consider the e�ect of a setpoint change rj and a disturbance zk on the o�set ei. With all
loops closed the closed-loop response becomes (Fig. 1)

ei = �[S]ijrj + [SGd]ikzk (11)
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For ! < !B we may usually assume S = (I +GC)�1 � (GC)�1. Provided the corresponding
cofactor of G is nonzero,1, and ci is su�ciently large (decentralized control), this approxima-
tion will also hold for individual elements

[S]ij �
[G�1]ij
ci

; [SGd]ik �
[G�1Gd]ik

ci
; ! < !B (12)

With this approximation (11) becomes

ei � �[G�1]ij
1

ci
rj + [G�1Gd]ik

1

ci
zk; ! < !B (13)

If gii(s) 6= 0 the de�nitions of the PRGA and CLDG yield

ei � �

ij
giici

rj +
�ik
giici

zk ; ! < !B (14)

Using ~S = (I + ~GC)�1 � diagf1=(giici)g this may be written on matrix form

e � � ~S ~GG�1r + ~S ~GG�1Gdz = � ~S�r + ~S�z; ! < !B (15)

From (14) we see that the ratio 
ij=(giici) gives the magnitude of the o�set in output i to a
setpoint change in output j. This ratio should preferably be small. That is, on a conventional
magnitude Bode plot, the curve for j
ijj should lie below jgiicij at frequencies where we want
small o�sets.

For process control disturbance rejection is usually more important than setpoint tracking.
From (14) we see that the ratio �ik=(giici) gives the magnitude of the o�set in output i to
a disturbance zk. That is, the curve for j�ikj should lie below jgiicij at frequencies where we
want small o�sets. A plot of j�ik(j!)j will give useful information about which disturbances
k are di�cult to reject.

Note that for input disturbances Gd = G and we get �ik = gii. Thus, large diagonal
elements in G (when appropriately scaled) may imply di�culties rejecting input disturbances.

Comparison with all loops open. To get a better physical interpretation of the RGA
and CLDG consider the response ~ei to a setpoint change ri and a disturbance zk when all
the other loops are open. We get

~ei = �(1 + giici)
�1ri + (1 + giici)

�1gdikzk (16)

At low frequencies we have jgiicij � 1 and derive

~ei � �
1

giici
ri +

gdik
giici

zk; ! < !B (17)

Comparing (17) and (14) we see for a setpoint change ri in loop i that 
ii = �ii gives the
approximate change in o�set caused by closing the other loops. Similarly, for loop i and
disturbance zk we see that the the open-loop disturbance gain, gdik , is replaced by the closed-
loop disturbance gain, �ik . Also note that the relative disturbance gain (RDG) �ik = �ik=gdik
gives the approximate change in o�set caused by closing the other loops.

Limitations of (14). The main limitation with (14) is that it applies only to lower
and intermediate frequencies. Furthermore, the issue of stability is not adressed. Another
limitation is the assumption that all diagonal elements in G(s) are nonzero. These issues are
addressed in more detail by Hovd and Skogestad (1991).

1Cofactors of G identically equal to zero are relatively rare except for the o�diagonal zero elements of
triangular transfer matrices. However, for these zero elements both [S]ij and [(GC)�1]ij are zero and the
approximation holds even though the cofactor is zero.
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6 Summary

Let us at this point summarize some results we shall use in the examples (see Hovd and
Skogestad (1991):

Pairing Rule 1. Avoid pairings ij with negative values of the steady-state RGA, �ij(0).

Pairing Rule 2. Prefer pairings which yield the RGA-matrix close to identity (the rule
follows from considering overall stability, note that it is not su�cient to check only if the
diagonal elements are close to 1).

Pairing Rule 3. Prefer pairings ij where gij(s) puts minimal restrictions on the achievable
bandwidth for this loop (the rule follows from (14) above).

