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Greek Symbols 
a = dimensionless parameter = uihC/riAAP 
T = osmotic pressure of solute in the solution of concentration 

y = dimensionless osmotic pressure = bCX,,,/AP 
A = fractional solvent recovery = 1 - V 
0 = dimensionless solute permeability = (Dh/K6)/(AAF’/C) 
7 = dimensionless mass-transfer coefficient = k C / A h P  
6 = effective membrane thickness of the hollow fiber, cm 

C,, atm 

Subscripts 
f = high-pressure-side feed at r = ri 
j = 1 = feed stream, 2 = high-pressure side of the hollow fiber, 

0 = values for high rejection membranes, i.e., X23  = 0 
1, 2 = conditions at r = ri and at r = rb, respectively 

3 = permeate stream 

Superscripts 
- = average value over the module 
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Implications of Large RGA Elements on Control 
Performance 

Sigurd Skogestadt and Manfred  Morari* 
Chemical Engineering, 206-41, California Institute of Technology, Pasadena, California 91 125 

Large elements in the RGA imply a plant which is fundamentally difficult to  control. (1) The plant 
is very sensitive to  uncorrelated uncertainty in the transfer matrix elements. (2) The  closed-loop 
system with an inverse-based controller is very sensitive to  diagonal input uncertainty. With a 
diagonal controller, the system is not sensitive to diagonal input uncertainty, but the controller does 
not correct for the strong directionality of the plant and may therefore give poor performance even 
without uncertainty. 

1. Introduction 
Each element in the Relative Gain Array (RGA) is de- 

fined as the open-loop gain divided by the gain between 
the same two variables when all other loops are under 
“perfect” control (Bristol, 1966) 

($Yi/auj)uk+j 

( ~ 3 y ~ / d u ~ ) y ~ , ~  

gain all other loops open 
gain all other loops closed (1) - X, = - 

The elements Xi,  form the RGA A. Definition 1 is com- 
pactly written in terms of the transfer matrix G(s)  = (gi,) 
= ((dyi/duj)ukJ and its inverse G-’(s) = {&) = {(dui/dyj)yk) 
as 

A(G) = {Xi,) = {gigij]  = G(s)  X G - ’ ( s ) ~  (2a) 
where X denotes element-by-element multiplication. For 
2 x 2 plants, 

Although definition 1 is limited to steady state (s = 0), 
formulas 2 may be used to compute the RGA as a function 
of frequency (s = jw). 

Since ita introduction more than 20 years ago (Bristol, 
1966), the RGA has found widespread use in industry. In 
his original paper, Bristol makes a number of intersting 
claims about the RGA, but few of these were actually 
proved. Therefore, for a number of years the RGA re- 
mained an empirical tool with little rigorous theoretical 
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basis. The RGA was originally defined as a measure of 
interactions (eq 1) when using single-loop controllers on 
a multivariable plant (decentralized control), and Gros- 
didier et al. (1985) have proved a number of results which 
demonstrate the usefulness of the RGA in this respect. In 
particular, pairings corresponding to negative RGA ele- 
menta should be avoided whenever possible. Shinskey 
(1967, 1984) uses the RGA extensively as a tool for se- 
lecting control confiiations for distillation columns. Also 
he interprets the RGA primarily as an interaction measure. 
However, if this were the case, then an RGA analysis would 
be of no interest if multivariable rather than decentralized 
controllers were chosen. Experience indicates that this is 
not the case, and that the RGA is a measure of achievable 
control quality in a much wider sense than just as a tool 
for choosing pairings for decentralized control. In fact, 
Bristol indicates in his original paper that large RGA el- 
ements imply a plant which is fundamentally difficult to 
control. This claim has also been made more recently 
(McAvoy, 1983; Grosdidier et al., 1985). The following 
identity, which is easily derived from the results of 
Grosdidier et al. (1985), gives a good intuitive feeling for 
why large RGA elements may cause problems: 

d g i j  
(3) *./-.. = -A,. - 

ii  gii t i  gij  

This identity shows that the elements iji of the inverse 
(G-l) are extremely sensitive to small changes in the ele- 
menta gij  of G if the RGA elements are large. This seems 
to indicate that plants with large RGA elements are very 
sensitive to modeling errors, and this is indeed true as we 
show in this paper. 

More specifically, the objective of this paper is to answer 
the following two questions. (A) Is a plant with large 
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elements in the RGA always difficult to control? (B) Is 
a plant with small elements in the RGA always easy to 
control (in the absence of other limitations on control 
performance, such as constraints and RHP zeros)? We will 
look at the questions in the context of model uncertainty. 
The results are illustrated with a simplified distillation 
column as an example. All results below involving the 
RGA, singular values, and condition numbers apply to any 
frequency (s = jw) unless otherwise stated. 

