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Understanding the Dynamic Behavior of Distillation Columns 
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The  dynamic behavior of a distillation column is approximated with a two time constant model. 
The response to  changes in the external flows is approximately first order with time constant 71.  

This dominant time constant can be estimated by using a simple mixing tank model for the column. 
The response to  changes in the internal flows is also first order, but ita time constant T~ is generally 
significantly smaller than 71. The condition number and the RGA are smaller a t  high frequency 
than a t  steady state. Most models presented in the literature do not take this into account. The 
two time constant model does predict this behavior, and 72 can be estimated by matching the RGA 
at  high frequency. Finally, it  is shown that the effect of nonlinearity is almost eliminated if logarithmic 
compositions In XB and In (1 - y ~ )  are used. In  particular, this applies to  the initial response which 
is of primary importance for feedback control. 

1. Introduction 
This paper is mainly concerned with understanding the 

composition response of distillation columns (Figure 1). 
Modeling the dynamic response of distillation columns is 
conceptually straightforward. Consider the simplest case 
with binary separation, constant relative volatility ( a ) ,  
100% tray efficiency, constant molar flows, and constant 
vapor or liquid holdups. The dynamic behavior of a col- 
umn with N theoretical trays and a total condenser is then 
described by N + 1 first-order differential equations (see 
Appendix). For tray i (which is not a feed tray, reboiler 
or condenser), 

Mi dxi/dt E Miii = Lxi+l + Vyi-1 - Lxi - Vyi  (1) 

where 
yi = CuXi/( l  + ( a  - l )xJ  (2) 

Solving this set of differential and algebraic equations on 
a digital computer is also straightforward (although com- 
puter times may be excessive for columns with a large 
number of trays and components). An early discussion on 
this is found in Rosenbrock (1957). However, even though 
the governing equations themselves are well-known, the 
understanding of the overall behavior of this set of equa- 
tions is not. I t  is known that the response is dominated 
by one large time constant, T ~ ,  which may be estimated by 
some "mixing tank" approach (Davidson, 1956; Moczek et 
al., 1963, 1965; Wahl and Harriot, 1970; Skogestad and 
Morari, 1987a). However, this dominant time constant 
generally does not apply when we make changes in the 
internal flows only (simultaneous increase in L and V). 
This will become evident from the discussion in section 
3. Furthermore, because of the nonlinear VLE relationship 
(eq 2), the response turns out to be strongly nonlinear, in 
particular for high-purity separations, and the value of the 
dominant time constant T~ may change drastically with 
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operating conditions (e.g., Skogestad and Morari (1987a)). 
The main objective of this paper is to gain insight into 

the dynamic behavior of distillation columns by developing 
simple analytical models. 'For feedback control, an accu- 
rate model of the plant is usually not needed. Rather, a 
model which includes the factors most important for 
feedback control (inverse responses, multivariable effects, 
and sensitivity to model uncertainty) is desired. Pin- 
pointing these factors is most easily accomplished with 
simple analytical models. We stress that these models are 
by no means intended to replace nonlinear simulations. 
Also, we stress that it is desirable that these models be 
analytic. Consequently, the models are not intended to 
replace low-order models which may be obtained by em- 
ploying standard model reduction techniques (including 
residualization, balanced realization, collocation methods, 
etc.). 

Internal and External Flows. Throughout the paper, 
we make use of the terms external and internal flows. A 
change in external flows is any change which changes the 
ratio D/B,  for example, an increase in flux L with constant 
boilup V. An increase in internal flows is accomplished 
by a simultaneous increase in L and V ,  while keeping the 
product rates, D and B,  constant. 

Linear Input-Output Model. For feedback control, 
we need an overall model that describes the effect of the 
inputs (flows) on the outputs (product compositions, Y D  
and xg) .  All results in this paper (gains, RGA values, etc.) 
are with reflux (L)  and boilup ( V )  as inputs (LV config- 
uration). We assume perfect level control. Distillate (0) 
and bottom flows (B)  are then manipulated to keep con- 
stant holdups in the condenser (accumulator) and the 
reboiler (column base). With the additional assumption 
of constant molar flows and with no feed disturbances (dF 
= 0)  this yields 

d D = d V - d L  dB=-dD (3) 
This does not imply that the LV configuration is the 
preferred choice for control purposes. The choice is made 
because L and V have a direct effect on compositions and 
their effect is therefore only weakly dependent on the 
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part corresponding to the closed-loop time constant, is of 
primary interest. The initial part of the time response 
corresponds to the high-frequency behavior (w - m) and 
the slow settling to the new steady state corresponds to 
the low-frequency behavior (w - 0) of G(jw).  

Scaling and Logarithmic Compositions. It  is con- 
venient to scale the plant such that the expected variations 
in each output (or input) are cmparable. Let yDo and xB0 
denote the nominal product compositions. To get outputs 
(i.e., deviations in yD and XB from their nominal values) 
of comparable ,magnitude, scale each composition with 
respect to the amount of impurity. For a binary separa- 
tion, the scaled outputs are 
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Figure 1. Two product distillation column with single feed and total 
condenser. Details are shown of the flows and holdups on a plate. 

tuning of the level loops. This makes it most natural to 
write the column model in terms of L and V as manipu- 
lated inputs. In the paper, we make extensive use of lin- 
earized models at  different operating points. These models 
are most conveniently written in terms of Laplace trans- 
forms 

(4) 

GLV(S) = C(s1 - A)-'B (5) 

where the matrices A, B, and C are obtained by linearizing 
the nonlinear model as shown in the Appendix. The fre- 
quency response of the plant is obtained by setting s = j w .  
Low- and High-Frequency Behaviors. The uncont- 

rolled (open-loop) response of, for example, the top com- 
position, YD, to a step disturbance in boilup, V (possibly 
caused by a disturbance in steam pressure), can be divided 
into an initial response, followed by a slow settling to the 
new steady state. When feedback control is used, the 
initial response to the disturbance is still the same, but 
then the control system takes action and brings YD back 
to its desired value. Therefore, for feedback control, the 
initial part of the open-loop response, and in particular that 

where AyD = yD - YDO, etc. Similarly, the inputs (AL and 
AV) are scaled with respect to the nominal feed flow rate. 
In terms of these scaled variables, the linear model (eq 4) 
becomes 

where the scaled transfer matrix is 

(Throughout this paper, we shall use F" = 1.) The loga- 
rithmic (relative) composition is defined as the logarithm 
of the amount of impurity of key component in each 
product. For the case of a binary separations, we define 
the logarithmic top and bottom compositions as 

Note that the desired output scaling (eq 7 )  is automatically 
obtained if we use logarithmic compositions since 

Ryskamp (1981) has proposed the use of logarithmic 
compositions as a simple means of making the plant less 
nonlinear. An analysis of eq 1 for the initial response 
provides theoretical justification for Ryskamps proposal. 
This is discussed in section 5. 

Example Columns. Throughout the paper, we make 
use of the seven example columns A-G introduced by 
Skogestad and Morari (1987a). Steady-state data for these 
columns are given in Table I. For all examples, we assume 
constant molar flows, no flow dynamics (constant holdup), 
and binary mixtures with constant relative volatility. The 
steady-state gain matrices GL,(O) = -CA-'B are given in 
Table 11. The poles of GLV(s) are equal to the eigenvalues 
of A. The time constants 7Ie and T ~ ~ ,  which are equal to 
the inverse of the two smallest eigenvalues of A, are given 
in Table 111. The assumed holdup on the trays is M i / F  
= 0.5 min in all examples. The holdups in the reboiler and 
conderser are also MDIF = M B / F  = 0.5 min, unless stated 
otherwise. 

Many results in this paper are derived from binary 
separations, and xi( yi) is the mole fraction of light com- 
ponent. The results generally hold for multicomponent 
mixtures if in the bottom section of the column xi( yi) is 
the mole fraction of light key component, and in the top 
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Table I. Steady-State Data for Distillation Column Examples. All Columns Have Liauid Feed (up = 1) 
column ZF cy N NF l - Y D  

A 0.5 1.5 40 21 0.01 
B 0.1 1.5 40 21 0.01 
C 0.5 1.5 40 21 0.10 
D 0.65 1.12 110 39 0.005 
E 0.2 5 15 5 0.0001 
F 0.5 15 10 5 0.0001 
G 0.5 1.5 80 40 0.0001 

Table 11. Steady-State Values of the Scaled Gain Matrix, 
the Condition Number. and the 1.1 Element of the RGA 

column 
A 

B 

C 

D 

E 

F 

G 

GLV’(O) 

90.191 -90.5 
( k 4 2 3  -16.0) 

-10.7 
(24:585 -24.2) 

21270 -21.3 

(9257 -9267 
(8648.94 -8646 ) 

11347.06 -11350 

229.2 47.5 

31.3 7.53 

234.9 58.7 

36.7 2.82 

2014 499 

6939 1673 

Table 111. Time Constants q and T~ (in Minutes) Used in 
Example 3. For Comparison Are Shown T~~ (Estimated 
from (16) for a Small Perturbation in L) and T~~ 

column r1 = rle 7 1 c  72 72e 

A 194 193 15 1 2  
B 250 252 15 11 
C 24 29 10 8 
D 154 150 30 23 
E 82 71 30 8 
F 2 996 2 996 4 5 
G 20 333 20 332 30 20 

section 1 - x i ( l  - yi) is the mole fraction of heavy key 
component. 