Rule 3 is the conventional rule of pairing on variables \close to each other". Rules 1-3 will
in many cases determine the best choice of pairings for decentralized control. To evaluate
controllability we shall use:

Controllability Rule 1. Avoid plants (designs) with large RGA-values (in particular at
frequencies near cross-over). This rule applies for any controller, not only to decentralized
control (Skogestad and Morari, 1987b).

Controllability Rule 2. For decentralized control avoid control structures (an entire set of
pairings) with large values of PRGA (j
ijj) or CLDG (j�ikj) at frequencies close to the desired
!B , and in particular if the achievable bandwidth for the corresponding loop i is restricted
(because of gii(s), see pairing rule 3) (the rule follows from (14) above).

7 Some simple examples

Example 1. Given

G =

�
1 0
10 1

�
(18)

We get

RGA =

�
1 0
0 1

�
; PRGA =

�
1 0
�10 1

�
(19)

From PRGA we see that severe one-way interactions will occur, even though RGA=I.
Example 2. Given

G =

�
1 �10
10 1

�
(20)

We get

RGA =

�
0:01 0:99
0:99 0:01

�
; PRGA =

�
0:01 0:1
�0:1 0:01

�
(21)

This shows that we may have all elements in PRGA small compared to 1. Also note that the
elements in PRGA are small even though there obviously are large interactions. The reason
is that the interactions in this case increase the e�ective loop gain. Thus, from a performance
point of view (controllability rule 2) pairing on the diagonal elements of G seems to be a good
choice, even though we see clearly from G and the RGA that the opposite pairing must be
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better. This apparent inadequacy of the PRGA arises because it is a performance measure
only and does not take into account what happens at frequencies close to !B. If we consider
stability (eg., pairing rule 2) then we would arrive at the opposite pairing for which we have

G0 =

�
�10 1
1 10

�
; RGA0 =

�
0:99 0:01
0:01 0:99

�
; PRGA0 =

�
0:99 �0:1
0:1 0:99

�
(22)

More details for a very similar example, including closed-loop simulations and sensitivity
plots, are given by Hovd et al. (1990).

8 Example 3: Distillation Control

From a control point of view distillation columns may be considered as a 5� 5 system with
5 inputs u and 5 outputs y (see Fig.2).

u = (L; V;D;B; VT)
T (23)

y = (yD; xB;MD;MB; p)
T (24)

The number of possible pairings for single-loop control is very large. However, in most cases
the condenser duty, VT , is used to control pressure, p, and we have a 4� 4 control problem.
The 4� 4 RGA-matrix for this case has a 2� 2 identity matrix in the lower right corner, and
a 2 � 2 full matrix in the upper left corner. Intuitively, one would then expect the pairings
suggested by the order of (23) and (24) to be preferred. This yields the LV-con�guration
where L and V are used for composition control which is studied below. However, industrial
experience (Shinskey, 1984) have suggested that other options may be preferable, and this
has been con�rmed by controller design and frequency dependent RGA-analysis (Skogestad
et al., 1990).

8.1 Composition control with LV con�guration

In order to demonstrate the use of the frequency dependent RGA and CLDG for evaluation
of expected control performance, consider a binary distillation column with 40 theoretical
trays plus a total condenser. This is \column A" studied by Skogestad et al. (1990). We use
a rigorous model which includes liquid dynamics in addition to the composition dynamics.
The model has a total of 82 states. Disturbances in feed 
owrate F (z1) and feed composition
zF (z2) are included. The LV con�guration is used, that is, the manipulated inputs are re
ux
L (u1) and boilup V (u2). Outputs are the product compositions yD (y1) and xB (y2). The
model then becomes  

dy1
dy2

!
= G(s)

 
du1
du2

!
+ Gd(s)

 
dz1
dz2

!
(25)

The steady state gain matrices are

G(0) =

 
87:8 �86:4
108:2 �109:6

!
; Gd(0) =

 
11:8 17:6
17:6 22:4

!
(26)

The disturbances and outputs have been scaled such that a magnitude of 1 corresponds to a
change in F of 30%, a change in zF of 40%, and a change in xB and yD of 0.01 molefraction
units. We get at steady-state (s = 0):
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RGA =

�
35:1 �36:1
�36:1 35:1

�
; PRGA =

�
35:1 � 27:6
�43:2 35:1

�

CLDG =

�
�72:7 �2:0
107:2 24:9

�
(27)

In this case RGA and PRGA are quite similar. We note from the CLDG that disturbance
2 (feed composition) has a very small e�ect on output 1 (top composition) at steady-state.
This also holds at higher frequencies as we shall see below.