2. Relationships between the RGA and the 
Condition Number 

Let G(s) denote the linear transfer function model of 
the plant. The plant outputs y (s) are then related to the 
plant inputs by y ( s )  = G(s) u (s). Let the magnitude of 
the vectors y and u be defined in terms of the 2-norm, 
which is obtained by taking the root mean square of the 
components a t  any frequency (s = jw) 

IlYjl* = llullz = (cui2)1’2 
A multivariable plant has the property that the magnitude 
of the output vector (y) depends on the direction of the 
input vector ( u ) .  We define the maximum gain of the 
plant a t  any frequency as 

llG4lz 
U#O llull2 U # O  l l ~ l l 2  

- max - max gain: a,,,(G) = max - - l l Y l l 2  

That is, a,,(G) is obtained by choosing the direction of 
u such that Ilyllz/llu is maximized. Similarly 

IlGullz 
u+o llullz 

min gain: ami,(G) = min - 

a,(G) and umh(G) are the maximum and minimum sin- 
gular values of G (Klema and Laub, 1980). The condition 
number of the plant is the ratio between the maximum and 
minimum gain at  any frequency 

r (G)  = am,(G) /amin(G) 

We say that a plant has a strong “directionality” and is 
“ill-conditioned” if y(G) is large. 

Note the property umh(G) = l/u-(G-l) which yields 
r (G) = C T ~ ~ ( G ) U ~ , ~ ( G - ~ ) .  Bristol (1966) himself pointed 
out the resemblance between the definition of the con- 
dition number and expression 2 for the RGA. However, 
Grosdidier et al. (1985) were the first to establish a rigorous 
relationship between the condition number and the RGA, 
and these results have later been extended by Skogestad 
and Morari (1987a) and Nett and Manousiouthakis (1987). 
The usefulness of these results in the control context is 
somewhat limited, since the results which link the con- 
dition number and control quality are somewhat weak. 
These results include (1) the bound on the matrix additive 
uncertainty by Grosdidier et al. (1985) (theorem 14 in their 
paper) and the slightly more powerful extension to element 
uncertainty by Skogestad and Morari (1987a) (also pres- 
ented as result 1 in section 3 below) (these results dem- 
onstrate that ill-conditioned plants are sensitive to additive 
kinds of uncertainty) and (2) the result presented by 
Morari and Doyle (1986) (eq 63 in their paper) which 
indicates that the control performance of ill-conditioned 
plants may be very sensitive to input uncertainty. 

Next we will briefly review some of the relationships 
between the RGA and the condition number. First note 
that the RGA is scaling independent: 

A(G) = A(S1GS2) 

Here SI and S 2  are diagonal *scaling” matrices with real 

positive entries and SlGS2 corresponds physically to an- 
other choice of units for the inputs and outputs of the plant 
G. On the other hand, the condition number r(G) is 
scaling dependent. One way of making it scaling inde- 
pendent is to minimize r(SIGSz) over all possible scalings 

r*(G) = min r(S1GSz) (4) 
SI3SZ 

Not surprisingly, the tightest relationships between the 
RGA and the condition number are in terms of r*(G). The 
following inequalities show that plants with large elements 
in the RGA are always ill-conditioned (Nett and Ma- 
nousiouthakis, 1987) 

r(G) 2 r*(G) 2 IlAllm - l / r*(G) 2 11AIlm - 1 (5) 

Here the “m-norm” is defined as (also see Nomenclature 
section) 

I I 4 l m  = 2 max (IIAIlil, Il4Ii-1 (6) 

From (5) we see that large elements in the RGA always 
imply a large value of -y*(G) and r(G). Since ill-condi- 
tioned plants as indicated above are generally believed to 
cause control problems, (5) gives some justification to the 
claim that plants with large elements in the RGA are 
fundamentally difficult to control. Note that r(G) can be 
significantly larger than r*(G), and the plant may there- 
fore be ill-conditioned (r(G) large) even if all the elements 
in the RGA are small. In particular, 2 X 2 plants with an 
odd number of negative elements in G always have r*(G) 
= 1 and IlAll, = 2, but r(G) may be arbitrary large. For 
example, 

From (5) we know that r*(G) is always large when there 
are large elements in the RGA. And, similarly, a large 
value of r*(G) always implies large elements in the RGA. 
This is seen from the following bound in terms of llAlll 
(sum of element magnitudes) which applies to 2 X 2 plants 
(Grosdidier et al., 1985) 

2 x 2: r*(G) 5 Il4ll (7) 

and from the following conjecture for n X n plants (Sko- 
gestad and Morari, 1987a; Nett and Manousiouthakis, 
1987) 

conjecture: r * W  5 l lAl l l+ k(n)  (8) 

with k(2) = 0, k ( 3 )  = 1, and k(4) = 2. Note that for 2 X 
2 plants, the 1- and the m-norm of the RGA are identical 
2 x 2: l l4ll = IlAllm = 2llAlli- = 2llAllil 

Combining (5 )  and (7), one shows that llAlll and r*(G) are 
always close in magnitude (in particular when they are 
large): 

(9) 

Consequently, for 2 X 2 plants, the difference between llAnl 
and r*(G) is at most equal to l/y*(G) and r*(G) - llAlll 
as llAlll - a. Numerical evidence suggests that this also 
holds for n X n plants. 

3. The RGA and Model Uncertainty 
In this section we present two results which directly 

relate the RGA to control stability and performance. 
Result 1 has been derived previously (Skogestad and 
Morari, 1987a) and is presented here to more clearly show 
the relationship to the RGA. Result 1 (for example, eq 12) 

1 
2 x 2: ll4ll - r*(c> 5 r*W ll4ll 
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quently, a large value of Aij means that only small relative 
errors on the corresponding plant element gij are tolerated. 