2. Singular Values, the Condition Number, and 
the RGA 

From a control point of view distillation columns are 
usually highly “interactive”. This means that a change in 
any input (e.g., L or V), generally affects both outputs (yD 
and xB). Furthermore, for multivariable plants, we gen- 
erally have the property that the outputs are more sensitive 
to some combination of inputs than to others. For exam- 
ple, for high-purity distillation columns, the product com- 
positions YD and X B  are very sensitive to changes in external 
flows but much less sensitive to changes in internal flows 
(Rosenbrock, 1962). We say that such a plant is ill-con- 
ditioned or equivalently has a strong degree of direction- 
ality. The objective of this section is to introduce some 
tools which are commonly used when evaluating interac- 
tions and directionality of multivariable systems. Readers 
who are mostly interested in the physics of distillation 
column dynamics might want to skip to section 3 a t  this 
point. 

Singular Values. Let the plant model be y ( s )  = G- 
( s )  u (s), where u denotes the plant inputs and y the out- 
puts. The maximum and minimum singular values are the 
maximum and minimum gains of the plant as the direction 
of the input ( u )  is varied: 

llGull2 
llullz 

g(G) = minufO - 

XB D I F  LIF “in ( L I f l m i n  
0.01 0.500 2.706 22.7 1.95 
0.01 0.092 2.329 22.7 1.82 
0.002 0.555 2.737 20.7 1.66 
0.10 0.614 11.862 66.1 7.76 
0.05 0.158 0.226 7.55 0.197 
0.0001 0.500 0.227 6.80 0.0971 
0.0001 0.500 2.635 45.4 2.00 

(Both of these are functions of frequency, but this is not 
shown explicitly to simplify notation.) 1 1 - 1 1 2  denotes the 
usual Euclidean norm, e.g., I l u ( j ~ ) ( ( ~  = (CkukGw)2)1/2. For 
distillation columns, Skogestad and Morari (1986) have 
shown that at  steady state the most sensitive direction of 
the input, u (corresponding to the maximum gain), is ob- 
tained by changing the external flows, and the least sen- 
sitive input direction is obtained by changing the internal 
flows. Consequently, with L and V as manipulated inputs, 
the most sensitive direction is found for dL = -dV and the 
least sensitive direction is obtained for dL = dV. This also 
holds at  higher frequencies as we show in section 6. 

Condition Number. The condition number is defined 
as the ratio between the plant’s maximum and minimum 
gain: 

r(G(jw)) = dG(jo))/n(G(jw)) (11) 

(It is possible to define r(G) in terms of other norms, but 
the induced 2-norm (singular values) used in (11) is most 
common.) A plant with a large value of r(G) is called ill 
conditioned. Physically this means that the gain of the 
plant is strongly dependent on the input direction. 

The singular values and condition number are scaling 
dependent. For correct interpretation of these quantities, 
the plant should be scaled such that outputs are of com- 
parable magnitude and the inputs are of comparable 
magnitude (this is obtained with the suggested scaling in 
(6) and (7)). The two measures defined next are scaling 
independent. 

Minimum Condition Number. The minimum con- 
dition number is the value of r(G) obtained when mini- 
mized over all possible input and output scalings: 

r*(G) = mins1,s2 r(SlGS2) (12) 

Here SI and S2 are diagonal matrices with real, positive 
entries. A large value of r*(G) has been suggested to imply 
a plant which is fundamentally difficult to control 
(Grosdidier and Morari, 1985). However, obtaining r*(G) 
numerically is not simple. Fortunately, there is a very close 
relationship between r*(G) and the magnitude of the el- 
ements in the Relative Gain Array. The RGA is defined 
below and is easy to compute. Thus, for practical com- 
putations, we recommend using the RGA rather than 
r*(G). 

RGA (Bristol, 1966). For 2 X 2 plants, the RGA is 
defined as 

where 

We define the 1-norm of the RGA as the sum of the ab- 
solute values of the elements: 

IIRGAIIl = CIAijI = 2Ihl l I  + 211 - (14) 
1 , J  
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0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500 
T I M E  ( m i n )  T I M E  ( M I N )  T I M E  ( m i n )  

A : AL/F" = O.OOO1, AV = 0 B : A V / F o  = 0.0001, A L  = 0 C : A L / F o  = A V / F o  = 0.001 

Figure 2. Column A. Responses to small changes in external (A and B) and internal (C) flows. Dotted lines for A and B: first-order model 
(eq 17) with time constant T~ = 194 min. Dotted line for C: first-order model (eq 19) with time constant T~ = 15 min. 

For 2 X 2 plants, llRGAlll and ?*(GI are always close in 
magnitude as seen from the following inequalities (Nett 
and Manousiouthakis, 1987; Grosdidier and Morari, 1985): 

Thus, the difference between lIRGAII1 and -y*(G) is at most 
one (since r*(G) 1 1) and goes to zero as y*(G) - m. 

A plant with large RGA elements is fundamentally 
difficult to control (e.g., Skogestad and Morari (1987~)): 
To have tight control of a multivariable plant, it is de- 
sirable to use a controller that inverts the plant. However, 
such a controller is extremely sensitive to uncertainty with 
respect to the magnitude of the inputs when the RGA 
elements are large. In particular, control problems are 
expected if the RGA has large elements around the 
crossover frequency (the frequency corresponding to the 
closed-loop time constant). Consequently, the high-fre- 
quency behavior of the RGA is as important for evaluating 
potential control problems as its steady-state value. 

3. Observations Regarding the Composition 
Response 

The dynamic response of most distillation columns is 
dominated by one large time constant, 71, which is nearly 
the same, regardless of where an input or disturbance is 
introduced or where composition is measured. This is 
well-known both from plant measurements (McNeill and 
Sachs, 1969) and from theoretical studies (Moczek et al., 
1963,1965). Furthermore, the value of this time constant 
is largely unaffected by the flow dynamics. 

I t  is somewhat surprising that the response of a distil- 
lation column with, for example, 100 trays, corresponding 
to a t  least a 100th-order model, may be adequately de- 
scribed by a simple first-order model. Skogestad and 
Morari (1987a) and others (Davidson, 1956; Moczek et al., 
1963, 1965; Wahl and Harriot, 1970) have studied this in 
more detail. They found that the main reason for the 
low-order behavior is the interactions between the trays 
which cause all trays to have essentially the same com- 
position response. This leads to the conclusion that the 
distillation column can be approximated by one large 
mixing tank, for which the dominant time constant, 7 1 ~  

(subscript c denotes change), is given by 
NT 

A ( C  Mixi) 
- - i=l  

DfAyD + BfAxB 7lC % 

chanee in holduu of one 
component &mol) 

imbalance in supplv of this (16) 
component (kmh-min-') 

perscript f) and initial (superscript 0) steady state. For 
example, AYD = Y D ~  - YD'. 

Example 1. Linear Responses for Column A. The 
agreement between (16) and observed responses is very 
good for columns with both products of high purity 
(Skogestad and Morari, 1987a). This is illustrated by 
Figure 2, where parts A and B show the response to small 
increases in reflux L (V  constant) and boilup V (L  con- 
stant) for column A. This column has 40 theoretical trays 
plus a condenser, and the exact model is 41st order. This 
response is compared with a first-order response with time 
constant of 194 min corresponding to the linear model (the 
steady-state gains are taken from Table 11): 

(17) 
0.878 -0.864 (2;) = ( 1.082 -1.096 ) (it) 

The agreement is so good that the dotted line corre- 
sponding to this approximation is hardly visible. The value 
of the time constant (194 min) was found by using (16), 
and in this case it is almost identical with the inverse of 
the smallest eigenvalue of the linearized model ( T ~ ~ ,  Table 
111). 

