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Abstract

Design and analysis of robust control systems by use
of H,-methods (i.e., using the structured singular value,
i) requires frequency dependent weights to define perfor-
mance and uncertainty. The purpose of this paper is to
give some insight into H,-weight selection from a process
control perspective. In an other paper [8] we studied the
performance specifications, but in this paper we concen-
trate on uncertainty modelling. We study how to trans-
form parametric gain-delay uncertainties into frequency
dependent weights specifying norm bounded uncertain-
ties.

1 Introduction

The control problem studied in this paper is based on the ill-
conditioned plant presented by Skogestad, Morari and Doyle [10].

We use the same simplified distillation column (the LV-configuration)

as our example:
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This is a very crude model of a distillation column and does not
describe an actual column very well. However, it is an excel-
lent example for demonstrating the problems with ill-conditioned
plants.

Skogestad et al. [10] show that this type of plant is very sensi-
tive to input uncertainty. This demonstrates that any controller
design method has to take model uncertainty into account. The
structured singular value, p, introduced by Doyle [2], allows us to
include structured norm bounded perturbations (uncertainties) in
the I -framework. Skogestad et al. [10] use g and a synthesis
method called “D-K” iteration [4] to synthesize a “p-optimal™
controller which yield a feedback system not sensitive to the un-
certainty.

Freudenberg [6] and Yaniv and Barlev [12] also use this dis-
tillation model to demonstrate design methods for robust control
of ill-conditioned plants. Freudenberg uses a controller based on
the singular value decomposition of the plant, while Yaniv and
Barlev use the quantitative feedback theory (QFT), by Horowitz
[11], to design a decentralized two degree of freedom controller.

The uncertainty and performance specifications in {10], [6] and
[12] are slightly different. [10] and [6] use norm bounded uncer-
tainties and a performance requirement for the maximum singu-
lar value of the sensitivity function for the worst case uncertainty.
[12] use parametric gain and delay uncertainty, and specify the
performance by of use magnitude bounds on the elements of the
transfer function from set points to controlled outputs.
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2 A general framework for uncertainty
modelling

Linear Fractional Transformations (LFT) provide a general frame-
work for modelling norm bounded perturbations [3]. An LFT may
be written on the following form (see Fig. 1)

zZ = Fu(P, A)w = [P22 + P21A(I - PuA)_IPn]w (2)

Py, is the nominal mapping from w to z and A is the He,-norm
bounded perturbation; ||A|le = sup, F(A(jw)) < 1.

This uncertainty description has mainly been used for “un-
structured” ! uncertainty where the block-diagonal elements of A
are complex. An example of such an uncertainty description is ad-
ditive uncertainty on the whole plant matrix or additive element-
by element uncertainty.

However, also “structured” parametric uncertainty may be
written within the LFT framework. In this case let the real vari-
able §; denote a physical parameter variation, and let |6 < 1.
For example, a state space model with uncertain (and possibly
correlated) coefficients

G,,(s) = (C + E&,’C.‘)(SI —A— E&A;)—l (B + E5.’B,') + (D + E&;D;)

(3)
(the subscript p denotes perturbed, i.e. with uncertainty) may
be rewritten on the general LFT-form with A a diagonal matrix
with &;’s (possibly repeated) along its diagonal ([9] pp.8-11). Here
the matrices A;, B;, C; and D; reflect how the ¢’th uncertainty &;
affects the state space model.
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Figure 1. Linear Fractional Transformation.

1By “unstructured” uncertainty we mean that several separate uncertainty
blocks have been combined into one “full” complex A-block.



A different example is from a study of a reactor, where we
found that one of the elements in the B-matrix depended on the
operating point in the following manner

1.5+ 0.18
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This nonlinear dependency on the parameter § may be written on

the LFT-form , b(8) = F.(P, 8) (Fig. 1), with P = (:gi :13)

In that same reactor example the parameter § also appeared
in the A-matrix

_(~15+0.15 0
A= ( 1 —1.5+0.16> (5)

To write this uncertainty as an LFT we may use

4= (777 s)+o(o 5) ®

In this case we need two repeated scalar 6’s (the rank of the
matrix A; is two), or three repeated §’s if also the variation in the
B-matrix is included.

One example of an uncertainty which cannot be written on
LFT-form is time delay uncertainty, and we we shall consider
later some useful approximations.

We prefer LFT models where the P;;’s are proper rational
transfer functions and A is complex. This preference is of com-
putational reasons: 1) the H-synthesis in the “D-K” iteration
uses a state space model of the problem, and 2) At present the
algorithms to.compute g can not deal with combined real and
complex perturbations, which would be needed to analyze robust
performance with real parametric uncertainty. Therefore, at least
at present, most of the general representations of parametric un-
certainty, cannot be used in practice.

3 Performance specifications

If w in Fig. 1 represents normalized external inputs, z represents
normalized errors, then a general H.-performance specification
becomes for the nominal case (NP)

|| Pozloo = sup &(Pra(jw)) < 1 (7)
and for robust performance (RP)
[1Fu(P Al <1, VA (8)

The performance and uncertainty weights are included in P. As
shown by Doyle [2] a computationally useful condition for robust
performance may be written in terms of the structured singular

value
RP iff pz(Nrp)<1, Vw “(9)

where Ngp = P and A = diag(A, Ap). The peak p-value as a
function of frequency is denoted ppp. Ap is a “full” complex per-
turbation matrix which stems from the performance requirement
of wanting the singular value from w to z less than 1.

This is of course a very general framework. In practice, per-
formance specifications are based on engineering judgement. In
another paper [8] we discuss two different approaches: 1) Based
on specifying bounds on important transfer functions such as the
sensitivity, S, or the complementary sensitivity, T'; 2) Based on
considering signals as a function of frequency, and specify bounds
on their amplification through the system. The latter approach
is more general, but one often looses the direct handle on specifi-
cations such as bandwidth and maximum peak.

4 The original problem from [10]

Problem definition

Skogestad et al. [10] consider as a performance specification
a simple bound on S, = (I + G(J + A;W[)C)7'; the sensitivity
function for the worst case input uncertainty.