Pairings. Rule 1 dictates that one should use u1 to control y1 and u2 to control y2, as
indicated by (25). This is in agreement with industrial practice.

Analysis of the model. Fig. 3 shows the open-loop disturbance gains, gdik, as a function
of frequency. These gains are quite similar in magnitude and rejecting disturbances z1 and z2
seems to be equally di�cult. However, this conclusion is incorrect.2 The reason is that the
direction of these two disturbances is quite di�erent, that is, disturbance 2 (zF ) is well aligned
with G and is easy to reject, while disturbance 1 (F ) is not. This is seen from Fig. 4 where
the closed-loop disturbance gains, �i2, for z2 are seen to be much smaller than �i1 for z1. Also
note that the requirement of rejecting disturbance 1 results in a bandwidth requirement of
about 4 rad/min for both loops (considering the frequency where j�i1j crosses 1).

Observed control performance. To check the validity of the above results we used the
single-loop PI controllers by Skogestad et al. (1990). The loop gains, jgiicij, with these
controllers are also shown in Fig. 4. The loop gain for loop 1 is smaller than the closed-loop
disturbance gain, j�11j at higher frequencies (thus, relatively poor performance is expected for
output 1), while for loop 2 it is larger than j�2kj at all frequencies (thus, better performance
is expected for output 2). Closed-loop simulations with these controllers are shown in Fig. 5.
The simulations con�rm that disturbance 2 is much easier rejected than disturbance 1. They
also con�rm that with these controller settings, disturbance 1 (in F ) has a larger e�ect on
output 1 (yD) than on output 2 (xB). In summary, there is an excellent correlation between

2This conclusion would be correct if a decoupling controller was used (Section 4), but this kind of controller
should not be used for this plant with large RGA-elements.
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the analysis based on j�ikj in Fig. 4 and the simulations. This is not surprising when one

considers Fig. 6 which shows the accuracy of the approximation [S(s)Gd(s)]ik �
�ik(s)

gii(s)ci(s)

which was used to derive Eq.(14) and which formed the basis for the analysis in Fig. 4. The
approximation is very good at low frequencies, but as expected poorer at frequencies around
the closed loop bandwidth.

9 Example 4: Control of a Fluid Catalytic Cracker

The Fluid Catalytic Cracking (FCC) process is an important process for upgrading the heavy
components of crude oil in re�neries. A overview of a typical FCC is shown in Fig. 7.
Typically, the control problem is to use as manipulated inputs

1. Fa - 
ow rate of air to the regenerator

2. Fs - 
ow rate of regenerated catalyst to the riser reactor

to control the outputs

1. T - some temperature (T1 or Trg)

2. �Trg = Tcy � Trg - Temperature rise from regenerator dense bed to cyclones.

Either the riser exit temperature T1 or the regenerator temperature Trg is used to control
the cracking reaction in the riser in order to get the desired product split. Advanced Model
Predictive Control (MPC) schemes are installed on many FCC units, but the \basic control"
is based on decentralized control.
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9.1 Modeling of the FCC process

We shall use the model of Lee and Groves (1985), as we believe this is the model which
best describes modern FCC's. The only addition we have made is to include the simple
afterburning model in Eq. B.14 in Kurihara (1967), which assumes that the temperature rise
from regenerator dense bed to the cyclones is proportional to the concentration of oxygen in
the gas leaving the regenerator dense bed. This addition to the model is necessary, as the Lee
and Groves model only has the concentration of oxygen in the gas leaving the regenerator
dense bed as an output. The model has been implemented in a simulation program and
numerical di�erentiation is used to obtain a linear model.