If we make small changes (disturbances) in the feed rate 
or feed composition for this column, we again find that the 
response is dominated by a first-order response with time 
constant T~ = 194 min. This confiims the initial statements 
made in this section that all inputs and disturbances yield 
similar dynamic responses. The only exception to this rule 
seems to be changes in internal flow. To illustrate this, 
consider the response to a simultaneous increase in L and 
V (D and B constant). If the model (eq 17) was correct, 
we would expect the following response (use dL = dV): 

1 0.878 -0.864 dL - (2:) = 1+194s(1.082 -1 *096) (dJ  - 
0.014 

This predicted response should be compared to the actual 
simulated response in Figure 2C. We see that the values 
of the steady-state gains (0.014 and -0.014) are correct. 
However, the time response is much faster than predicted 
from (18). In fact, an excellent fit is obtained with a 
first-order response with time constant 7 2  = 15 min (rather 
than the expected 71 = 194 min), corresponding to the 
linear model 

internal flows, (2:) = A( ) dL (19) dL = dV: 1 + 15s -0.014 

There is a fundamental difference in column behavior 
for changes in external and internal flows: changes in 
external flows have a large steady-state effect on compo- 

Here A represents the difference between the final (su- sitions, but the dynamicresponse is slow (time constant 
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7 1  = 194 min). Changes in internal flows have smaller 
effects on compositions, but the response is faster (time 
constant T~ = 15 min). The difference between external 
and internal flows with respect to their steady state effect 
(gains) has been known for a long time (Rosenbrock, 1962). 
However, somewhat surprisingly, the difference in their 
dynamic behavior does not seem to have been reported 
previously. The reason is probably that the “direction” 
corresponding to changes in the internal flows is very 
difficult to observe because of the small gain. For example, 
we showed in the simulations that it is almost impossible 
to detect this effect when we make changes in L and V one 
at  a time (Figure 2, A and B)-a simultaneous change DJ, 
= AV was needed (Figure 2C). Furthermore, in a real 
column it is highly unlikely that we would even be able 
to observe the predicted (Figure 2C) effect of changes in 
internal flows: it is almost impossible, in practice, to in- 
crease L and V by the same amount, and any imbalance 
from A,?., = A V  will yield a change in external flows (AD 
= A V  - A,?.,) which has a much higher gain and will 
Lherefore dominate the response. 

The observation that (16) does not apply to changes in 
internal flows is not too surprising from its derivation 
(Skogestad and Morari, 1987a). In fact, for changes in the 
internal flows (AD = AB = 0), the denominator in (16) 

DfAYn + B f A X ~  = ~ ( F Z F )  - YD”AD - X D ” ~  

is identically zero, and (16) clearly does not apply. 

4. A Simplified Dynamic Model Based on 
Internal and External Flows 

In this section we propose a simple two time constant 
model based on the observations above regarding the 
fundamental difference in time responses for changes in 
internal and external flows. We neglect flow dynamics by 
assuming constant holdups. However, the flow dynamics 
may simply be added on to the model (see section 9) if it 
is written in terms of reflux (L )  and boilup (V) as inputs. 
The reason is that the flow dynamics are independent of 
the composition response (this is not quite true for non- 
ideal mixtures where the assumption of constant molar 
flows does not apply), and conversely, the composition 
dynamics are only weakly dependent on the flow dynamics 
when L and V are used as inputs. 

The steady-state model with L and V as manipulated 
inputs is 

(20) 

In order to model explicitly the difference in dynamic 
behavior between internal and external flows, we will for 
the moment consider V and D as manipulated inputs. 
Assuming perfect level control and constant molar flows 
(eq 3), we find 

(g,, + g12 -gn)( g) (21) 
g21 + g22 -g21 

To get a dynamic model, make the following assumption: 
Modeling Assumption. The  response to  changes in 

the external flows (D i n  (21)) is first order with t ime  
constant T ~ .  T h e  response to changes in internal flows 
(V i n  (21)) is first order with t ime constant T ~ .  

Figure 3. Coiumn A. Relative difference between low-order ap- 
proximations G and 4lst-order plant G (eq 5). 

With this assumption, we derive the following dynamic 
model from (21): 

Switching back to L and V as manipulated inputs, and 
assuming d D ( s )  = dV(s) - d L ( s )  (eq 3), we finally derive 

g11 a+(---) g11 + g12 g11 d V  
dyD = 1 + 72s 1 + 71s 

(23) 
dxg = - g21 a+(---) g21 + g22 g21 d V  

1 + 71s 1 + 72s 1 + 71s 

This two time constant model requires three pieces of 
information: The steady-state gains (gii) and the time 
constants r1 and 7 2 .  This simple model is obviously not 
an accurate description of all distillation columns, but may 
be adequate for controller design. The model is most 
accurate when the reboiler and condenser holdups are 
small as discussed in section 9. Note that a slightly dif- 
ferent form of the model (eq 23) is obtained if, for example, 
L and D are used instead of V and D in (21). These dif- 
ferences are believed not to have any significance. 

Example 2. Two Time Constant Model for Column 
A. With the values T~ = 194 min and r2 = 15 min proposed 
in section 3, eq 23 becomes 

The agreement between this model and the exact 41st- 
order model is excellent for small perturbations, as we 
showed _with the simulations in Figure 2. The relative error 
a((G - G)G-’) between the two time constant model (eq 
24) (denoted by G) and the full linear 4lst-order model 
(denoted by G )  is shown as a function of frequency in 
Figure 3. I t  is clear that G (eq 24) is an excellent ap- 
proximation of G up to about a frequency of 1 min-’. On 
the other hand, the one time constant model (eq 17), which 
corresponds to the choice r1 = r2 = 194 min, gives a very 
poor approximation (dotted line in Figure 3). 

Note that without the seemingly negligible “correction 
terms” (1 + lZ.ls)/(l + 15s) and (1 + 17.3s)/(l + 15s) the 
response to changes in the internal flows would have a time 
constant of 194 min instead of the observed 15 min. In 
the literature, each transfer matrix element in (23) is often 
approximated by a first-order lag with time delay @e”/ (1 
+ 7s)) where g is obtained by matching steady-state data. 
I t  is clear that, unless special care is taken, it is very un- 
likely that such a model will be able to capture the dif- 
ference in time constants between external and internal 
flows. 

Example 3. Singular Values and RGA for Columns 
A-G. “Full” linear models of the seven example columns 
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O1 

01 

01 

Figure 4. Singular values and llRGAlll as a function of frequency 
(l/min.2) for columns A-G. Dotted lines: approximation using two 
time constant model (eq 23) with data from Tables I1 and 111. 

were obtained by linearizing the tray-by-tray model as 
shown in the Appendix. Figure 4 shows the singular values 
(using scaled compositions, eq 6) and IlRGA as a function 

but its value is equal to the difference between the curves 
of a(GS) and g(Gs)  and it is close to llRGAlll for our ex- 
amples.) In all cases, the condition number and the RGA 
are lower a t  high frequencies than at  steady state. The 
dotted lines in Figure 4 are the approximate values ob- 
tained with the simple two time constant model (eq 23). 
The steady-state gain matrices needed in (23) were taken 
from Table I1 (these are the exact linearized gains), and 
the time constants 71 and 72 used are given in Table 111. 

of frequency. (The condition number r(G $I ) is not shown, 

0 2 I 6  8 1 0  
T I U E  ( m i " )  

0 100 200 300 4 0 0  5 0 0  
T I W E  ( m i n )  

- 4 L / F o  = 0.0001, 4 V  = 0 

- - - 4 L / F "  = 0.1, AV = 0 

Figure 5. Column A. Unit responses to a small and large increase 
in reflux, L. 

0.015 

-0.01 -0.01 

-0 .015 -0.015 

0 100 200  300 400 500 0 2 4 6 S 1 0  
T I M E  ( m i n )  T I M E  ( m i n )  

- 4 L / F 0  = 4 V / F o  = 0.001 

- - - 4 L / F "  = 4 V / F o  = 1 

Figure 6. Column A. Unit responses to a small and large increase 
in internal flows. 

T~ was chosen to be equal to T~~ (the inverse of the smallest 
eigenvalue), and 72 was adjusted by trial and error to get 
a good fit to the singular value and llRGAlll plots in Figure 
4. We see from Figure 4 that the agreement between the 
full-order model and the simple two time constant model 
(eq 23) is generally very good. This provides further 
justification for the validity of this simple model. Note 
that if a one time constant model were used (rl = r2), then 
we would predict constant values of the condition number 
and the RGA as a function of frequency, which is clearly 
not correct. 

5. The Effect of Nonlinearity 
We found in the examples above that the simple two 

time constant model (eq 23) provides a very good ap- 
proximation of the full-order linear model. However, 
distillation columns are known to be strongly nonlinear 
(e.g., Moczek et al. (1963,1965) and Fuentes and Luyben 
(1983)), and one might question the usefulness of a linear 
model such as (23). The results in this section show that 
the use of logarithmic compositions effectively counteracts 
the nonlinearity and that a linear model may still be ad- 
equate if it is written in terms of logarithmic compositions. 

5.1. Observations. The effect of nonlinearity is il- 
lustrated by the following two examples. 

Example 4. Nonlinear Responses for Column A. 
Figures 5 and 6 show the unit responses AyD/hL  and 
A x B / u  to small and large changes in external (hL # 0, 
AV = 0, Figure 5) and internal flows (hL = AV, Figure 6). 
If the column were linear, these unit responses would be 
independent of the magnitude of AL,. This is clearly not 
the case for large simulation times (steady state), but note 
that the initial unit responses are almost independent of 
the magnitude of AL,. 