RP & [[W.S,llw < 1, YA; (10)

where the nominal model G(s) is given in Eq.1, and

Wi(s) = [wlo(s) wl(zs)] ; wi(s) = 0.2((()%% (11)
Ag(s) = [51(()3) 52(()5)] s 18:(w)| < 1, Ve (12)

and
wi(s) = [P0 weo(s)] ;w,(s):O.S%. (13)

wy is a bound on multiplicative (relative) input uncertainty. Eq.11
shows that the uncertainty is 20% at low frequencies and reaches
1 at a frequency of approximately 1 rad/min. Note that the cor-
responding uncertainty matrix, Ay, is a diagonal matrix since it
is assumed that uncertainty does not “spread” from one chan-

"nel to another (for example, a large input signal in channel 1

does not affect the signal in channel 2). The performance weight
in Eq.13 requires integral action, a bandwidth of approximately
0.05 rad/min and a maximum peak for 5(.5,) of 2.
Npp in the Robust Performance p-condition (Eq.9) for this
problem becomes:
61
" sl
Controller designs
Skogestad et al. [10] use “D-K” iteration [4] based on “the
1984-approach” [3] H.-minimization to design a “u-optimal” con-
troller. Their controller has six states and gives ppp=1.067 for
both structured and unstructured A;. Lundstrom et al. (8] use
the new MATLAB p-toolbox [1], based on the state-space Hoo-
solution by Doyle et al. [5], to synthesize a better “u-optimal”?
controller (denoted Cnew) giving prp = 0.978. This controller
has 22 states. Freudenberg [6] use another design method and
achieve a controller with five states giving ppp=1.054 for unstruc-
tured A;. Yaniv and Barlev [12] do not present a pt value for their

design. We obtained ppp = 2.28 for their controller® (without
their prefilter) applied to the original formulation in [10].
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Comments on the uncertainty weight

The uncertainty formulation by Skogestad et al. [10] is a com-
plex norm bounded uncertainty. In each channel they allow the
following input model

Sjw + 1

0222
0.5jw + 1

ary(i) = (1 1 8(je)

[) W)l <1 (15)

(nominally gr = 1). Yaniv and Barlev [12] use parametric uncer-
tainty in their design specifications

grp(jw) = ke™ ; k€ [0.81.2]; 0 €(01] (16)
These two sets are not identical for two reasons: 1) The uncer-

tainty defined by Eq.15 is more general as it allows all kind of
transfer functions gr,(s) as long as their norm is bounded by the

2We will use “p-optimal” to denote the best obtained solution using the
“D-K” iteration in MATLAB p-toolbox.

3There is a misprint in [12]; the second order pole in controller “gl” of
0.22 should be with damping 0.5.



weight.  For example, the following input model is allowed by
Fq.15

=0.5041.2 0
!]Ip(s) = ( 0'56+1 —0.5310.3) 17
0.55+1

2) On the olher hand, the uncertainty allowed by Eq.16 is nol
quite covered by the uncertainty weight in Eq.15, although one
might get this impression from the paper of Skogestad et al. [10].
I%. 15 does cover gain uncertainty of +20%. It also covers ap-
prozimately a 1 min. delay (a first order Padé approximation is
covered). However, it does not cover all combinations of these
gain and delay uncertainties, especially not at high frequencies.

The two sets defined in Eq.15 and 16 are compared in Fig. 2.
At w =1 rad/min most of the parametric uncertainty is covered
by the norm bounded set, but the corner corresponding to +20%
and 1 min delay is not covered. This turns out to be critical,
since this often is the “worst case” uncertainty. As w — oo there
is a region corresponding to positive gain error and phase error of
about —180° which is not covered.

Comments on two-degree of freedom controller

The problem specifications as given in [10] is on the sensitivity
function S = (I + GC)~1. Here C denotes the feedback part of
the controller. Thus, a two-degree of freedom controller will not
improve the design. However, if one interprets the performance
specification from a signal point of view, that is, considers the
response from y, (reference signals) to e = y — y, (errors), then
one may get improvement by a two-degree of freedom controller.
Specifically, if Cy denotes the part of the controller which filters
the reference signals, then e = —SCyy,. Yaniv and Barlev con-
sidered the problem from this signal point of view and designed
a two-degree of freedom controller with a prefilter

1
Cl_25s2+53+1

The time response is improved by adding this prefilter, but the
value of ppp increases from 2.28 to 2.33 because the response gets
slower (we show time domain simulations towards the end of this
paper). We also considered this signal performance specification
(8], but the improvement in performance by using a two degree of
freedom controller was rather small; we were able to reduce pgp
from 0.978 to 0.926. However, we then have no direct handle on
the sensitivity function S (its Ho,-norm increases from 2 to about
3.5), and the robustness in terms of robust stability is worse.

Iyya. (18)
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Figure 2. Representation in the complex plane of the un-
certainty set in Eq.15 (solid discs) and Eq.16 (region be-
tween dashed circles).

Comments on the performance weight

The original problem forinulation [10] was intentionally made
very simple. For instance, the only performance requirement at
high frequencies is to keep the magnitude of the sensitivity func-
tion below 2. This leads to an optimal controller with a rather
high gain at high frequencies. A better problem formulation
should include some penalty which forces the controller gain to
roll off at high frequencics. We can achieve this, for example, by
including a weight on the manipulated inputs, which will limit
the transfer function C'S, and/or including measurement noise,
which will limit the complementary sensitivity function T'. The
uncertainty weight could also be used with similar effect, since
large uncertainty at high frequencies will force the input comple-
mentary sensitivity function (77 = CG(I + CG)™1) to roll off.

5 New uncertainty weights

In the following we will assume that the true input model in each
channel is given by the parametric uncertainty of Yaniv and Bar-
lev (Eq.16). In Fig. 2 we showed that the norm bounded set of
Skogestad et al. (Eq.15) does not quite cover this uncertainty.
Here we will derive norm bounded sets which do cover the gain

_and delay uncertainty.

5.1 Real perturbations

Ezact description: We may describe the process exactly by
g1p(s) = (k + beg)e=CHreco)s (19)

where k and 8 are the average parameter values and &8; and 6 are
realscalars, —1 < 6 < 1. For the uncertainty in Eq.16 we get: k =
1,8 =05, ¢ =02 and ¢ = 0.5. This uncertainty description
has two problems: 1) The time delay cannot be modelled by an
LFT, and 2) The perturbations are real.

Real perturbations and first order Padé: In order to achieve a
rational transfer functions we use a first order Padé approximation
of the time delay uncertainty.

6—03 — e—ése-—ﬁgcgs ~ e—és 1 - 695213 (20)
1+ 60-29-5
The time delay uncertainty may now be rearranged as an LFT.
1~ 8p%s € \ !
—2 | =[1-4§ (1 bp— ) 21
(1+69%s> ( oeos {1+ 895 (21)
. . —eps/2 17 . . .
Which gives P = s 1) M Eq.2. Problems with this de-

scription are: 1) The perturbations are real, and 2) The time
delay is approximated.