The main restriction inherent in these results is the 
assumption of independent element uncertainty. Con- 
ditions 12 and 13 and the result of Yu and Luyben (1987) 
may be very conservative if the element uncertainties are 
correlated. For example, for distillation columns, even 
though llAlll is large and the elements in G may vary widely 
with operating conditions ( r  may be close to 11, it can be 
shown that the elements are correlated such that the plant 
never becomes singular (Skogestad and Morari, 1986). 
Therefore, for distillation column control, these results do 
not “explain” why plants with large values of the RGA in 
general are difficult to control. 

3.2. Uncertainty on Each Manipulated Input. Re- 
sult 2 below introduces the RGA as a measure of how 
performance is affected by uncertainty on each manipu- 
lated input. This result is of more general interest than 
result 1, because uncertainty on the manipulated inputs 
is always present: We never know the exact value of the 
inputs u which are applied to the plant. 

Let uci denote the desired value of the ith manipulated 
input as computed by the controller, and let A, represent 
the relative uncertainty on this input. Then the actual 
plant input is ui = uci(l + Ai) or in vector form u = u,(I 
+ AI) where AI = diag (Ai] represents the diagonal input 
uncertainty. Alternatively, we may define the perturbed 
plant as 

G, = G(I + AI) AI = diag (Ai] (14) 
Any real plant has diagonal input uncertainty, and for 
process control applications, it seems unlikely that one 
should be able to get the uncertainty on each input lower 
than about !+lo%. This is probably the case even when 
cascaded loops based on flow measurements are used to 
correct for the nonlinear valve characteristics. Note that 
these errors (uncertainty) are not on the absolute value 
of the flows, but rather on their change. For example, 
assume we want to increase a flow rate from 100 to 110 
kmol/min. However, due to errors in the flow measure- 
ment, the actual change is from 100 to 111 kmol/min. 
Although the absolute measurement error in this case is 
only 1%, the corresponding error in the change is lo%, 
i.e., IAil = 0.1, for this input. Even though it seems unlikely 
in a real plant to reduce the magnitude of IAil below, say, 
0.05, it is nevertheless clear that the effect of input un- 
certainty on the closed-loop system can be strongly reduced 
in some cases by using cascaded loops based on flow 
measurements instead of manipulating the valves directly. 

In this paper we consider each manipulated input (valve) 
as the source of the input uncertainty. Since there is no 
reason to assume that these manipulated inputs influence 
each other, this results in a diagonal input uncertainty 
matrix, AI. The case of unstructured input uncertainty 
(AI is a full matrix) is often considered in the literature 
(e.g., Morari and Doyle, 1986). This may be convenient 
for mathematical purposes, but for the reasons mentioned 
above, this is often not a proper description of the actual 
uncertainty, and the resulting conditions for robustness 
and performance may be unnnecessary conservative. For 
example, Morari and Doyle (1986) show that robust per- 
formance may be poor for plants with a large value of r(G) 
when there is unstructured input uncertainty. However, 
below we show that if we consider diagonal input uncer- 
tainty, then large RGA elements (or equivalently a large 
value of r*(G) (eq 9)), rather than a large value of r(G), 
indicate control problems. For example, we present an 
ill-conditioned plant (r(G) = 142) with small RGA ele- 
ments (llA(G)lll = 2) and which therefore is easy to control 

shows that plants with large RGA elements will easily 
become singular if small relative errors (r)  on each transfer 
matrix element (gij) occur. Tight control of a plant which 
may become singular is not possible. The uncertainties 
(“errors”) on each element have to be independent for 
result 1 (eq 12) to be nonconservative. However, the ele- 
ment uncertainties are usually correlated, and result 1 is 
not very useful in this case. 

The most important result in this paper is therefore 
result 2, which directly shows that inverse-based controller 
should never be used for plants with large RGA elements 
because of the presence of input uncertainty. This result 
is subsequently used to argue that plants with large RGA 
elements are fundamentally difficult to control. 

3.1. Independent Relative Element Uncertainty. 
This result introduces llA(G)lll as a sensitivity measure 
with respect to independent uncertainty on the plant el- 
ements. 

Result 1 (2 X 2) (Skogestad and Morari, 1987a). 
Assume each transfer matrix element has a relative un- 
certainty of magnitude r; that is, the actual (“perturbed”) 
plant is 

T h e  uncertainties on  each element are assumed to  be 
independent; that is, there is no correlation between the 
Aij’s. T h e n  the  plant G, remains nonsingular a t  steady 
state (w  = 0 )  for any  real perturbations, -r I Aij I r if 
and only if 

1 r C -  
r*(G) 

which is satisfied if 

Comment. Condition 12 also holds for complex per- 
turbations lAijl I r and w > 0 (Skogestad and Morari, 
1987a). Condition 11 does not hold in these cases. 

Condition 11 is necessary and sufficient. Condition 12 
is only sufficient, but it is also “tight” because of the close 
relationship between r*(G) and llA1ll shown in (9). Con- 
ditions similar to (12) are derived for n X n plants using 
conjecture 8 above and theorem 6 in Skogestad and Morari 
(1987a). 