However, there are also other sources of nonlinearity; 
the most important is probably a change in operating 
conditions. Within a linear framework, one way of stud- 
ying the effect of changing operating conditions is to study 
how the linearized model changes. 

Example 5. Operating Points A and C. Columns A 
and C actually represent the same column, but a t  two 
entirely different operating points. The product compo- 
sitions for column A are 1 - Y D  = XB = 0.01. Column C 
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Figure 7. Relative difference between scaled linear models for 
columns A and C. 

is obtained by changing D I F  from 0.500 to 0.555, which 
yields 1 - YD = 0.10 and XB = 0.002. We found in example 
3 that the linear model a t  these two operating points is 
adequately described by the two time constant model (eq 
23) with data for the gains and time constants as given in 
Tables I1 and 111. We have for column A T~ = 194 min and 
T~ = 15 min, and for column C T~ = 24 min and T~ = 10 
min. Consider the linear model for the steady state (low 
frequency, w = 0) and for the initial response (high fre- 
quency, w - m). For the case with unscaled (absolute) 
compositions (yD and x g )  as outputs, we find 

steady state initial response 
GLV(O) = GLV(=)  = 

87.8 -86.4 ) ?( 0.45 -0.36) 
A' 0*01 (108.2 -109.6 0.56 -0.65 

160.2 -160.0) - O.:l( 6.5 -6.5 ) 
': o'ol( 1.87 -2.15 0.08 -0.10 

We see that the steady-state gains change by almost 2 
orders of magnitude from operating point A to C. The 
transfer function elements for the initial response change 
by about 1 order of magnitude. With such large changes, 
it would seem almost impossible to find a single linear 
controller that yields acceptable responses at  both oper- 
ating points. In particular, the large change in the initial 
response is disturbing, because this part is generally most 
important for feedback control. 

Next, consider using logarithmic compositions ( YD and 
X,) as outputs (corresponds to scaling the gain elements 
as shown in (7b)). This is suggested by Ryskamp (1981) 
as a means to make the responses less nonlinear. Indeed, 
we do find that this is the case, as seen from the following 
data: 

steady state initial response 
GLV'(O) = GLV'(=) = 

A: (87.8 -86.4 ) i (0 .45 -0.36) 
108.2 -109.6 s 0.56 -0.65 

16.0 -16.0 1 0.65 -0.65 
': (9.3 -10.7) s(O.38 -0.52) 

There is still a large change in the steady-state behavior 
from operating point A to C, but the change is reduced 
about 10 times compared to the case with absolute com- 
positions. At high frequency, their is almost no change in 
the plant model as we go from A to C. This is also seen 
from Figure 7 which shows the relative difference between 
the linearized scaled models for columns A and C; the 
models are almost identical a t  higher frequencies. This 
implies that, even though the steady-state behavior is quite 
different, the initial response in terms of logarithmic 
compositions is similar. This, in turn, indicates that, when 
logarithmic compositions are used for control, a single 
linear controller may yield acceptable performance at  both 

operating points. This is indeed confirmed in a simulation 
study by Skogestad and Morari (1988). 

The above example indicates that the use of logarithmic 
compositions effectively eliminates nonlinearity a t  high 
frequency. The objective of the remainder of this section 
is to prove that this is a general result that holds for any 
column. 

5.2. Predicted Nonlinear Initial Responses. In this 
section we want to prove the following claims: 

(1) The initial unit response of Axi (Axi may be the 
composition on any tray) is independent of the magnitude 
of AL and AV. 

(2) The initial unit response of Axi is independent of the 
operating point if relative (logarithmic) compositions are 
used. 

Proof of (1). Assume constant molar flows and constant 
holdup. The component material balance for tray i at 
steady state is (tray i is any tray except a feed tray, re- 
boiler, or condenser) 

A4.i. 1 1  = 0 = L?(Xi+1O - x?) + ViO(yi-1O - y?) (25) 

Assume a step change is made in Li and Vi such that the 
flows for t > 0 are L: + ALi and V? + AVi. We have 

(26) 
Immediately following this change, we may neglect sec- 
ond-order effects and assume the tray compositions to be 
unchanged; i.e., x i  = x?. Subtracting the steady state (eq 
25) then yields (Rademaker et al., 1975, p 129) 

( t  = 0+): 

M . i ,  1 1  = (L: + ALi)(~i+l - xi) + (Vi0 + AVi)(yi-1 - yi) 

Miii = - x?)ALi  - (y? - yi-lo)AVi (27a) 

Similarly, using AB = ALB - AVB, we derive for the reboiler 
(XB = X I )  

( t  = O+): 

MBi1 = ( x Z O  - x I 0 ) A L B  - ( Y 1 O  - xlo)AVB (27b) 

and using hD = AVT - UT, we derive for the total con- 
denser (note that yTo = yDo at steady state) 
( t  = Of): 

MDYD = (YD" - YDO)ALT - ( Y D O  - YTO)AVT = 0 ( 2 7 ~ )  

Note that eq 27 are linear in ALi and AV,. This explains 
why the initial unit responses in example 4 were inde- 
pendent of the magnitude of L and V. 

Comment. Equations 27 show that the response at high 
frequency is essentially first order. Furthermore, we know 
that for a column with N trays there are N poles if only 
the composition dynamics are considered. Consequently, 
each transfer function must have exactly N - 1 zeros (Kim 
and Friedly, 1974). 

Proof of (2). Use the steady-state relationship (eq 25) 
to eliminate (Yi-lo - y?) in (27a). We find the initial re- 
sponse 
( t  = 0+): 

The initial response in terms of xi  is strongly dependent 
on the operating point. This follows since the term (xiflo 
- x i o )  is strongly dependent on the operating point. 
However, from example 5 we expect the response to be 
much less dependent on operating conditions if logarithmic 
compositions are used. To this end rewrite (28) as follows: 
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effect makes the overall time constant T~ much larger than 
the composition time constant T= = Mi/(Li + KiVi) of an 
individual tray. 

Reboiler and Condenser. Equations 34 do not apply 
to the reboiler and condenser. Assume perfect level control 
and total condenser. We derive from (27b) and (27c) ( t  
= O+) 

reboiler: 

for the bottom section of column ( t  = 0'): 

Similarly, for the top section ( t  = O+): 

- - x i  d In (1 - x i )  - -  - -  
1 - x i  dt 

Mi I( 1 - %)( Ui - $AVi) (29b) 

Our observations from example 5 must imply that the ratio 
xi+lo/x? is only weakly dependent on operating conditions 
in the bottom part of the column and that the ratio (1 - 
X ~ + ~ O ) / ( ~  - x?) is nearly constant near the top of the col- 
umn. This is indeed correct as is shown below. 

Consider the bottom section of the column. Assume that 
the equilibrium and operating lines are linear in this sec- 
tion: 

yi" = KBx? (30) 

These assumptions are reasonable for most columns, in 
particular near the bottom for high-purity columns. 
Combining (30) and (31) yields 

The second term is negligible as we go up the column, and 
it is also small near the bottom for columns with V/B > 
1. We get 

xi+i0/xiO = (v/L)$(, (33) 
We see from (33) that in the bottom section xi+lo/xr is (a) 
independent of the tray location and (b) only weakly de- 
pendent on the operating point (since KB and (V/L)B are 
only weakly dependent on the operating point). Substi- 
tuting (33) into (29a) yields 
bottom section ( t  = 09: 

A similar expression is derived for the top section where 
for binary mixtures (1 - yi) i= KT(1 - x i )  

top section (t = O+): 

x i  

- 1 - x i  = Mi I( 1 - hLi - ( $),AVi) (34b) 

Note that for the case of constant relative volatility, CY,  

we have KB = KT-l= CY. The terms on the right-hand side 
in eq 34 are only weakly dependent on operating condi- 
tions. This proves claim 2. Furthermore, we note that the 
initial response in terms of logarithmic compositions is 
almost the same for any tray in the top (or bottom) part 
of the column. 

Range of Validity of (34). Second-order effects were 
neglected when deriving (34). However, from (34a) and 
(34b), we see that all trays in a column section have similar 
initial responses. This implies that the terms (xi+l - x i )  
and ( yi - yi-l) in (26) are kept approximately constant, and 
the interactions between the trays will prolong the slope 
of the initial response predicted by (26) (and (34)). This 

condenser: 

A = O( A L T  - ( $),AVT) 
1 - Y D  

(35b) 

Note that iB predicted from (35a) is larger than from (34a) 
with Mi = MB. From (35b) we predict that j l D  is initially 
zero because a change in L and V has no direct effect on 
the composition in the condenser. However, note from 
Figure 5B that the observed initial slope for YD is not zero 
(at least not for t > 7, = 0.1 min). The reason for the 
discrepancy is the "second-order effects" (change in YT) 
which are neglected when deriving (35b). For columns with 
small reboiler and condenser holdup, the following exam- 
ple shows that the interactions with the other trays dom- 
inate and (34) may in fact also give a good approximation 
of the initial response in the reboiler and condenser. 
(However, if the holdup is large, then the response for YD 
is approximately second order and the initial slope is in- 
deed zero; see example 8 below). 