For this approximation we cannot simply relax the require-
ment that & has to be real and allow it to be complex; a simple
analysis shows that with §; = j this would imply that the norm
of €7 would be infinity at the frequency w = 2/eq.

Real perturbations and n* order approzimation: We may achieve
an arbitrary good approximation of the time delay by the follow-
ing n'th order approximation.

1 —6pzs\"
—b8s -fs 055

= —n 22
¢ ¢ (l + 69—5-;"8) ( )

This may also be written on the general LFT-form, but since all
6¢’s are equal, we need repeated perturbations. Thus, the prob-
lems with this description are: 1) The perturbations are real, 2)

Repeated real §y’s are needed, and 3) High order model.



5.2 Complex perturbations

ITere we will consider modelling the parametric uncertainty in
each input channel (the perturbations in k and 8) by a single com-
plex scalar perturbation §. That is, we use a structured approach
with respect to the channels, but an “unstructured” (lumped)
approach with respect to the parametric uncertainties in each
channel.

We use a slightly generalized uncertainty description compared
to the input uncertainty considered in Section 4:

Gy(s) = Ge(s)(Gi(s) + Ar(s)Wi(s)) (23)

(subscript ¢ for column model and I for input model; above we
used G, = G,Gr = I). This is simply an additive uncertainty
description for the input model. We assume the same nominal
model and same uncertainty in both inputs, i.e., W; = w;I and
Gy = giI. Ay is given in Eq.12. At each frequency the true
plant is allowed to be within a disc in the complex plane which
has the nominal input model gr(jw) as a center and a radius
equal to |wr(jw)|. With this uncertainty description it is less
conservative to approximate the real uncertainties in k and ¢ in
each channel by one complex perturbation than by two separate
complex perturbations.

To generate the uncertainty description we use the following
procedure: i) Define the nominal “center” model, ii) Determine

the radius wy at each frequency such that the complex region gen- |
erated by the real parameter variations is covered, iii) Approxi- '
mate this radius by a transfer function (the approximation should -
always be “conservative”, i.e., such that all allowed plants are in- -

cluded). We will consider three different choices of the nominal
input model.

1) Select gr1 = 1, i.e. the center point is fixed at (14-50) for all
frequencies. This is the choice made by Skogestad et al. [10], but
as mentioned above their weight w;(s) does not include the whole
set generated by the uncertainty in Eq.16. To derive a weight
which covers the set we did as follows: a) At low frequencies
(w < 7/0maz) the point furthest away from gry corresponds to a
gain of (1 + €;) and a time delay of 845, b) Using a second order
Padé for the time delay then gives
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Figure 3. Trajectory of the "tight” model gy3(jw) (center
in the smallest set) in the complex plane. The region be-
tween the dashed circles shows the parametric set Eq.16 as
W ~ 00.

Since we are interested in only the magnitude of wy this may be
replaced by

W' (s) = €502,0,5% + 6(2 + €4)0mazs + 126,
n 02 82 4 60,029 + 12

mazx

(25)

c) The magnitude of this weight is too small at high frequen-
cies. To compensate for this we multiply the weight by the factor
(—;ﬁ;»ﬁ where 7 is found for each specific case (in our case
7 =0.167). The final weight for our case is shown in Table 1.

2) Select gr, = ke=%%. This is the average of the parametric
set and was chosen by Laughlin et al. [7] who studied transfor-
mations from parametric uncertainty to a norm bounded complex
set. We used a procedure similar to the one outlined above to ap-
proximate the radius.

3) Select the nominal model g3 such that the radius of the un-
certainty set at each frequency is minimized. At a given frequency
g3 is the “average” in the complex plane and will be denoted the
“tight” model in the following. The trajectory of the “tight”
g13(jw) is shown in Fig. 3. Unfortunately, this gra(jw) is not a
rational transfer function, so we cannot use it and the correspond-
ing uncertainty weight in the “D-K” algorithm. However, for a
given controller we may compute g for this uncertainty set, since
the p computations are performed on a frequency-by-frequency
basis.

The three different approximations are illustrated in Fig. 4.
Set g1, includes prediction, since it covers (at low frequencies) a
region with positive imaginary part. grz, and grs, are similar at
low frequencies, but differs at high. gr3, is always the smallest set,
and grz, is at most frequencies a smaller set than gri,. However,
the smallest set may not necessarily yield the best design. The
reason is that the smallest set, gr3,, is not always contained in g,
(or gr2p), i.€., it may include plants which are outside the original
set, and which are not covered by g1, (or grzp). If these plants
then are the “worst case” plants, then approach 3 may in fact be
more conservative than approach 1 (at least at some frequencies).

Table 1. New uncertainty models (G, = Gy + AWi).
Set Gr Wi

0.167a+1
(0.167/11)s+1 " 2X2
0.055%46.6542.4 (0.167/2)s+1 Ji
0.25a2+3s+12 (0.167/22)a+1" 2X2

I 0.292413.29542.4
, 2x2 52 463+12
0.5252-6+0.55412
2 0.5%524640.55412 Iaxs
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Figure 4. The three sets gy, g1,, and gy, (Table 1) at
Omarw = 1 rad (dotted discs) and at 040w = 7 rad (solid

discs).



6 j-analysis

To study in more detail the uncertainty deseriplions menlioned
above, we desipgned g-optimal controllers for the example problem
in [10}, bul used the different Gy and Wy from Table 1 in the
uncertainty deseription. It turns onl thal controller (7y (22 slales)
designed for the larger seb, g7, gives a lower jpp than controller
(3 (22 stales) tuned for the smaller sel, gryg. This demonsirates
thal a smaller sel nol necessarily gives the best design.

We also compare controllers C'y and ' with the optimal con-
troller from (8], (Yo, and the controller from [12], which we
denote Copp. The resulls are smmmarized in ‘Table 2. Two -
valies are shown for cach design: The first coluinn shows the
pr-vahie for the uncertainty set used in the design of the con-
troller. The second column shows the stpp-value for the “Light”
complex uncertainty description, gra, (computed frequency-by-
frequency without any need to approximate grz). Iig. 5 shows
jt(Npp) as a function of frequency for the “Light” uncerlainty for
all four controllers (solid curves), and for controller Cyew and the
orviginal uncertainty (dashed curve).