Conjecture 1 (n X n ). The  plant remains nonsingular 
a t  any  frequency w for  complex relative errors of mag- 
nitude r (w)  on  each element if 

r (w)  < l/(llGw)lll + N n ) )  (13) 

with k(2) = 0 (in this case the conjecture is proven to  be 
correct), k(3) = I ,  and k(4) = 2. 

The control implications of conditions 11-13 follow from 
the fact that if a plant is singular a t  a certain frequency 
(w),  then the plant has a zero on the j w  axis. The presence 
of this RHP zero limits the achievable control quality 
(Morari, 1983). In particular, it is impossbile to have 
integral control for a plant which may become singular at 
steady state (w = 0) (Skogestad and Morari, 1987a). 
Consequently, if there are large elements in the RGA and 
llAlll is large, we can allow only very small uncertainties 
in the elements without having control problems. 

A very similar result has recently been published by Yu 
and Luyben (1987). It applies to n X n plants a t  steady 
state when only one element varies at the time: Let the 
ijth element be gJl + Aij). Then the plant becomes sin- 
gular with a relative pertubation Aij = - l /X i j .  Conse- 
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Figure 1. Classical feedback structure. d represente the effect of 
the disturbance on the output. 

also in the presence of diagonal input uncertainty (Figure 
5). 

The loop transfer matrix, GpC, is closely related to 
performance because of the identity (Figure l), y = (I + 
GpC)-'d. GpC may be written in terms of the nominal GC 
and an "error term", C-'AIC or GArG-l, as 

G,C = GC(1 + C-'AIC) ( 1 5 4  

GpC = (I + GArG-')GC (15b) 

For SISO plants, a relative input error of magnitude A1 
on g results in the same relative change in g,c = gc(1 + 
Al), but for multivariable plants the effect of the input 
uncertainty on GpC may be amplified significanty as shown 
below. 

Result 2. For 2 X 2 plants the error term C-'AIC in 
(15a) may be expressed in terms of the RGA o f  the con- 
troller C as 

ab/ac 

c12 
c11 ,) (16) 

For n X n plants it is easily shown that the diagonal 
elements of the error term C-lAIC may be written as a 
straightforward generalization of the 2 X 2 case 

Ali(C)A1 + h ( c ) A 2  xii(C)-(Ai - A,) 

-All(C)-(Al - A,) A12(C)A1 + b2(C)A2 i ::: 

GAblG-' = ( g21 

C-'AIC = 

n 

;=l 
(C-lAIC)ii = C Aji(C)Aj (17) 

Similarly, for 2 X 2plants, the error term GAIG-' in (15b) 
may be expressed in terms of the RGA of the plant 

ad/ae 
g12 ) (18) 

AIIAI + A 1 2 4  - A  -(Ai - Ad 

A -(AI - A,) &iAi + &A2 

l'g22 

"g1, 

(Here Xij = Xij(G) denotes the RGA elements of the plant.) 
For n X n plants, the diagonal elements of the error term 
GA1G-l are 

n 

;=l 
(GAIG-')ii = CXij(G)Aj (19) 

Comment. Similar results, but with, for example, gll 
replaced by -gZ and g ,  replaced by -gll in the off-diagonal 
elements in (18), may be derived for the case of output 
uncertainty and performance measured at the input of the 
plant. This case is generally of less interest. 

The RGA is independent of scaling, but the off-diagonal 
elements in (16) and (18) will depend on the scaling of the 
plant outputs. For the correct interpretation of these 
elements, the plant outputs should be scaled such that an 
output deviation of magnitude 1 has equal significance for 
all outputs. 

Controllers with large RGA elements will lead to large 
elements in the matrix CIA&, and plants with large RGA 
elements will lead to large elements in the matrix GAIG-'. 
Equations 15a and 15b seem to imply that either of these 
cases will lead to large elements in GpC and therefore poor 

performance when there is input uncertainty (AI # 0). 
However, this interpretation is generally not correct since 
the directionality of GC may be such that the elements 
in GpC remain small even though C-lAIC or GAIG-l have 
large elements. This should be clear from the following 
two extreme cases. 

(1) Assume the controller has small RGA elements 
(small elements in h(C)). In this case, the elements in the 
error term C-'AIC are similar to AI in magnitude (eq 16 
and 17). Consequently, GpC is not particularly influenced 
by input uncertainty, even though the plant itself may be 
strongly ill-conditioned with large RGA elements (large 
elements in h(G)). 

(2) Assume the plant has small RGA elements (small 
elements in h(G)). In this case, the elements in the error 
term GAIG-' are similar to AI in magnitude (eq 18 and 19). 
Consequently, GpC is not particularly influenced by input 
uncertainty, even though the controller itself may have 
large RGA elements. (Comment: From a practical point 
of view, one might argue that it is unlikely that anyone 
would design a controller with large RGA elements for a 
plant with small RGA elements.) 

From (1) and (2), we conclude that for a system to be 
sensitive to input uncertainty, both the controller and the 
plant must have large RGA elements. These results agree 
with Doyle's conditions for robust performance (RP) as 
presented in a paper by Skogestad and Morari (1986) (eq 
34 in their paper): RP in the presence of unstructured 
input uncertainty (A, is a full matrix) is automatically 
implied by nominal performance (NP) and robust stability 
(RS) provided the condition number of either the con- 
troller, r(C), or the plant, r(G), is close to 1. Note that 
our results (eq 15-19 above) are in terms of diagonal input 
uncertainty (AI diagonal) and involve the RGA rather than 
the condition number. 