Example 6. Column A (Small Condenser and Re- 
boiler Holdup, MD/F = MB/F = Mi/F = 0.5 min). The 
slopes of the initial unit response to a change in reflux 
obtained from (34a) and 34b) are 

0.0042 (36b) 

These are very close to the observed values in Figure 5. 

6. I11 Conditioning at High Frequency 
The expressions (eq 34) for the initial response assuming 

constant molar flows may be used to obtain some very 
interesting insights into the plant behavior a t  high fre- 
que n c y . 

6.1. Most Sensitive Direction. Consider small 
changes in reflux and boilup; i.e., let A& = dL and AVi = 
dV. Recall that at steady state the maximum gain is found 
when dL = -dV, corresponding to changing the external 
flows, and the minimum gain is found when dL = dV, 
corresponding to changing the internal flows. The same 
also holds at high frequency for most columns as is shown 
next. In the bottom section of the column, we see from 
(34a) and (35a) that the minimum initial effect on com- 
position (zero effect) is found when dL/dV = (L/V),. 
Similarly, from (34b) and 35b) we see that the minimum 
effect on composition in the top section is obtained with 
dL/dV = (L/V)T. Since (L/V)T < 1 and (L/V)B > 1, the 
minimum gain (combined effect on YD and xB) is obtained 
for 

(37) (L/v) ,  < a / d V  < (L/V)B 
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For liquid feeds (L/ V), = (L/ V), + F/ V. Thus, with the 
possible exception for columns with large values of F /  V 
(small reflux), we will always find the minimum gain for 
dL = dV. (This proves that dL = -dVcorresponds to the 
maximum gain since (i) and (fl) are orthogonal.) Since the 
simple two time constant model (eq 23) yields indeed the 
minimum gain for dL = dV at all frequencies, this provides 
a further justification for using (23). 

6.2. Variation of RGA with Frequency. The fre- 
quency dependence (sets = j w )  of All predicted by the two 
time constant model (eq 23) is 
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where 

For columns with a pure top product, g2,/gZ2 = -1 (Sko- 
gestad and Morari, 1987d), and E = 0. Indeed, Figure 4 
shows that eq 38a with E = 0 is a good approximation for 
most columns. 

Low Frequency. The RGA values at  low frequency are 
mainly determined by the purity of the least pure product. 
This follows from the following approximation for Xll(0) 
for the LV configuration which applies to binary mixtures 
with both products of high purity and liquid feed (Sko- 
gestad and Morari, 1987d): 

(39) 

Here the “impurity sum” 
I s  = BxB(1 - XB) + D Y D ( ~  - yD) (40) 

depends strongly on operating conditions, and its value is 
determined by the purity of the least pure product. I, - 
0 and Xll(0) - when both products are of high purity. 

High Frequency. We want to estimate All = (1 - K ) - ~  

at high frequency. Here d j w )  = (921/g~2)/(gll/gl~)(jw) and 

At high frequency these ratios are given by the ratio be- 
tween the slopes of the initial response of XB (and yD) to 
changes in L and V. From (34a) and (34b), we get (these 
apply to the entire bottom and top part of the column) 

(42) 

~ ( m )  = (L/V)T/(L/V)B (43) 

kZl/g22)(“) = -(v/L)B (g11/g12)(m) = -(v/L)T 

and we derive 

This derivation does not depend on the amount of holdup, 
and therefore we expect Xll(m) to be almost independent 
of condenser and reboiler holdup. For the case of constant 
molar flows and feed as liquid (LB = LT + F, VT = VB), 
we find ~ ( m )  = LT/LB and the RGA becomes 
feed liquid: 

All(..) = 1 + L / F  (44) 
which gives 

(45) IIRGA(m)II1 = 4- + 2 

For the seven examples, the agreement between the RGA 
values estimated from (45) and those obtained from the 

L 
F 

Table IV. Estimate (Equation 45) of I(RGA((1 at High 
Frequency ( w  = m) 

column IIRGA(m)lli obsd 4(LIF) + 2 (eq 45) 
A 12.83 
B 11.32 
C 12.95 
D 49.10 
E 2.90 
F 2.91 
G 12.54 

12.82 
11.32 
12.94 
49.44 

2.90 
2.91 

12.54 

full linearized model is excellent (maximum error is less 
than 1% for the seven cases; see Table IV). From (44) 
we conclude that large reflux (L/F >> 1) is necessary for 
the column to have large RGA values a t  high frequency. 

Is it possible to have larger RGA values at  high fre- 
quency than a t  low frequency? This would require r2 > 
r1 in the model (eq 23) and thus does not seem likely. In 
fact, we have not been able to find any examples of col- 
umns which exhibit Xll(0) < Xll(m). (One column which 
has hll(0) and Xll(m) close together is the following: ZF = 
0.65, YD = 0.9, XB = 0.002, a = 1.12, N = 110, and NF = 
39. This yields L / F  = 49.6, Xll(0) = 57.7, and Xl1(m) = 1 
+ L / F  = 50.6.) 

6.3. Implications for Control Purposes. For control 
purposes, it is bad if the RGA values are large either at  
low or high frequencies. We conclude from (39) and (44) 
that the worst columns to control using the LV configu- 
ration are those with large reflux and with both products 
of high purity. For most well-designed columns, the reflux 
L / F  is about 5 5 0 %  highei than (L/F)min. For binary 
mixtures with constant relative volatility and feed liquid, 
the minimum reflux ratio is approximately (LID),, = 
( l / ( a  - l)(l/zF) (e.g., Henley and Seader (1981)). For most 
columns, D = FzF, and we derive 

1 Min = cu-l (46) 

This means that, in industrial columns (which hopefully 
are reasonably optimal), large RGA values at  high fre- 
quency are observed only for columns with relative vola- 
tility, a, close to one. Furthermore, such separations 
usually require a large number of trays (e.g., column D). 
This follows since most well-designed columns have N = 
ZN,, where 

(47) 

and In a is small for a close to one. To observe large RGA 
values throughout the frequency range in a university 
column, which usually has few trays, one should use sys- 
tems with high relative volatility (to get high-purity 
products) and operate (nonoptimally) at  high reflux. 

7. Estimates of Time Constants T~ and T~ 

7.1. Estimate of Dominant Time Constant, T ~ .  There 
are at  least five methods for estimating the dominant time 
constant, rl: (i) plant data, (ii) simulations, (iii) eigenvalue 
of linearized model, (iv) simple mixing tank model, and 
(v) initial response. I t  is relatively easy to observe r1 from 
plant data (method i), but simulations (method ii) are 
preferable because they give a consistent set of values for 
the gains and rl. When simulations are employed, 
steady-state plant data should be employed to estimate 
the number of theoretical trays (N),  and dynamic plant 
data could be used to estimate tray holdups. Method iii 
relies on a linearized model, and T~ is approximately equal 
to the inverse of the smallest eigenvalue of the state matrix 
A. A linear model may be obtained analytically for simple 
cases (e.g., constant relative volatility and constant molar 

Nmin = In S/ ln  a 
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flows; see Appendix) but must generally be obtained by 
numerical differentiation. 

Mixing Tank Model (Method iv). The mixing tank 
approach yields the estimate (eq 16) for the dominant time 
constant. In addition to holdup data, steady-state data 
for the initial (0) and final (f) states are required. These 
steady-state data may be obtained from a simulation 
program. However, to gain insight into the expected 
variations in T ~ ,  an analytical expression is preferable. On 
the basis of (16), Skogestad and Morari (1987a) have de- 
rived an analytical expression which is valid for high-purity 
binary separations and small perturbations to the column: 

+ + (48) 

Here MI is the total holdup inside the column, MD and MB 
are the condenser and reboiler holdups, and S is the sep- 
aration factor. The first term in (481, which represents the 
contribution from changing the component holdup inside 
the column, dominates for columns with both products of 
high purity (1 - y~ and X B  both small). Note that I, may 
be extremely small in such cases, resulting in very large 
values of T~~ This agrees with the observations of Fuentes 
and Luyben (1983). The reader is encouraged to study the 
paper by Skogestad and Morari (1987a), who dicuss (16) 
and (48) in detail. 