Controller Cpen is designed lor the original uncertainty set,
and ppp for this controller increases when the “light” sel is nsed.
This demonstrates that the original sel does not. include all worsl,
case plants in the “light” set. For example, 4-20% gain ervor and
I min declay is not included. However, in the {vequency range
0.1 < w < 1, the “tight” sct gives lower u(Npp) than the original
uncertainty , showing that the original uncertainty allows “worst
case” plants outside the “light” set (and thereby also outside the
parametric set) al these lrequencies.

Corr is designed for the paramebric uncerlainty (Fq.16). We
cannot compute jrpp exactly for this nncertainty (it would require
real §'s), however, Lhis controller gives a high ppp-value for the
“Qight” sel. Controllers 7y and (7 are designed {or uncertainty
sels which cover the parametric uncertainty and jsepp for these

Table 2. Optlimal jipp-values for the design uncertainty and for
the “light” complex uncertainty for four diflerent controllers.

Controller design JERP design  JURP tight
Clinew Iiq.15 0.978 1.30
Corr Eq.16 2.36
Cy gny (Table 1) 1.04 1.05
C, gr2p (Table 1) 1.12 1.12
2t ]
CQFT

1
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Irequency [rad/min]
Solidl enrves: p(Npp) Tor Tour different con-
frellevs and “Lght™ ineertaioly (gra,). Dolted curve: 1t(Nnp)
for controller €y e and original nneertainty (5. 15).
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two controllers does nol change very minch when the nneertainty
is changed to “tight” uncertainty.

The differencies belween Lhe original uncertainty sl and Lhe
parametric set is also illustraled in g, 6. Here the worst case
plants for controller Cymew applied to the original uncertainly set
arc plotted in the complex plane. The worst case plants are comn-
puled for 0.001 < w < 100 rad/min. Fach “** mark the worst
plant in channel 1 at one specific frequency. The worst. plants
in channel 2 are marked with “o”. Al very low [requencies the
worst plant is 0.8" in bolh channels. This plant is also allowed
by the parametric uncerlainty. As Lhe frequency increases, we sce
thal some of the worsl case plants for the original sel lie ontside
the parametric set, i.e., al these frequencics the original set is
conservalive.

7 Simulations

Simulations of set point changes for controller Cy are shown in
Iig. 7, and are compared to responses for controller Copr in
Ifig. 8. (Controller €, . gives essentially the same responses
as for controller Cy). Responses are shown for the four corner
points as defined by the parametric gain uncerlainty description
(I5q.16), and with a time delay of 1 min approximated by a second
order Padé approximation. In the simulations with controller Cy
we have used a prefilter

for the set points. In the other simulation we used the filter by
Yaniv and Barlev (Iiq.18).

The responses shows that C reaches the desired set point
much faster than Copr. Controller Copy is initially somewhal
less sensitive to the uncerlainly, but shows a rather slow and
oscillatory setiling towards Lhe new steady-stale. Indeed, this be-
havior may be expected [rom the p-plol in IMig. 5 where we see
that the peak value occurs at a frequency w a2 0.04 rad/min. In
the time domain this corresponds to a resonani, sinusoid with pe-
riod T' = 27 /w 22 150 min, and indeed, this is Lthe period [ound in
the simulations. 'The beller initial response may also be expected
from the p-plot, since ji(Npp) for Copr is lower than for Cy ab
high [requencies.

2F

of i
1t |
w
27 #: channel 1 |
o: channel 2
—3 1 1 1 I

-2 -1 0 1 2 3

Figure 6. Worst case plants lor conlroller Cppnn plobted
in the complex plane, frequency-by-lrequency flor 0.001 <
w < 100 rad/min. Solid disc: g, as w — co. Region
between the dashed circles: paramelric uneertainty (Ioq.16)
as w —+ 00.

"The worsl case for an inverse-hased controller (a decoupler) is 0.8 aund



8 Discussion and Conclusions

In Section 5 we postulated a parametric gain-delay uncertainty
sel as the “true” uncertainty. We then tried to minimize an un-
certainly set generated by a complex additive perturbation which
covers the “true” set. (If we had pole uncertainty we would proba-
bly have used inverse additive rather than additive perturbations.)
T'he common practice of specifying uncertainty as gain and de-
lay uncertainties, has probably to do with the popularity of first
order-dead-time models in process control. However, by restrict-
ing the uncertainty description into a specific parametric form we
may enlarge the set, since we have to choose parameter uncer-
tainties such that the actual worst case is covered. If we then
approximate the parametric set with a complex norm bounded
set (for computational convenience), then the set is even further
enlarged.

A much better approach would be to consider the nominal
plant model and the uncertainty model as one unit. Both parts
of this unit should be defined together such that a minimal set is
achieved. It is very possible that discs in the complex plane will
approximate the actual uncertainty better than , for example,
parametric gain and delay uncertainty does. In those cases where
this is true controllers designed by use of g for complex perturba-
tions would be less conservative than controllers designed for the
gain delay uncertainty.

Acknowledgements. Support from NTNF is gratefully acknowl-
cdged.

NOMENCLATURE

C(s) - controller

Cy(s) - set point filter

G(s) - MIMO linear model of process

9(8) - SISO linear model of process

k - gain

S(s) = (I + G(s)C(s))™" - sensitivity function
T(s) = G(s)C(s)(I + G(s)C(s))™" - complementary sensitivity
W(s) - weight matrix

w(s) - weight scalar

[|¥|lso = sup,, &(N(jw)) - Hoo-norm of N

A - perturbation matrix

§ - perturbation scalar (real or complex)

._.
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-0.5

-0.5 L

50 100

Figure 7. Simulation of set point changes with various
input gains (ki1, k) using controller Cy and prefilter Eq.26.
All responses are with a 1 min delay (2" order Padé).

h
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€, - magnitude of gain error
g - magnitude of delay error
6 - time delay (min)

it - structured singular value
prp = sup,, piz(Nrp(jw))

& - maximum singular value
w - frequency (rad min~!)
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Abstract

Design and analysis of robust control systems by use
of Ho,-methods (i.e., using the structured singular value,
) requires frequency dependent weights to define perfor-
mance and uncertainty. The purpose of this paper is to
give some insight into H «o-weight selection from a process
control perspective. In an other paper [8] we studied the
performance specifications, but in this paper we concen-
trate on uncertainty modelling. We study how to trans-
form parametric gain-delay uncertainties into frequency
dependent weights specifying norm bounded uncertain-
ties.