3.3. Inverse-Based Controller. For "tight" control, 
it is desirable to use an inverse-based controller, C(s) = 
G-l(s)K(s), where K(s) is a diagonal matrix. A special case 
of such an inverse-based controller is a decoupler. With 
C(s) = G-l(s)K(s), we find A(C) = A(G-'K) = h(G-') = 
hr(G). Thus, if the elements of h(G) are large, so will be 
the elements of h(C), and from the discussion above, we 
expect high sensitivity to input uncertainty. We also see 
directly from 

G,C = K(s)(I + GA1G-l) = K(s)(I + C-lAIC) (20) 

that large elements in GA1G-l (or equivalently large ele- 
ments in C-'AIC) imply that the loop transfer matrix GpC 
is very different from the nominal one GC = K(s), and 
poor response or even instability is expected with AI # 
0 (in this case GC = K has no "directionality" that may 
make GpC remain small). 

Decouplers have been discussed extensively in the 
chemical engineering literature, in particular in the context 
of distillation columns (e.g., Luyben (1970) and Arkun et 
al. (1984)). The idea of using a decoupler (D) is that the 
multivariable aspects are taken care of by the decoupler 
and tuning of the control system is reduced to a series of 
single-loop problems. Let the diagonal matrix K(s) denote 
these "single-loop" controllers. The overall controller, C, 
including the decoupler is 

C(s) = DK(s) (21) 
A steady-state decoupler is obtained with D = G(O)-'. The 
sensitivity of decouplers to decoupler errors has been 
discussed in the literature (e.g., Toijala (Waller) and 
Fagervik (1972)), and the observed sensitivity for such 
errors is in fact easily explained from result 1 (eq 12). 
However, the most important reason for the robustness 



Ind. Eng. Chem. Res., Vol. 26, No. 11, 1987 2327 

C diagonal: r(GC) 1 r*(G) (25) 

follows since a diagonal controller merely corresponds to 
a scaling of the input to the plant. Applying (5) yields 

C diagonal: r(GC) 1 IlA(G)ll, - 1 (26) 

problems encountered with decouplers is probably not 
decoupler errors but rather input uncertainty. Recall from 
(20) that any  controller of the form C(s) = G-’(s)K(s) is 
sensitive to input uncertainty if the plant has large RGA 
elements. Decouplers are generally of this form and should 
therefore not.be used for plants with large RGA elements. 
Let Gdiag denote the matrix consisting of the diagonal 
elements in G. Then for the decouplers most commonly 
studied in the literature, we find 

“ideal decoupling”: D = G-lGdiag ( 2 2 4  

”simplified decoupling”: D = G-’( (G-’)diag)-’ (22b) 

In both of these cases, the controller is of the form C(s) 
= G-’K(s) and will lead to serious robustness problems if 
the plant has large RGA elements. On the other hand, if 
“one-way” decoupling is used, then D is triangular and 
A(C) = A(DK) = I. A “one-way” decoupler is therefore 
much less sensitive to input uncertainty (recall (16) and 
(17)). 

Control Implications of (17), (19), and (20). (i) An 
inverse-based controller (and in particular a decoupler) 
should never be used for a plant with large elements in the 
RGA. (ii) One-way decouplers are much less sensitive to 
input uncertainty. (iii) Inverse-based controllers may give 
poor response even if the elements in the RGA are small. 
This may happen if g12/g2, or g2,/g11 is large (eq 18 and 
20). One example is a triangular plant which always has 
All = 1, but where the response obtained with an in- 
verse-based controller may display large “interactions” in 
the presence of uncertainty. 

It should be added that it is the behavior of G,C around 
crossover (llG CII 1) which is primary importance for the 
stability a n 8  performance of the closed-loop system. 
Therefore, control problems are expected if the RGA has 
large elements in this frequency range. 

3.4. Diagonal Controller. A diagonal controller always 
has Xll(C) = 1, and the error term in (15a) becomes 

C-’AIC = AI (23) 

Therefore, the response is only weakly influenced by the 
presence of input uncertainty. However, it may be difficult 
to achieve a good nominal response when the controller 
is restricted to being diagonal (this may be the case even 
if All is close to one as for a nearly triangular plant): The 
diagonal controller gives limited correction for the 
“directionality” of the plant and r(GC) may be large. In 
this case, the response depends strongly on the 
“disturbance direction”: Let d represent the effect of the 
disturbance on the output. The response is poor for a 
disturbance ( d )  with a large disturbance condition number 
(Skogestad and Morari, 1987b): 

yd(GC) ranges in value between 1 and r(GC). A value 
close to 1 indicates that the disturbance is in the “good” 
direction, corresponding to the high loop gain, a,,(GC). 
A value close to r(GC) indicates that the disturbance is 
in the “bad” direction, corresponding to the low loop gain, 
a,,(GC). d may also represent the effect of a set-point 
change. If arbitrary set-point changes are allowed, then 
there exists a set-point change y s  such that r,,(GC) = 
r(GC). 