9.2 Choice of control structure

Two control structures that have been proposed for control of FCC's are (Kurihara, 1967):3

1. Conventional control structure: Fs is used to control T1, and Fa is used to control �Trg.

2. Kurihara control structure: Fa is used to control Trg and Fs is used to control �Trg.

Note that the term \control structure" as used above includes both the choice of controlled
outputs (T = T1 for conventional structure and T = Trg for Kurihara) and the choice of
pairings.

For the model used in this work, the transfer function matrix from manipulated vari-
ables to outputs for the conventional control structure has RHP (transmission) zeros at 0.02
rad/min and 0.2 rad/min, whereas the transfer function matrix for the Kurihara control
structure has a RHP zero at 0.2 rad/min. Since the smallest (in magnitude) RHP-zero limits
the achievable closed-loop bandwidth, the Kurihara structure is preferable from this point of
view.

We found that the conventional control structure corresponds to pairing on negative
steady state relative gains, that is, it does not satisfy pairing rule 1. This means that for
the conventional control structure, one of the control loops must be unstable by itself for the
whole control structure to be stable. In contrast, the Kurihara control structure corresponds
to pairing on positive steady state relative gains. Both the RHP transmission zeros and the
relative gains indicate that the Kurihara control structure is preferable to the conventional
control structure. We will therefore only consider the Kurihara control structure in the
following.

9.3 Analysis using frequency dependent RGA and CLDG

In the following consider the Kurihara case and let y1 = Trg, y2 = �Trg, u1 = Fa and u2 = Fs.
The outputs (i) are scaled by allowing the following maximum control errors:

1. Regenerator temperature: 3 K.

2. Temperature rise from regenerator dense bed to the cyclones: 5 K.

The disturbances (k) are scaled by allowing the following maximum variations:

1. Temperature of feed oil: 5 K.

3There are also other options. Speci�cally, a common industrial choice today is to use T1 and Tcy as
controlled outputs. With our model this control structure yields no multivariable RHP zeros.
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2. Temperature of air: 5 K.

3. Flowrate of feed oil: 4 kg/s. (ca. 10% relative to original value)

4. Rate of formation of coke: 2.5% relative to original value.

Figure 8 shows the magnitude of 
ii(j!) = �ii(j!), �ik(j!) and giicij! (the loop gain) for
both loops. For �ik the subscript i refers to the output and the subscript k refers to the
disturbance as listed above. Note that �11 = �22 as we have a 2� 2 system. It is clear that
with the chosen scalings, disturbance 3 (the oil 
owrate) is the most di�cult to reject, and
disturbance 2 (the air temperature) is the easiest to reject in both outputs. The requirement
of rejecting disturbance 3 results in a bandwidth requirement of about 0.3 rad/min for loop
1 and 0.04 rad/min for loop 2 (considering the frequency where j�i3j crosses 1).

In this example we use two PI controllers with integral times of 17 and 167 minutes,
respectively. It was necessary to make the bandwidth in loop 2 smaller than in loop 1,
because the RHP transmission zero at 0:2min�1 lies mainly in the direction of u2. Fortunately,
as noted above the required bandwidth for disturbance rejection is also smaller in loop 2.
Comparing the loop gains giici(j!) (dashed lines) to the �ik(j!)'s (solid lines) indicates that
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disturbance 3 should have some e�ect on both y1 and y2. Since the bandwidth in loop 1 is
higher, we expect y1 to return more quickly to its original than y2. The other disturbances
appear easy to reject.

9.4 Comparison with simulation results

Figure 9 shows a simulation where disturbance 2 (an increase in the air temperature of 5 K)
enters at time 60 minutes and disturbance 3 (an increase in the oil 
owrate of 4 kg/s) enters
at time 180 minutes. The predictions based on the CLDG are in excellent agreement with
the results from the simulation. It is clear that disturbance 3 is much worse than disturbance
2. Also, as predicted by the CLDG's, disturbance 3 is rejected more quickly in y1 than in y2.