1 Introduction

The control problem studied in this paper is based on the ill-
conditioned plant presented by Skogestad, Morari and Doyle [10].

We use the same simplified distillation column (the LV-configuration)

as our example:

1 0.878 —0.864]

G(s) = 7zs 77 L1082 —1.096 )

This is a very crude model of a distillation column and does not
describe an actual column very well. However, it is an excel-
lent example for demonstrating the problems with ill-conditioned
plants.

Skogestad et al. [10] show that this type of plant is very sensi-
tive to input uncertainty. This demonstrates that any controller
design method has to take model uncertainty into account. The
structured singular value, g, introduced by Doyle [2], allows us to
include structured norm bounded perturbations (uncertainties) in
the H..-framework. Skogestad et al. [10] use p and a synthesis
method called “D-K” iteration [1] to synthesize a “p-optimal”
controller which yield a feedback system not sensitive to the un-
certainty.

Freudenberg [6] and Yaniv and Barlev [12] also use this dis-
tillation model to demonstrate design methods for robust control
of ill-conditioned plants. Freudenberg uses a controller based on
the singular value decomposition of the plant, while Yaniv and
Barlev use the quantitative feedback theory (QIF'T), by Horowitz

. [11], to design a decentralized two degree of freedom controller.

The uncertainty and performance specifications in (10}, [6] and
[12] are slightly different. [10] and [6] use norm bounded uncer-
tainties and a performance requirement for the maximum singu-
lar value of the sensitivity function for the worst case uncertainty.
[12] use parametric gain and delay uncertainty, and specify the
performance by of use magnitude bounds on the elements of the
transfer function from set points to controlled outputs.

2 A general framework for uncertainty
modelling

Linear Fractional Transformations (LEFT) providea general frame-
work for modelling norm bounded perturbalions [3]. An LFT may
be written on the following form (see Fig. 1)

2 = Fy(P,A)w = [Pn+ Pul(l - PuA)7 Pojw @)

Py, is the nominal mapping from w to z and A is the He-norm
bounded perturbation; ||A]le = sup, a(A(jw)) < L.

This uncertainty description has mainly been used for “un-
structured” ! uncertainty where the block-diagonal elements of A
are complex. An example of such an uncertainty description is ad-
ditive uncertainty on the whole plant matrix or additive element-
by element uncertainty.

However, also “structured” parametric uncertainty may be
written within the LFT framework. In this case let the real vari-
able &; denote a physical parameter variation, and let |&| < L.
For example, a state space model with uncertain (and possibly
correlated) coefficients

GP(S) = (C+ 25.’0;)(5’ —-A- E&,‘A,‘)_l ( B+ Z&,BK) + (D + E(S.D.)

3)
(the subscript p denotes perturbed, i.e. with uncertainty) may
be rewritten on the general L'T-form with A a diagonal matrix
with é;’s (possibly repeated) along its diagonal ([9] pp.8-11). Here
the matrices A;, By, Ci and D reflect how the i’th uncertainty &;
affects the state space model.

A

D
Pll 12

Py Po—

Figure 1. Lincar Fractional Transformation.

‘Autl}or to whom correspondence should be addressed.  E-mail: 1By “unstructured” uncertainty we mean Lhat several separate uncertainty
skoge@kjemi.unit.no, Phone: 47-7-594154, Fax: 47-7-591410 blocks have been combined into one “full” complex A-block.
CH3076-7/91/0000-1537$01.00 © 1991 IEEE 1537



A different example is froin a study of a reactor, where we
found that one of the clements in the B-matrix depended on the
operating point in the [ollowing manner

~1<6<1. (4)

This nonlinear dependency on the parameter § may be written on

the LFT-form , b(6) = F,(P,8) (Fig. 1), with P = (:83 ;)

In that same rcaclor example the parameter § also appeared
in the A-matrix

_[—1540.16 0
A= ( 1 1.5+ 0.15) (5)

To write this uncertainty as an LIT" we may use

a= (7 ) rea(o ) ©

In this case we need two repealed scalar §’s (the rank of the
malrix A; is two), or three repealed 8's il also the variation in the
B-matrix is included.

One example of an uncertainly which caunol be written on
LI'T-form is time delay uncerlaiuty, and we we shall consider
later some useful approximations.

We preler LI'T models where the ;s are proper rational
transfer functions and A is complex. This preference is of com-
putational reasons: 1) the I,-synthesis in the “D-K” iteration
uses a state space model of the problem, and 2) At present the
algorithms to.compute g can not deal with combined real and
complex perturbations, which would be needed Lo analyze robust
performance with real parametric uncertainty. Therefore, at least
at present, most of the gencral representations of parametric un-
certainty, cannot be used in practice.

3 Performance specifications

If w in Fig. 1 represents normalized external inputs, z represents
normalized errors, then a general [ ,-performance specification
becomes for the nominal case (NP)

(1Pl = sup 7(Pra(jw)) < 1 (M
and for robust performance (RI”)
(P, D)o < 1, VA (8)

The performance and uncertainly weights are included in P. As
shown by Doyle [2] a compulalionally uselul condition for robust
performance may be written in terms of the structured singular
value

RP if ,UA(NRP) <1, Yw (9)
where Npp = P and A = diag(A, Ap). The peak p-value as a
function of frequency is denoted ppp. Ap is a “full” complex per-
turbation matrix which stems {rom the performance requirement
of wanting the singular value from w to z less than 1.

This is of course a very general framework. In practice, per-
formance specifications are based on engineering judgement. In
another paper [8] we discuss two different approaches: 1) Based
on specifying bounds on important transfer functions such as the
sensitivity, S, or the complementary sensitivity, 7; 2) Based on
considering signals as a function of frequency, and specify bounds
on their amplification through the system. The latter approach
is more general, but one often Jooses the direct handle on specifi-
cations such as bandwidth and maximum peak.

4 The original problem from [10]

Problem definition
Skogestad et al. [10] consider as a perfoinance pecilication
a simple bound on S, = (I 4+ G(I + A;W,)(/) 'y the earitivity

function for the worst case input uncerlainty.
RP & ||W. S|l <1, VA, (1,

where the nominal model G(s) is given in Eq.1, and

=[wls) 0 7. EPACLEAVE
w,(s)_[ ; wl(s)] i) =02t )
Afs) = [51(()5) 52((]5)J ; 16:Gw)] < 1, Vo (12)
and

wy is a bound on multiplicative (relative) input uncertainty. Eq.11
shows that the uncertainty is 20% at low frequencies and reaches
1 at a frequency of approximately 1 rad/min. Note that the cor-
responding uncertainty matrix, Ay, is a diagonal matrix since it
is assumed that uncertainty does not “spread” from one chan-
nel to another (for example, a large input signal in channel 1
does not affect the signal in channel 2). The performance weight
in [5q.13 requires integral action, a bandwidth of approximately
0.05 rad/min and a maximum peak for 5(5,) of 2.