Diagonal controllers do not generally correct for the 
directionality of the plant and r(GC) is large whenever 
A(G) has large elements (see (26) below). The inequality 

and we see that a plant with large RGA values always will 
have $GC) large and will yield poor performance (at least 
if arbitrary set-point changes are considered). 

One special case when a diagonal controller may yield 
acceptable performance for an ill-conditioned plant (y(G) 
large) is when the plant is naturally “decoupled” at  the 
input (V = I ) .  This plant has all RGA elements less than 
1 as shown below. Write the singular value decomposition 
(SVD) of G as 

For the case V = I (or, more generally, when V has only 
one nonzero element in each row and column, which give 
V = I by rearranging the inputs), a diagonal controller can 
be found which removes most of the directionality in the 
plant: Choose C(s) = c(s)Z’ to get GC = c(s)U which has 
yd(GC) = 1 for all disturbances. Note, however, that the 
response is not decoupled (unless U is diagonal). Also note 
that r*(G) = y*(UZ) = 1 in this case ( 2  is diagonal and 
rW) = l), and it follows from (5) that the elements in A(G) 
are less than 1 in magnitude. 

3.5. General Controller Structure. (1) From (20) we 
concluded that the system is always sensitive to input 
uncertainty if an inverse-based controller is used for a 
plant with large RGA elements (in this case, A(C) has large 
elements). (2) On the other hand, we know from (23) that 
the system is never sensitive to this uncertainty if a di- 
agonal controller is used. (In this case A(C) = I ) .  

What can be said in other cases? Is the RGA of the 
controller, A(C), a useful indicator of a system’s sensitivity 
to input uncertainty? In general, the answer is “no“ (this 
is clear from (18) and (19) above). However, for practical 
purposes, where C(s) is designed based on G(s), the answer 
is “yes”. The reason is that one property of any well-de- 
signed multivariable controller is to remove some of the 
directionality in G by making GC “more diagonal” than 
G. (This excludes, for example, using a controller with 
large RGA elements for a diagonal plant.) Therefore, large 
elements in the error term C-’AIC will lead to some degree 
to large elements in G,C (eq 15a). Consequently, a plot 
of the magnitude of the elements of A(C) as a function of 
frequency may be useful for evaluating the system’s sen- 
sitivity to input uncertainty: A controller with small RGA 
elements at all frequencies is generally insensitive to input 
uncertainty. On the other hand, a controller with large 
RGA elements is likely to result in a system which is 
sensitive to input uncertainty. 

3.6. Finding Worst-case Conditions from the RGA. 
It is of interest to know the “worst case” combination of 
Aj’s (input uncertainty) to use in simulation studies. 
Consider the error term GAIG-’ which for an inverse-based 
controller is directly related to the change in GC (eq 20). 
If all Aj’s have the same magnitude (lA,l < rI), then from 
(19) the largest possible magnitude (worst case) of any 
diagonal element in GAIG-’ is given by rIIIA(G)llim 
(“maximum row sum”). To obtain this worst case value, 
the signs of the Aj’s should be the same as those in the row 
of A(G) with the largest elements. 
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Table 11. Steady-State Data for Distillation Column Table I. Guidelines for Choice of Best Multivariable 
Controller Structure (“Large” Implies a Comparison with 
One. Tvoicalh >IO) 

laree small 
IIA(G)lll large (diagonal) diagonal 
llA(G)lll small inverse-based (V = I: diagonal) inverse-based 

Example. Consider a plant with steady-state gain 

(diagonal) 

matrix 

0.1 -2 
G(0) = ( 2 -:) 

-0.1 -1 

The RGA is 

-1.89 -0.13 3.02) 
A(G(0)) = 3.59 3.02 -5.61 ( -0.70 -1.89 3.59 

Assume that the relative uncertainties AI, A2, and A3 on 
each manipulated input have the same magnitude. Then 
the second row of A(G) has the largest row sum (IIA(G)lli, 
= 12.2), and the worst combination of input uncertainty 
for an inverse-based controller is 

A1 = A2 = -A3 = A 

We find 

-5.0 7.5 14.3 ( 3.0 -3.7 -6.2 ) GA1G-l = -9.1 12.2 21.5 A 

Note that in this specific example, we would arrive at the 
same worst case diagonal elements by considering row 1 
or row 3. Therefore, the worst case will always be obtained 
with A, and A2 of the same sign and A3 with a different 
sign even if their magnitudes are different. In some cases 
we may arrive at a different conclusion by considering 
other frequencies. Also note that, unless an inverse-based 
controller is used, it is not guaranteed that the worse case 
uncertainties are deduced by using this approach. 

4. Choice of Controller Structure 
An important decision facing the engineer is the choice 

of the controller structure. Two extremes are considered 
here: diagonal controller and inversebased controller. The 
diagonal controller has advantages: it has fewer tuning 
parameters, is easier to understand and retune, and can 
be made failure tolerant more easily. These issues are not 
considered here. We want to decide which of the two 
choices above may result in the best multivariable con- 
troller. On the basis of the discussion above, Table I was 
prepared to assist the engineer in making this choice. The 
table should be used only as a rough guideline, since di- 
agonal input uncertainty is the only source of uncertainty 
considered. 