Matching Initial Response (Method v). Recall that 
the simple two time constant model (eq 23) predicts that 
each transfer function element by itself is approximately 
first order with time constant T ~ .  Assume that the simple 
model (eq 23) is valid also for the initial response. Then 
T~ can be estimated by equating (23) with the initial re- 
sponse derived in (34). The initial slope ( t  = O+) derived 
from (23) is (use f - ' ( s  dyD} = YD and let s - a): 

MI MD.YD(1 - yD) MBxB(1 - x B )  

71c = I m  Is Is 

L,, 72 71 

Note that (23) is most accurate for the case with small 
reboiler and condenser holdup (see section 8). This is 
exactly the case for which (34) gives a good estimate of X B  
and yD (recall example 6). Equations 34 yield ( t  = O+) 

where kT = 1 - (V/L)T/a and kB = (V/L)Ba - 1. 
Example 7. Column A. Equation 49 yields 

( YD) - - (0.0045 -0.0036) 
i B  0.0056 -0.0065 

From (50) with M J F  = 0.5 min 

0.0042 -0.0036) (52) (:I) = (0.0060 -0.0069 

The consistency between (51) and (52) is excellent for this 
particular example. This shows that the simple two time 
constant model (eq 23) is indeed valid a t  high frequency 
for this column. Skogestad (1987) has shown that this is 
generally true for high-purity columns with large reflux 
(L/  V close to one). 

Table V. Two Estimates of the Dominant Time Constant 
(Minutes) 

column 71e 71i (eq 54) 
A 194 206 
B 250 284 
C 24 40 
D 154 202 
E 82 154 
F 2 996 6 821 
G 20 333 20 858 

T~ may now be estimated by matching (49) and (50). 
This approach is also suggested by Rademaker et al. (1975, 
p 137). For example, matching YD/dL in (49) and (50) 
yields 

In terms of scaled gains c911' = gll/l - yD) 

(53) 

(54) 
1-- 

a 
(The subscript i on T~ denotes that it is derived by 
matching the initial responses.) Note from (54) that the 
ratio Tli/gllS is almost independent of operating conditions 
(although T~ and glls individually may change signifi- 
cantly). Other relationships result if we try to match other 
elements in (49) and (50), but the resulting ~~i is about the 
same. Because condenser holdup was neglected when 
deriving (50), M, in (54) represents the holdup on a tray 
inside the column. ~~i computed from (54) is compared 
to 71e (the dominant time constant corresponding to the 
largest eigenvalue) in Table V. As expected, T~~ and T~~ 

are very similar for columns with high purity and/or large 
reflux. For these columns (A, B, D, and G), we conclude 
that the entire composition response is indeed well ap- 
proximated by a first-order model. For cases with T~~ > 
71e, the initial response is somewhat slower than expected 
from 71e, indicating a more complicated behavior than a 
pure firsborder response. However, the difference between 
T~~ and T~~ is a t  most a factor of 2 for the seven columns, 
and the assumption regarding first-order response is jus- 
tified. 

7.2. Estimate of Internal Time Constant, T~ We 
suggest two methods for obtaining T ~ :  (i) simulations and 
(ii) initial response. 7 2  may be obtained from simulations 
of changes in the internal flows (Figure 2C). It  is not 
recommended to obtain 72 from plant data since it is al- 
most impossible, in practice, to carry out test runs for 
changes in the internal flows without changing the external 
flows (because of flow uncertainty and disturbances in feed 
rate, boilup, etc.). Also recall from parts A and B of Figure 
2 that the small time constant ( T ~ )  was not detectable from 
the individual responses to changes in reflux (L) and boilup 
(VI.  

T~ by Matching Initial Response. In addition to T ~ ,  

we may also estimate 7 2  by matching (49) and (50). One 
way of doing this is to match the RGA of (49) and (50). 
The 1,1 element of the RGA is All = (1 - K)-' .  Equation 
49 yields 
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Table VI. Comparison of Ratio iJiZ Used in Examples 3 
and Estimate (Equation 56) Obtained by Matching the 
High-Frequency Behavior 

column r2 / r1  (Table 111) (rl/il)i (eq 56) 
A 0.077 0.092 
B 0.060 0.069 
C 0.408 0.420 
D 0.195 0.218 
E 0.364 0.434 
F 0.001 33 0.001 39 
G 0.001 47 0.001 92 

Equation 50 yields ~ ( m )  as given in (43). The ratio r1/r2 
may now be estimated by equating (55) and (43): 

For the special case of liquid feed, 

(:)i = .(e F gii -%) gzi + (1 + 2)  (56b) 

(subscript i denotes initial). This ratio is shown in Table 
VI for our seven examples and is compared with the actual 
value used in example 3 (Figure 4). The agreement is 
obviously good since r2 in example 3 was derived partially 
based on matching the RGA values. 

An explicit formula for rZi is obtained as follows: (55) 
yields for the case gz1/g2, = -1 (holds for columns with a 
pure top product): 

(57) 

Substituting the approximations (eq 39 and 44) for XI1(O) 
and All(m) into (57) and using r1 = MI/18 In S (eq 48) yields 

N MI 
TZi = - - 2 In S LT feed liquid: 

(replace LT by LB for columns with a pure bottom product, 
i.e., for BxB < D(1- YD)). Well-designed columns have L I F  
about 1.25 times higher than (L/F),in and N/Nmin = 2. 
Using (46) and (47) we then get that for well-designed 
columns 

rZi = 0.8(a - l ) / ( ln  a)(M1/F) (584 

72i  MI/F (58b) 

when a is less than about two. The analytical formula (eq 
58) applies to columns with both products of high purity. 
The agreement between (58) and the values for r2 in Table 
111 is good. However, for practical calculations we recom- 
mend using (56) to estimate r2, rather than (58)) in order 
to get consistent values for r1 and r2. One important point 
to note about (58) is that it predicts r2 to be only weakly 
dependent on operating conditions. 

8. The Effect of Reboiler and Condenser Holdup 
Example 8. Column A. All examples considered so 

far have had negligible reboiler and condenser holdups. 
However, the responses may depend strongly on the 
amount of holdup as seen from Figure 8: Curve 1 shows 
the initial response in yD to a small change in reflux, L, 
for a column with Mi/F = 0.5 min on all trays including 
the condenser. This response is closely approximated by 
(17): dyD = 0.878/(194s i- 1) dL. Curve 2 shows the 

or 
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Figure 8. Column A. Effect of condenser holdup, MD, on initial 
response of yo to a small increase in reflux (&IFo = 0.0001). 
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Figure 9. Column A. Effect of reboiler and condenser holdup on 
singular values and RGA. 

response with the same holdups inside the column, but 
with MD/F increased from 0.5 to 32.1 min. The initial 
response is significantly more sluggish than estimated from 
(17). To derive a better approximation, we argue as fol- 
lows: The composition yD in the condenser is not directly 
affected by the reflux, L (recall eq 27c),  but the compo- 
sition YT in the overhead vapor is. The effect of YT on YD 
is given by a first-order response with time constant iD = 
MD/ VT = 10 min. The following approximation to curve 
2 is then derived (shown as curve 3) 

dL 0.878 
dyD = (10s + 1)(194s + 1) (59) 

Figure 8 shows that this is a much better approximation 
than curve 1. 

From Figure 9 (right) we see that the value of the RGA 
is hardly affected a t  all by adding the reboiler and con- 
denser holdups. This confirms the comments made fol- 
lowing eq 43. On the other hand, the singular values do 
change significantly. Again, from the dotted line in Figure 
9 we see that (59) provides a reasonable way of taking into 
account the effect of condenser holdup. 

Approximate Model with Reboiler and Condenser 
Holdup. To include the real case with reboiler and con- 
denser holdup, we propose to simply "add onn two lags for 
the condenser and reboiler to the model (eq 23) 

where TD = MD/VT and TB = MB/LB. In most cases, TD 
is larger than iB. 

Overhead Vapor Responses. In practice, composition 
may not be measured in the condenser bD), but rather in 
the overhead vapor (YT). Curve 4 on Figure 8 shows that 
the initial response for YT is much faster than that of yD 
(for the case with large condenser holdup) and that i t  is 
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Equation 62c is derived by repeated combination of the 
following two equations for each tray (Rademaker et al., 
1975) 

dLi = (dLi/dV),  dV + (dLi/dMi)v d M i  = 
1 

7 L  
X dV + - dMi (64a) 

dMi/dt = dLi+l - d L i  (64b) 

and approximating the response of N equal lags in series 
by a dead time equal to the sum of the lags 

reasonably approximated by curve 1 (eq 23). 
Temperature Responses. Temperatures measured 

somewhere away from the top and the bottom are often 
used to infer compositions. These temperatures have a 
dynamic response that is only weakly dependent on MD 
and MB and which is often well approximated by (23). 
Consequently, for practical applications, the simplified 
model (eq 23), which neglects reboiler and condenser 
holdups, may be satisfactory for controller design. 

9. Simplified Model Including Flow Dynamics 
So far we have neglected the flow dynamics. However, 

the flow responses are very important for the initial dy- 
namic response. These issues are discussed by Rademaker 
et al. (1975). If we make the simplifying assumption that 
the flow dynamics are essentially decoupled from the 
composition dynamics, we derive from (23) the following 
simplified column model when flow dynamics are included 

(61b) 
Here LT, V,, LB, and VB are the "local" liquid and vapor 
flows at the top and bottom of the column. glls = gll / l  
- YD', gizs = giz/l- YD', gzis = g d 1 -  XBO, and g,Zs = gzd1 
- xB0 are the scaled gains. gij, 71, and 7 2  are evaluated at  
the nominal operating point b D 0 ,  xBO). 