Npp in the Robust Performance p-condition (Eq.9) for this
problem becomes:

3
—W,CSG W,CS]. A:[[ 52]

Npp = (14)

W.SG  -W.S]’

Ap

Controller designs
Skogestad et al. [10] use “D-K” iteration [4] based on “the

1984-approach” [3] H-minimization to design a “u-optimal” con-
troller. Their controller has six states and gives upp=1.067 for
both structured and unstructured A;. Lundstrém et al. [8] use
the new MATLAB p-toolbox [1], based on the state-space I .-
solution by Doyle et al. [5], to synthesize a better “u-optimal”?
controller (denoted Cnew) giving grp = 0.978. This controller
has 22 states. Freudenberg [6] use another design method and
achieve a controller with five states giving prp=1.054 for unstruc-
tured A;. Yaniv and Barlev [12] do not present a u value for their
design. We obtained ppp = 2.28 for their controller® (without
their prefilter) applied to the original formulation in [10].

Comments on the uncertainty weight

The uncertainty formulation by Skogestad et al. [10] is a com-
plex norm bounded uncertainty. In each channel they allow the
following input model

ginjio) = (1 +8(jw)

5jw +1

0.2————
0.5jw +1

D L 6Gw)I <1 Ve (15)

(nominally gr = 1). Yaniv and Barlev [12] use parametric uncer-
tainty in their design specifications

gn(jw) = ke ™, £ [0.81.2); 0€01] (16)
These iwo sets are not identical for two reasons: 1) The uncet-

tainty defined by Eq.15 is more general as it allows all kind of
transfer functions gr,(s) as long as their norm is bounded by the

2We will use “p-optimal” to denote the best obtained solution using the
“D-K” iteration in MATLAB p-toolbox.

3There is a misprint in [12]; the second order pole in controller “gl™ of
0.22 should be with damping 0.5.
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weight. For example, the following input model is allowed by
Eq.15

—=0.5341.2 0
915(3) =( >0 M) (17)
0.55+1

2) On the other hand, the uncertainly allowed by I0q.16 is nel
quite covered by the uncertainty weight in [q.15, although one
might get this impression from the paper of Skogestad et al. [10].
Eq.15 does cover gain uncertainty of +20%. It also covers ap-
prozimately a 1 min. delay (a first order Padé approximation is
covered). However, it does not cover all combinalions ol these
gain and delay uncertainties, especially not at high frequencies.

The two sets defined in iq.15 and 16 are compared in Fig. 2.
At w = 1 rad/min most of the parametric uncertainty is covered
by the norm bounded set, but the corner corresponding to +20%
and 1 min delay is not covered. This turns out to be critical,
since this often is the “worst case” uncertainty. As w — oo there
i region corresponding to positive gain error and phase error of
a. ub —180° which is not covered.

Comments on two-degree of freedom controller

The problem specifications as given in [10] is on the sensitivity
function § = (I + GC)~*. Here C denotes the fecdback part of
the controller. Thus, a two-degree of freedom controller will not
improve the design. Iowever, if one interprets the performance
specification from a signal point of view, that is, considers the
response from y, (reference signals) to e = y — ¥, (errors), then
one may get improvement by a two-degree of freedom controller.
Specifically, if Cy denotes the part of the controller which filters
the reference signals, then ¢ = —SCjy,. Yaniv and Barlev con-
sidered the problem from this signal point of view and designed
a two-degree of freedom controller with a prefilter

1
S SE— 18
B2 +hs+1 2 (18)

The time response is improved by adding this prefilter, but the
value of jtpp increases [rom 2.28 to 2.33 because the response gets
slower (we show time domain simulations towards the end of this
paper). We also considered this signal performance specification
®" but the improvement in performance by using a two degree of
dom controller was rather small; we were able to reduce prp
from 0.978 to 0.926. However, we then have no direct handle on
the sensitivity function S (its Heo-norm increases from 2 to about
3.5), and the robustness in terms of robust stability is worse.

Cy

2+ Eq.16

W — 00
i\ :
or ¢ 1
A1t .
2l BEql6w=1 Eq.15
(shaded region) w — 00
3 . : -

-2 -1 0 1 2 3

Figure 2. Representation in the complex plane of the un-
certainty set in Eq.15 (solid discs) and Eq.16 (region be-
tween dashed circles).

Comments on the performance weight

The original problem formulation [10] was intentionally made
very simple. Tor instance, the only performance requirement at
high frequencies is to keep the magnitude ol the sensitivity func-
tion below 2. This leads to an optimal controller with a rather
high gain at high frequencies. A betler problem formulation
should include some penalty which forces the controller gain to
roll off at high frequencies. We can achieve this, for example, by
including a weight on the manipulated inputs, which will limit
the transfer function C'S, and/or including measurement noise,
which will limit the complementary sensitivity function T'. The
uncertainty weight could also be nsed with similar eflect, since
large uncertainty at high frequencies will lorce the input comple-
mentary sensitivity function (T = CG(I + CG)™") to roll off.

5 New uncertainty weights

In the following we will assume that the true input model in each
channel is given by the parametric uncertainty of Yaniv and Bar-
lev (Bq.16). In Fig. 2 we showed thal the norm bounded set of
Skogestad et al. (13q.15) does not quile cover Lhis uncertainty.
Here we will derive norm bounded sets which do cover the gain
and delay uncertainty.

5.1 Real perturbations

Ezact description: We may describe the process exactly b
P y by
g1p(8) = (k + bey)e™ (ool (19)

where E and @ are the average parameter values and &y and 8y are
realscalars, —1 < 6 < 1. Tor the uncertainty in Iq.16 we get: k=
1,0 = 0.5, ¢ = 0.2 and ¢ = 0.5. This uncertainty description
has two problems: 1) The time delay cannot be modelled by an
LFT, and 2) The perturbations are real.

Real perturbations and first order Padé: In order to achieve a
rational transfer functions we usc a first order Padé approximation
of the time delay uncertainty.