5. Large RGA Elements Are Bad News 
Let us now answer the two questions presented in sec- 

tion 1. 
(A) Is a plant with large elements in the RGA always 

difficult to control? Yes. This follows from results 1 and 
2. However, if the following conditions are satisfied, 
control may still be acceptable. (1) The transfer matrix 
elements are correlated, and despite the large values in the 
RGA, the plant is not likely to become singular. (2) There 
exists a controller with small RGA elements (e.g., a diag- 
onal controller) which gives an acceptable response for all 

Binary Separation, Constant Molar Flows, Feed Liquid 
re1 volatility CI = 1.5 
no. of theoretical trays N = 40 
feed tray (1 = reboiler) NF = 21 
feed composition ZF = 0.5 
product compositions y$ = 0.99, x; = 0.01 
product rates 
reflux rate L I F  = 2.706 

D f F  = BfF = 0.5 

Steady-State Gain Matrices 

important disturbances. This is the case if all important 
disturbances are in the “good” direction (i.e., -yd(G) is small 
despite the fact that -y(G) is large). 

Note that condition 2 implies that the plant is actually 
not ill-conditioned for the expected disturbances. We will 
give an example of such a case below (response to y s 2  in 
Figure 4). 

(B) Is a plant with small elements in the RGA always 
easy to control? No. As seen from (18), an inversebased 
controller results in serious “interactions” if there is input 
uncertainty and some of the off-diagonal elements in the 
plant are large. A diagonal controller gives large inter- 
actions even in the absence of uncertainty, if the plant is 
nearly triangular. (Consider, for example, the plant 

G = (i too) 
which has A = I ) .  

Let us also answer the following additional question. 
(C) Is a plant with a large condition number always 

difficult to control? No. On the basis of the uncertainty 
descriptions investigated in this paper, the RGA rather 
than r(G) gives a measure of the plants sensitivity to 
diagonal input uncertainty. We will show in an example 
below that an inverse-based controller gives very good 
control for a plant with y(G) = 71 even in the presence 
of uncertainty (Figure 5). 

6. Examples 
The distillation column described in Table I1 is used as 

an example. The product compositions y D  and xB are to 
be controlled by manipulating the reflux (L )  and either 
the boilup (V) or the distillate flow (D). The column is 
assumed to have no dynamics. (This is, of course, not true. 
However, we make the crude assumption that the dynam- 
ics are given in terms of a single first-order lag, which is 
exactly cancelled by a zero in the controller.) We stress 
that the objective of the examples is to demonstrate the 
usefulness of the RGA as a tool for screening design al- 
ternatives and to support the results presented in Table 
I, rather than to provide a realistic study of distillation 
column control. 

We show simulations for two different configurations 
of manipulated inputs: LV configuration, y(GLV) = 142, 
Xll(GLV) = 35, llAlll = 142; DV configuration, -y(GDv) = 71, 
X,,(GDv) = 0.45, llAlll = 2. We also consider two controllers 
for each of these: inverse-based controller (GC = 1(0.7/s)); 
diagonal controller. 

The controllers are given in the figure texts, and their 
gains were adjusted to guarantee robust stability for rel- 
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A , = ( :  :) (; a2) 

Figure 2. Controllers satisfy the robust stability condition (29). 
p(CG(1 + CG)-') is shown as a function of frequency for (1) in- 
verse-based controllers for LV and DV configurations, (2) diagonal 
LV controller, and (3) diagonal DV controller. 

Table 111. RGA, Condition Numbers, and SVD for 
Distillation Column 

Configuration 
LV DV 

RGA; A i 1  35.1 0.45 

condition no., y(G) 141.7 70.8 
dist. condition no., yI(G) 

d = F (feed rate) 11.8 4.3 

IlAlll 138.3 2 

d = zF (feed composition) 1.5 1.4 

d = (1) (set point in yD) 110.7 54.9 

d = c ) ( s e t  point in xB) 88.5 44.6 

S V  decomp., G = UZVH 
U 

I: 

V 0.707 0.708 1.000 -0.001 

-0.630 0.777 ($% 4::;;) (-0.777 -0.630) 

:.0139) ( i'393 
(-0.708 0.707) (0.001 1.000) 

ative uncertainty on each manipulated input with a 
magnitude bound 

5s + 1 
0.5s + 1 WI(S) = 0.2- 

This implies an input error of up to 20% at  low frequen- 
cies, as is used in the simulations. The uncertainty in- 
creases a t  high frequency, reaching 100% at  about w = 1 
min-l. This increase at  high frequency may take care of 
neglected flow dynamics. Robust stability is guaranteed 
for this uncertainty if and only if (Skogestad and Morari, 
1987a) 

p(CG(1 + CG)-') 5 l/lwII v w (29) 
where the structured singular value p is computed with 
respect to a diagonal matrix. Condition 29 is satisfied for 
the controllers used as shown graphically in Figure 2. 

For each of these four systems, the responses to two 
set-point changes are shown: 

YSl = (;) Ysz = (::$ 
The set-point change ysl has a large component in the 
"bad" direction corresponding to the low plant gain (Yd(G) 
= 110.7 for the LV configuration and yd(G) = 54.9 for the 
DV configuration). ys2 has the same direction as a feed 
flow disturbance and has yd(G) = 11.8 and 4.3 for the two 
configurations (Table 111). 