10 Conclusions

In the paper we have derived performance relationships for decentralized control systems
in terms of the individual loops. Importantly, the relationships depend on the model of
the process only, that is, are independent of the controller. This means that frequency-
dependent plots of 
ij and �ik may be used to evaluate the achievable closed-loop performance
(controllability) under decentralized control. Plants with small values of these measures are
preferred. Furthermore, the values of �ik may tell the engineer which disturbance k will
be most di�cult to handle using feedback control. This may pinpoint the need for using
feedforward control, or for modifying the process. For example, in process control adding
a feed bu�er tank will dampen the e�ect of disturbances in feed 
owrate and composition.
Plots of �ik may be used to tell if a tank is necessary and what holdup (residence time) would
be needed.

The bounds may be used to obtain a �rst guess of the controller parameters. However, as
the derivation of the bounds depends on approximations which are valid at low frequencies
only, undesirable e�ects may occur at frequencies around the closed loop bandwidth. Thus the
behavior of the closed-loop system must be checked using other methods, and the controllers
possibly redesigned.

Generalizations are also possible. Consider controllers on the form C(s) = H(s)K(s)
where K(s) is a diagonal matrix (for example, consisting of PID controllers), and H(s) is a
multivariable precompensator, for example, a constant matrix (steady-state or high-frequency
decoupler), a simple dynamic decoupler or a one-way decoupler. The performance results on
decentralized control may be generalized to include decouplers, H(s), by replacing G by GH
when evaluating PRGA and CLDG.
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Nomenclature

e = y � r - vector of control errors
gij = [G]ij - ij'th element of G
G(s) - plant model for e�ect of u on y
~G(s) - matrix consisting of diagonal elements of G
gdik = [Gd]ik - ik'th element of Gd

Gd(s) - disturbance model for e�ect of z on y

r - vector of reference outputs (setpoints)
S = (I + GC)�1 - sensitivity function
u - vector of manipulated inputs
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y - vector of outputs
z - vector of disturbances

�ik - ik'th element of RDG matrix (Stanley et al., 1985)
�ik(s) = gii(s)[G�1(s)Gd(s)]ik - Closed Loop Disturbance Gain (CLDG)
�(s) = ~G(s)G�1(s)Gd(s) - CLDG-matrix

ij(s) = gii(s)[G�1(s)]ij - ij'th element in PRGA-matrix

�(s) = ~G(s)G�1(s) - PRGA matrix
�ij(s) = gij(s)[G�1(s)]ji - ij'th element in RGA-matrix
�(s) - RGA matrix
! - frequency [rad/min]
!B - closed loop bandwidth, frequency at which asymptote of jS(j!)j �rst reaches 1

Subscripts
i - index for outputs or loops
j - index for manipulated inputs or setpoints
k - index for disturbances
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FIGURES

1. Figure 1. Block diagram of decentralized control structure.

2. Figure 2. Control of distillation column using LV-con�guration.

3. Figure 3. Open loop disturbance gains, gdik, for distillation column.

4. Figure 4. Closed loop disturbance gains, �ik, and loop gains, giici, for distillation
column.

5. Figure 5. Disturbance rejection for distillation column using PI control. Responses to
a unit step in z1 at t = 0 and unit step in z2 at t = 50min.

6. Figure 6. Check of approximation (12) for Example 3. The �gure shows the magnitude

of [SGd]ik=(
�ik
giici

)

7. Figure 7. Overview of typical FCC plant.

8. Figure 8. Closed loop disturbance gains, �ik, relative gain �ii and loop gain giici for
FCC example.

9. Figure 9. Disturbance rejection for FCC example using Kurihara control structure.
Responses to a unit step in z2 at t = 60 min and a unit step in z3 at t = 180 min.
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