. - 1 — 5L
—fs _ —0s_ —bpeqs —0s 03
e =¢"¢ Re —_— 20
(1 ¥ 50%8) 20

The time delay uncertainty may now be rearranged as an LFT.

1—695213 €p -1
Tl QO Y Y 2 9
(1 +5952'Ls> (1 bpcps (1 +6023) ) (21)

_j(i‘:é2 H in Eq.2. Problems with this de-
scription are: 1) The perturbations are real, and 2) The time
delay is approximated.

For this approximation we cannot simply relax the require-
ment that & has to be real and allow it to be complex; a simple
analysis shows that with § = j this would imply that the norm
of e would be infinity at the frequency w = 2/¢p.

Which gives P = [

Real perturbations and nt* order approzimation: We may achieve

" an arbitrary good approximation of the time delay by the follow-

ing n’th order approximation.

g (1 —8p2s\"
—bs ., —0s 09,
e e (———1 m 50%3) (22)

This may also be written on the general LFT-form, but since all
6¢'s are equal, we nced repeated perturbations. Thus, the prob-
lems with this description are: 1) The perturbalions are real, 2)
Repeated real §'s are needed, and 3) 1ligh order model.
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5.2 Complex perturbations

Here we will consider modelling the parametric uncertainty in
each input channel (the perturbations in k and ¢) by a single com-
plex scalar perturbation 8. Thal is, we use a structured approach
with respect to the channels, but an “unstructured” (lumped)
approach with respect to the parametric uncertainties in each
channel.

We use a slightly gencralized uncertainty description compared
to the input uncertainty considered in Section 4:

Gy(s) = Ge(s)(Gi(s) + Ai(s)Wi(s)) (23)

(subscript ¢ for column model and I for input model; above we
used G, = G,G; = I). This is simply an additive uncertainty
description for the input model. We assume the same nominal
model and same uncertainty in both inputs, i.e., Wy = w;I and
G; = g;I. Apis given in Eq.12. At each frequency the true
plant is allowed to be within a disc in the complex plane which
has the nominal input model gr(jw) as a center and a radius
equal to |wr(jw)|. With this uncertainty description it is less
conservative to approximate the real uncertainties in k and @ in
each channel by one complex perturbation than by two separate
complex perturbations.

To generate the uncertainly description we use the following
procedure: i) Define the nominal “center” model, ii) Determine
the radius wr at each frequency such that the complex region gen-
erated by the real parameter variations is covered, iii) Approxi-
mate this radius by a transfer function (the approximation should
always be “conservalive”, i.e., such that all allowed plants are in-
cluded). We will consider three different choices of the nominal
input model.

1) Select gni = 1, i.e. the center point is fixed at (1450) for all
frequencies. This is the choice made by Skogestad et al. (10], but
as mentioned above their weight wy(s) does not include the whole
set generated by the uucertainty in Eq.16. To derive a weight
which covers the set we did as follows: a) At low frequencies
(w < T/0pnqz) the point furthest away from g1 corresponds to a
gain of (1+ ¢) and a time delay of f,az, b) Using a second order
Padé for the tine delay then gives

02 .52 = 60a00s + 12
/ — 1 _ . max max
win(s) (L+ 600"’ 52 + 60028 + 12

mazx

(24)

1.5 " ; " . .

o
W

ST 05 0 05 1 15

Figure 3. Trajectory of the "tight” model gr3(jw) (center
in the smallest set) in the complex plane. The region be-
tween the dashed circles shows the parametric set Eq.16 as
w — 00,

Since we are interested in only the magnitude of w; this may be
replaced by

02 2 mazx
wiy(s) = €k0mass” + 6(2 + € )lmass + 12¢;

02, .82 + 60mans + 12

mazx

(25)

¢) The magnitude of this weight is too small at high frequen-
cies. To compensate for this we multiply the weight by the factor
ﬁl»ﬁ where 7 is found for each specific case (in our case
7 = 0.167). The final weight for our case is shown in Table 1.

2) Select gr; = ke™%~. This is the average of the parametric
set and was chosen by Laughlin et al. [7] who studied transfor-
mations from parametric uncertainty to a norm bounded complex
set. We used a procedure similar to the one outlined above to ap-
proximate the radius.

3) Select the nominal model gr3 such that the radius of the un-
certainty set at each frequency is minimized. At a given frequency
913 is the “average” in the complex plane and will be denoted the
“tight” model in the following. The trajectory of the “tight”
gra(jw) is shown in Fig. 3. Unfortunately, this grs(jw) is not a
rational transfer function, so we cannot use it and the correspond-
ing uncertainty weight in the “D-K” algorithm. However, for a
given controller we may compute y for this uncertainty set, since
the p computations are performed on a frequency-by-frequency
basis.

The three different approximations are illustrated in Fig. 4.
Set g1, includes prediction, since it covers (at low frequencies) a
region with positive imaginary part. grap and gra, are similar at
low frequencies, but differs at high. gra, is always the smallest set,
and gy, is at most frequencies a smaller set than gp,. However,
the smallest set may not necessarily yield the best design. The
reason is that the smallest set, gr3p, is not always contained in gr1p
(or grzp), i-¢., it may include plants which are outside the original
set, and which are not covered by gnp (or grzp). If these plants
then are the “worst case” plants, then approach 3 may in fact be
more conservative than approach 1 {at least at some frequencies).

Table 1. New uncertainty models (G, = G; + A;Wp).

Set Gy Wi
0.252413.2542.4 __0.167s41
T2z 2+6s+12  (0.167/11)s+1 Taxa

0.055246.6542.4 (0.167/2)s+1 I
0.2552+35+12 (0.167/22)s+1" 2%2

9 0.5252—6+0.55412 I
0.5252 164059412 2%X2

3 . : ; .
-2 -1 0 1 2 3

Figure 4. The three sets gy,,, gp, and gr,, (Table 1) at
Omazw = 1 rad (dotted discs) and at fmeow = 7 rad (solid
discs).
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6 pu-analysis

To study in more detail the uncertainty descriptions mentioned
above, we designed p-optimal controllers for the example problem
in [10], but used the different Gy and W; from Table 1 in the
uncertainty description. It turns out that controller Cy (22 states)
designed for the larger set, grp, gives a lower ppp than controller
Ca (22 states) tuned for the smaller set, grp2. This demonstrates
that a smaller set not necessarily gives the best design.