The responses are shown both for the nominal case (AI 
= 0) and with 20% relative uncertainty on each manipu- 
lated input 

Figure 3. LV configuration. Closed-loop responses y 1  and y z  for 
inverse-based controller. C(s) = (0.7/s)G& = (0.7/s)(;::; :E$). 
Responses are shown for two different set-point changes, yal and ysz,  
both for the nominal case with no uncertainty (left) and with 20% 
error on the manipulated inputs AL and AV (right). The simulations 
illustrate that an inverse-based controller (e.g., a decoupler) should 
never be used for plants with large RGA elements because of the 
sensitivity to input uncertainty. 

0.8 2 

E I B  20 30 
T I M E  c a i n )  

0 !E 20 30 
T I M E  I m i n l  ~ ( 6 )  = 142 

A,l(C) = 35 

______.______.._..--..-- 0.6 ____._._____._____.--.. - 

, , , , , , , , ,  I , , , /  ~ , , , 1  , , / , ,  

8 . 1  : 8 . 1  : 
U*r  = ( 6 4 )  

8 . 2  

B 
E I B  20 30 0 I B  20 30 

T l n E  I m i n )  \ l n E  ( n i n )  

Figure 4. LV configuration. Closed-loop responses, y 1  and y z ,  for 
diagonal controller C(s) = (l/s)(A '?J. The plant has large RGA 
elements, and a diagonal controller yields responses which are 
strongly dependent on the disturbance (or set-point) direction. The 
responses to yez  are acceptable, but the response to the set-point 
change y s l  is extremely sluggish. 

which give the following error terms (eq 18) for GC when 
an inverse-based controller is used: 

Conclusion. The simulations illustrate the following 
points. 

An inverse-based controller gives poor response when 
the plant has large RGA elements (Al1 is large) and there 
is input uncertainty (Figure 3). 

A diagonal controller cannot correct for the strong di- 
rectionality of a plant with large RGA elements (recall eq 
25). This results in responses which are strongly de- 
pendent on the disturbance (or set-point) direction (Figure 
4). The response to ysz (disturbance in F) which has Yd(G) 
= 11.8 is acceptable, but the response to the set-point 
change ysl is extremely sluggish. This system may be 
acceptable, despite the large value of All, provided set-point 
changes are not important. 
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Figure 5. DV configuration. Closed-loop response, y and y 2  for 
inverse-based controller C(s) = (0.7/s)G& = (0.7/s)($:$’ 2i3’): An 
inverse-based controller may give very good response for an ill-con- 
ditioned plant, even in the presence of input uncertainty, provided 
the RGA elements are small. 

. -  
1 ‘- 
:- //---- 

’,., (:I q ; ; ,  I , ,  , ,  I , ,  , , , 
a :  

a .__-____......_..... 
-a 2 

a :0 20 30 
T!rE : m , .  

Figure 6. DV configuration. Closed-loop responses, y1 and y 2 ,  for 
diagonal controller C(s) = (-0.2Js)A-1 = ( O . ~ / S ) ( ? ~ ~ ~  A diago- 
nal controller performs satisfactory ill-conditioned plants with V = 
I (which implies small RGA elements). However, “interactions” are 
still present because U = (2:;: $’&) is not diagonal. 

An inverse-based controller may give very good response 
for an ill-conditioned plant with diagonal input uncer- 
tainty, provided All is small (Figure 5). 

A diagonal controller may remove most of the direc- 
tionality in an ill-conditioned plant if V = I. However, 
“interactions” are still present because 

= -0.78 -0.63 0.78) 

is not diagonal (Figure 6). 

Nomenclature 
C ( s )  = transfer matrix of controller 
G = UZVH, singular value decomposition (Klema and Laub, 

1980) 

G(s) = {ggij), transfer matrix of the plant 
G&) = perturbed plant (with uncertainty) 
K(s) = diagonal transfer matrix of single-loop controllers 

Greek Symbols 
AI, = relative element uncertainty, g,,, = g,(l + AcJ), lAIl1 < r 
A, = relative uncertainty on input i 
AI = diag (A,}, matrix of relative input uncertainties, G, = G(I 

A(M) = M(s) X M-’(s)~, RGA of the transfer matrix M (X 

A, A(G) = RGA of plant 
A(C) = RGA of controller 
llAllrl ;, max, 

~ ~ A ~ ~ l m  = max, 

llAll1 = CIJ lXl, l ,  1-norm (sum of element magnitudes) 
Z(G) = diag (ulpax(G), ..., umln(G)I - singular values 
umm(G) = maximum singular value 
um,”(G) = minimum singular value 
r(G) = um=(G)/umIn(G), condition number 
r*(G) = mins ,s r(S,GS2), minimized scaled condition num- 

ber (S, and b, are diagonal matrices with real, positive 
entries) 

+ AI) 

denotes element by element multiplication) 

IX,,I, induced 1-norm (“maximum column 

IXVI, induced --norm (“maximum row 
sum ) 

sum”) 
11~11m = 2 max (l l4 l l11  ll4l1-1 
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