Comments on (61). Logarithmic compositions YD = In 
(1 - y D )  and XB = In XB are used to reduce the effect of 
nonlinearity. Of course, if only small variations in the 
product compositions are expected, we may as well use the 
unscaled compositions Y D  and xB. For multicomponent 
mixtures, YD = In Y D H  and XB = In xBL should be used. 
Here H and L denote the heavy and light key components. 

gijs in (61) represents the scaled steady-state gains for 
the LV configuration. The gains are easily obtained from 
steady-state simulations or from simple analytical models 
(for example, based on the separation factor, e.g., Sko- 
gestad and Morari (1987d)). 

71 and 7 2  should be evaluated at the same nominal op- 
erating points as the steady-state gains. 71 may be esti- 
mated by using (48) or (54); 7 2 / 7 1  may be estimated by 
using (56). 

Extra lags 1/1 + 7 ~ s  and 1/1+ 7Bs should be added to 
the response in Y D  and XB if composition is measured in 
the condenser and reboiler (see eq 60). 

Measurement and valve dynamics are not included in 
(61). 

Local flows: Let L and V denote the manipulated values 
of the reflux and the boilup; Le., let 

d L ~ z d L ,  d V B = d V  (624 
Then the following approximations, which apply to case 
of constant molar flows, are useful (Rademaker et al., 
1975): 
dVT = dV (assuming perfect pressure control) (62b) 

dLB = e-e@ dL + X ( l  - dV (624 

X = (dL,/dV), (634 

&, = N ~ L ,  TL = (dkfi/dL)v (63b) 

Here 

Preferably the values for 9~ and X should be determined 
experimentally: tlL is the time it takes for an increase in 
reflux to affect the reboiler level; X represents the initial 
effect of a change in vapor flow on liquid flow. Its value 
may be obtained by observing the response in reboiler level 
to a change in boilup. The effect of nonzero X's was first 
discussed by Rijnsdorp (1965) and is often denoted as the 
K2 effect because he used this symbol for A. 

Tray Columns. Let Mi = Mui + Moi where Moi repre- 
sent the amount of liquid over the weir. According to the 
Francis weir formula, Moi = klL;l3 and we derive 

Moi (65) 

Assuming all trays are identical, this yields the following 
value for eL 

where M I  = N M i  is the total holdup inside the column. 
Typical values for the holdups on each tray are Moi/Mi i= 

0.5 and M i / F  = 0.5 min. 
For most tray columns, X is positive, but it may also be 

negative in some cases. A positive X may be caused by 
vapor pushing liquid off the trays. For X > 0.5, both XB 
and the reboiler level will show an inverse response for an 
increase in boilup (Rademaker et al., 1975). Such behavior 
can be detrimental for control purposes. 

Packed Columns. Equation 61 and 62 apply also to 
packed columns. The total liquid holdup inside the col- 
umn ( M I )  can be estimated for various packings from 
published correlations (e.g., Billet and Schultes (1987)). 
MI increases with liquid load. We have MI = k&" where 
n is typically about 0.6 (Billet and Schultes, 1987). This 
yields 

n = 0.6 MI 
19, = n- L (67) 

At low vapor flow rates, the liquid holdup is nearly inde- 
pendent of V; i.e., X = 0. This applies up to the loading 
point where liquid entrainment becomes important, and 
we have X < 0. Since X is always negative for packed 
columns, we do not expect inverse response for changes 
in boilup. 

Tray versus Packed Columns. Usually packed col- 
umns have smaller liquid holdups inside the column than 
do tray columns. This results in a faster dynamic response 
for packed columns, but it also makes flow and level re- 
sponses more important. Firstly, the smaller holdup inside 
the column makes the condenser and reboiler holdups 
more important for packed columns. Secondly, the relative 
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importance of the flow response compared to the compo- 
sition response inside the column is about twice as large 
for a packed column. The reason is that, whereas the 
entire liquid phase always contributes to the composition 
response, it is only the liquid above the weir (M,J that 
contributes to the flow response in a tray column (compare 
(66) and (67)). 

Pressure Response. The pressure control was assumed 
perfect to derive dVT = dV (eq 62b). This is not quite true 
in practice, but a first-order response is probably adequate 
in most cases: 

The value of 7, depends on the pressure control system. 
The open-loop pressure response is given by (note that the 
pressure is approximately proportional to the vapor 
holdup, i.e., p = kMv) 

1 
d M ” ( S )  = - (dV - dVT) s + k ,  

The constant k ,  takes care of the pressure’s self-regulating 
effect (for example, an increase in V increases pressure, 
which leads to condensation of vapor). Its value is often 
small and may usually be neglected for control purposes, 
i.e., k ,  = 0. The control system manipulates dVT (in some 
cases dV) for pressure control: 

dVT = C(S) d M , ( S )  (70) 

If c(s )  = K,  (proportional control), then a first-order re- 
sponse (eq 67) with 7p = 1/K, is derived. In practice, c(s) 
also includes some integral action, and there are dynamics 
included in order to actually change VT (which is done 
indirectly by manipulating the cooling duty). 

Level Control. The immediate effect of a change in 
one of the product flows (D and B )  is to change the con- 
denser or reboiler holdup (level) which has no direct effect 
on composition. Therefore, the response to changing D 
and B depends strongly on the tuning of the level loops. 
For configurations involving D or B for composition con- 
trol, the level control system may have a significant effect 
on the performance of the composition control system. 
These issues are discussed by Shinskey (1984). 

Decoupling at High Frequency. The flow dynamics 
have the effect of decoupling the response at high fre- 
quency. The reflux ( L )  has a direct influence on the 
compositions in the top of the column, but only a delayed 
influence on xB. Similarly, the boilup directly influences 
xB (at least for X = 0), but has a smaller initial effect on 
the compositions in the top (because of (68)). This de- 
coupling at high frequency yields XI,(..) = l, which may 
be beneficial for control purposes. 

10. Discussion/Conclusion 
It  is well-known that the dynamic response for distil- 

lation columns is essentially first order, and we have 
presented results which justify this claim. The simple two 
time constant model (eq 23 or 61) was derived by consid- 
ering the fundamental difference between external and 
internal flows, both at steady state and dynamically. The 
parameters in (23) are the steady-state gains, the dominant 
time constant 7 1  associated with the external flows, and 
the time constant 72  associated with the internal flows. 7 1  
can be estimated from steady-state data by using (16) or 
(48) or by matching the predicted initial response by using 
(54). 72/71 may also be estimated by matching the initial 
response using (56). 

From the derivation and analysis of the model, it is clear 
that (23) is most likely to hold for high-purity columns with 
large reflux. This is exactly the case for which control is 
expected to be most difficult. 

Disturbances in feed rate (3’) and feed composition (zF) 
have not been discussed in this paper. Their low-frequency 
response is approximately first order with time constant 
T~ (e.g., Skogestad and Morari (1987a)), but the initial 
response is of higher order, especially for a disturbance in 
zF. For feedback control, the exact dynamics of the dis- 
turbances are not important. However, a good model is 
desirable if feedforward control is used. 

One advantage of the simple analytical model (eq 23 or 
61) is that it gives a good description of both the low- and 
high-frequency behaviors of distillation columns. The 
traditional approach has been to use a model which 
matches the steady-state gains, but which is not necessarily 
accurate for high frequencies. The other extreme is to 
match the high-frequency gains (Rademaker et al., 1975, 
p 137). Equation 23 provides a link between the low- and 
high-frequency regions. Another analytical model covering 
both the low- and high-frequency regions has been pres- 
ented by Edwards and Jassim (1977). However, their 
model fails to identify the fundamental difference between 
internal and external flows. 

The high-frequency behavior is generally much less 
affected by changing operating conditions than is the 
steady state. This partially explains why highly nonlinear 
distillation columns may be controlled satisfactorily using 
linear controllers. In particular, we showed that the initial 
response is almost independent of operating conditions if 
relative (logarithmic) compositions are used. This suggests 
that In (1 - yD) and In XB should be used as controlled 
outputs for columns where yD or XB may vary significantly. 

I t  may be misleading to use steady-state data as an 
indicator of the expected control quality. In particular, 
this is the case for columns with both products of high 
purity. For such columns, the RGA values at high fre- 
quency are generally much smaller than at  steady state. 
From (39) and (44), we conclude that the columns which 
are going to be most difficult to control are high-purity 
columns with large reflux. 