We also compare controllers Cy and Cz with the optimal con-
troller from [8], Cunew, and the controller from (12], which we
denote Copr. The results are summarized in Table 2. Two p-
values are shown for each design: The first column shows the
prp-value for the uncertainty set used in the design of the con-
troller. The second column shows the ppp-value for the “tight”
complex uncertainty description, grsp (computed frequency-by-
frequency without any need to approximate gr3). Fig. 5 shows

Iwp) as a function of frequency for the “tight” uncertainty for
all four controllers (solid curves), and for controller Cppew and the
original uncertainty (dashed curve).

Controller Cynew is designed for the original uncertainty set,
and ppp for this controller increases when the “tight” set is used.
This demonstrates that the original set does not include all worst
case plants in the “tight” set. For example, +20% gain error and
1 min delay is not included. However, in the frequency range
0.1 <w < 1, the “tight” set gives lower pt(Ngp) than the original
uncertainty , showing that the original uncertainty allows “worst
case” plants outside the “tight” set (and thereby also outside the
parametric set) at these frequencies.

Corr is designed for the parametric uncertainty (Eq.16). We
cannot, compute prp exactly for this uncertainty (it would require
real &’s), however, this controller gives a high prp-value for the
“tight” set. Controllers Cy and C; are designed for uncertainty
sets which cover the parametric uncertainty and ppp for these

Table 2. Optimal prp-values for the design uncertainty and for
the “tight” complex uncertainty for four different controllers.

Controller design PRP design IRP tight
Cnew Eq.15 0.978 1.30
Corr Eq.16 - 2.36
Cy gnyp (Table 1) 1.04 1.05
C, g2y (Table 1) 1.12 1.12
2t 4
E Corr
1.5}
2 C
N\
T
] C 1 | S, SO SN <o N A W g
o’
C;mcm
0.5 - e e T
10 10 10 10 10 10?

Frequency [rad/min]
Figure 5. Solid curves: u(Ngp) for four different con-
trollers and “tight” uncertainty (grs,). Dotted curve: p(Nrp)
for controller Cynew and original uncertainty (Eq.15).

two controllers does not change very much when the uncertainty
is changed to “tight” uncertainty.

The differencies between the original uncertainty set and the
parametric set is also illustrated in Fig. 6. Here the worst case
plants for controller Cpnew applied to the original uncertainty set
are plotted in the complex plane. The worst case plants are com-
puted for 0.001 < w < 100 rad/min. Bach “*” mark the worst
plant in channel 1 at one specific frequency. The worst plants
in channel 2 are marked with “o”. At very low frequencies the
worst, plant is 0.8* in both channels. This plant is also allowed
by the parametric uncertainty. As the frequency increases, we see
that some of the worst case plants for the original set lie outside
the parametric sef, i.e., al these frequencies the original set is
conservative.

7 Simulations

Gimulations of set point changes for controller C, are shown in
Fig. 7, and are compared to responses for controller Cqpr in
Fig. 8. (Controller Cyeu gives essentially the same responses
as for controller C;). Responses are shown for the four corner
points as defined by the parametric gain uncertainty description
(Eq.16), and with a time delay of 1 min approximated by a second
order Padé approximation. In the simulations with controller Cy
we have used a prefilter

Cj - 1/(5S+1)ng2 (26)
for the set points. In the other simulation we used the filter by
Yaniv and Batlev (Fq.18).

The responses shows that C reaches the desired set point
much faster than Cgpr. Controller Copr is initially somewhat
less sensitive to the uncertainty, but shows a rather slow and
oscillatory settling towards the new steady-state. Indeed, this be-
havior may be expected from the p-plot in Fig. 5 where we sce
that the peak value occurs at a frequency w = 0.04 rad/min. In
the time domain this corresponds to a resonant sinusoid with pe-
riod T = 2x Jw = 150 min, and indeed, this is the period found in
the simulations. The better initial response may also be expected
from the p-plot, since p(Nrp) for Copr is lower than for Cy at
high frequencies.

%1 channel 1

o: channel 2
-2 -1 0 1 2 3

Figure 6. Worst case plants for controller Cpnew plotted
in the complex plane, frequency-by-frequency for 0.001 <
w < 100 rad/min. Solid disc: grip as w — o0. Region

between the dashed circles: parametric uncertainty (Eq.16)
as w — 0.

4The worst case for an inverse-based controller (a decoupler) is 0.8 and

1.2
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8 Discussion and Conclusions

In Section 5 we postulated a parametric gain-delay uncertainty
set as the “true” uncertainty. We then tried to minimize an un-
certainty set generated by a complex additive perturbation which
covers the “true” set. (If we had pole uncertainty we would proba-
bly have used inverse additive rather than additive perturbations.)
The common practice of specifying uncertainty as gain and de-
lay uncertainties, has probably to do with the popularity of first
order-dead-time models in process control. However, by restrict-
ing the uncertainty description into a specific parametric form we
may enlarge the set, sincc we have to choose parameter uncer-
tainties such that the actual worst case is covered. If we then
approximate the paramelric set with a complex norm bounded
set (for computational convenicnce), then the set is even further
enlarged.

A much better approach would be to consider the nominal
plant model and the uncertainty model as one unit. Both parts
of this unit should be defined together such that a minimal set is
achieved. It is very possible that discs in the complex plane will
approximate the actual uncertainty better than , for example,
parametric gain and delay uncerlainty does. In those cases where
this is true controllers designed by use of p for complex perturba-
tions would be less conscrvative than controllers designed for the
gain delay uncertainty.
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NOMENCLATURE

C(s) - controller

Cy(s) - set point filter

G(s) - MIMO linear model of process

g(s) - SISO linear model of process

k - gain

S(s) = (I + G(s)C(s))"" - sensitivity function
T(s) = G(s)C(s)(I 4+ G(£)C(s))™" - complementary sensitivity
W (s) - weight matrix

w(s) - weight scalar

[[N|leo = sup,, 6(N(jw)) - Hog-norm of N

A - perturbation matrix

§ - perturbation scalar (real or complex)
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Figure 7. Simulation of set point changes with various
input gains (ki, ky) using controller C; and prefilter £q.26.
All responses are with a 1 min delay (2" order Padé).

Yo 05} .

€x - magnitude of gain error
€9 - magnitude of delay error
0 - time delay (min)

u - structured singular value
prp = sup,, pz (Nrp(jw))

& - maximum singular value
w - frequency (rad min~1)
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Figure 8. Simulation of set point changes with various in-
put gains (ki, k2) using controller Copr and prefilter Eq.18.
All responses are with a 1 min delay (2°¢ order Padé).
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