In the paper we stress the fundamental difference be- 
tween external and internal flows. The external flows are 
associated with the dominant time constant 71 and have 
a large effect on compositions. On the other hand, the 
response to changes in internal flows is faster (time con- 
stant 72) ,  but the effect on compositions is much smaller 
and is probably not detectable from open-loop plant data. 
One might question if there is any need to model an effect 
which is almost impossible to observe in a real column. 
The answer is “yes”. One reason is that this seemingly 
small effect does make a large difference with respect to 
the directionality of the plant a t  high frequency. For 
example, the condition number and RGA values are gen- 
erally lower at hlgh frequency than at steady state (whereas 
a model based on a single time constant 71 would yield a 
constant value). Furthermore, the effect of the internal 
flows turns out to be very important for columns under 
feedback control. Skogestad (1988) has studied single-loop 
PI control of column A. He found the optimal setting for 
the integral time 71 to be about 194 min when he used the 
one time constant model (eq 17) (which has 71 = 7 2  = 194 
min) as the column model. However, the optimal value 
for rI turned out to be less than 10 min when he used the 
accurate two time constant model (eq 24) (which has 71 
= 194 min and 7 p  = 15 min). The reason for the large 
difference is that the interactions between the two com- 
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G(s)  = transfer function model of column (eq 5 )  
gij = steady-state gains for column (eq 20) 
I ,  = DyD(1 - yD) + BxB(1 - xB), impurity sum 
Ki = dyi/dxi, linearized VLE constant 
L = LT, reflux flow rate, kmol/min 
LB = liquid flow rate into reboiler, kmol/min 
MB = liquid holdup in reboiler, kmol 
MD = liquid holdup in condenser, kmol 
Mi = liquid holdup on theoretical tray i ,  kmol 
MI = & M i ,  total holdup of liquid inside column, kmol 
M,i = liquid holdup above weir on tray i ,  kmol 
N = total number of theoretical trays (including reboiler) 
NF = feed tray location from bottom (feed enters above this 

NT = N + 1, total number of trays including total condenser 
q F  = fraction liquid in feed 
RGA = Relative Gain Array (eq 13a) 
IIRGAII, = sum of magnitudes of elements in RGA (eq 14) 
S = ly~C1 - xg))/((l  - YD)xB), separation factor 
t = time, min 
V = VB, boilup from reboiler, kmol/min 
VT = vapor flow rate on top tray, kmol/min 
xB = mole fraction of light component in bottom product 
XB = In xB, logarithmic bottom composition 
xi = liquid mole fraction of light component on stage i 
YD = XD, mole fraction of light component in distillate (top 

YD = In (1 - yD) ,  logarithmic top composition 
yi = vapor mole fraction of light component on stage i 
yT = vapor mole fraction of light component on top tray 
ZF = mole fraction of light component in feed 
Greek Symbols 
a = (yi/xi)/((l  - yi)/(l - xi)), relative volatility 
K ( S )  = (giz(S)gzi(S))/(gii(S)gzz(S)) 
X = (dLi/dV), (eq 63a) 
All = 1/(1 - K ) ,  1,l element in RGA 
w = frequency, min-' 
a(G), E(G) = maximum and minimum singular values (eq 10) 
T~ = dominant time constant for external flows, min 
T~ = time constant for internal flows, min 

tray) 

product) 

= -l/Xj(A), time constant corresponding to the jth smallest 
eigenvalue of A in eq (5 ) ,  min 

TL = (dMi/dL)v, min (eq 63b) 
OL = NTL, overall lag for liquid response, min 
Subscripts 
B = bottom product or bottom part of column 
D = distillate product 
F = feed 
i = tray numbered from bottom (i = 1 for reboiler, i = 2 for 

first tray, i = N for top tray, i = N + 1 for condenser) 
i = as subscript on T :  T obtained by matching initial response 
I = inside column 
T = top part of column 
Superscripts 
o = nominal operating point 
S = scaled compositions (eq 6 and 7) 

Appendix. Dynamic Model of Distillation Column 
Assumptions. (1) Binary separation, constant molar 

flows, constant relative volatility; (2) vapor-liquid equi- 
librium (VLE) and perfect mixing on all stages; (3) no 
vapor holdup (i.e., immediate vapor response, dVT = dVB); 
(4) liquid holdup Mi on all trays constant (i.e., immediate 
liquid response, dLB = a,); these assumptions imply in 
particular X = 0 and T~ = 0 (no flow dynamics). This yields 
a (N  + 1)th-order model with one ordinary differential 
equation on each try (i = 1, N+l). 

Nonlinear Model. Material balances for change in 
holdup of light component on each tray: 

position loops, which are important under feedback con- 
trol, are mostly associated with changes in the internal 
flows. 

The traditional approach to modeling distillation col- 
umns is to approximate each transfer function by a 
first-order lag with time delay (ge+/(l + 7s))  where g is 
obtained by matching the steady-state gains. It is very 
difficult to obtain a good model for high-purity columns 
which captures the difference between external and in- 
ternal flows by using this approach. It is also unlikely that 
the correct behavior a t  high frequency (for example, the 
RGA) is obtained. Kapoor et al. (1986) have suggested to 
base the controller design on a model for the "perturbed" 
steady state. This approach is likely to  yield a more rea- 
sonable high-frequency model. However, such "tricks" are 
unnecessary if one uses a model, for example, (23), that 
accurately describes both the low- and high-frequency 
behavior. 

As a final remark we should point out that, although the 
simple two time constant model (eq 23) matches the dy- 
namic response of a large class of columns, it does not 
always apply. Firstly, there is a large number of low-purity 
columns with low reflux where the difference between T ,  

and T~ is small and a one time constant model may be 
satisfactory. Secondly, there are some columns, in most 
cases of low purity, with large differences in response times 
between top and bottom composition. As an example, 
consider the following example column: ZF = 0.27, yD = 
0.98, XB = 0.02, a = 1.36, N = 93, and NF = 40. This 
column hzs L / F  = 2.66, X,,(O) = 4.05, and Xll!m) = 3.66. 
With Mi/F = 0.5 min on all trays, the dominant time 
constant corresponding to the smallest eigenvalue ( T , J  is 
320 min. From the small difference between the low- and 
high-frequency RGA values, we expect 7, and 72 to be close 
in magnitude. This is indeed confirmed by dynamic sim- 
ulations which yield very similar response times (time 
constants) for small changes in internal and external flows. 
In both cases, the response in top composition (yD) has a 
time constant of about 300 min. However, bottom com- 
position (XB) has a response time of about 50 min, which 
is much smaller than the dominant time constant. These 
effects have been studied by Weigand et  al. (1972) who 
found that the dominant time constant generally applies 
to the column end with the largest absolute change in 
composition (thus requiring a large change in component 
holdup, recall eq 16), while the other end may respond 
significantly faster. Indeed, the above example confirms 
this rule since the gain for YD is about 10 times that of xB. 

The above example shows that the simple two time 
constant model (eq 23) does not match all columns and 
points out the need for additional work. Still, we believe 
that a number of the results presented in this paper rep- 
resent significant steps forward in understanding the dy- 
namic behavior of distillation columns. These results in- 
clude the fundamental difference in dynamic behavior 
between external and internal flows, the understanding 
and prediction of the initial response, the linearizing effect 
of logarithmic compositions, and the simple analytical two 
time constant model. 
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CYXi 

y i  = 1 + ( a  - 1 ) X i  

Flow rates assuming constant molar flows: 
i > NF (above feed) Li = L, Vi = V + Fv 
i 5 NF (below feed) Li = L + FL, Vi = V 

FL = qFF, F v  = F - F L  

D = V N - L = V + F v - L  
(condenser holdup constant) 

B = L2 - Vl = L + F L  - V (reboiler holdup constant) 

Compositions xF and yF in the liquid and vapor phase of 
the feed are obtained by solving the flash equations: 

F z F  = FLxF  + FVYF 

QX F 

YF = 1 + (ff - 1 ) x F  

Linear Model. Linearized material balance on each 
tray (dLi = dL, dVi = dV) 
Miii = Li+l dxi+l - (Li + KiVi) dxi + Ki-iVi-1 dxi-1 + 

(xi+l - xi) Cvi yi-1) d V  
where Ki is the linearized VLE constant: 

dYi ff 

dxi 
K . = - =  

(1 + (a - I )x~)’  

and yi, xi, Li, and Vi are the steady-state values at  the 
nominal operating point. Written in the standard state 
variable form in terms of deviation variables, 

X = A x + B u ,  y = C x  

Here x = (dxl, ..., dxN+l)T are the tray compositions, u = 
(dL, dV)T are the manipulated inputs and y = (dyD, dxB)T 
are the controlled outputs. The state matrix A = (ai, j ]  is 
tridiagonal: 

i # N + 1  

Ui,i+l = L,+,/MI ai,i = -(Li + KiVi)/Mi 
i f 1  

Ui,i-l = Ki-1 Vi-JMi 

Input matrix B = (b,,j] is 
i # N + 1  

bi,l = (Xi+ l  - xi)/Mi, bN+1,1 = O 
i # l , i  # N +  1 
bi,2 = -0ii - .Yi-1)/Miy b ~ + 1 , 2  = 0,  bl,2 = C v l  xl)/Ml 

Output matrix C is 
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