Model Based Optimization in Process Control - Potentials and Challenges

Dr. Joachim Birk, BASF SE

ReduCT, 04.11.2008, Frankfurt

Outline

1. Status Quo in BASF
2. Success Stories
3. Vision
4. Challenges and Requirements
Status Quo in BASF Ludwigshafen (I)

Quantity Structure Sensors, Actuators, Control Loops

- 67,000 control loops
- approx. 1,000 APC *)
 - (80% Advanced Analysis)
 - trend: + approx. 50 / a
- potential for modelling support
- approx. 100 Model Based Controllers
 - (95% model development specific for control)

460,000 instruments

*) Definition see papers from NAMUR WG 2.2

Status Quo in BASF (II)

Tendencies Supporting Model Based Process Control

- steady state models for most (new) plants
 - process development,
 - conceptual process engineering
- software for “dynamization“ of steady state models
- relatively small but increasing number of dynamic models for complex plant units
 - operability analysis
 - startup sequences
- complex dynamics by energy and material integration
- training simulators for some plants
Status Quo in BASF (III)
Tendencies Supporting Model Based Process Control

• comprehensive toolboxes for controller design
• Plant Information Management Systems (PIMS) for each plant,
 • all measurements available in long-term archives
 ➔ basis for model identification, ...
• powerful DCS (direct realization of APC or interfaces to powerful systems)

➔ perfect infrastructure to
 implement and supervise
 model based controllers

Status Quo in BASF (IV)
Development of Process Control Models

➔ main effort for applying model based controllers is modelling
➔ main challenge is limited number of available specialists for dynamic modelling
➔ need for software based modelling support

Albert Einstein:
„A model should be as simple as possible – but no simpler“

➔ a model should be as perfect as necessary
 - modelling effort
 - (implementation and) maintenance effort
➔ efficient modelling depends on
 - required model scope and model quality
 - already existing models for other purposes
 - automation infrastructure
Status Quo in BASF (V)
Development of Process Control Models

- **Real Process**
 - Rigorous dynamic modelling
 - Training simulator
 - Operability analysis
 - Startup investigation

- **Process Control Model**
 - Model identification (open loop, closed loop)
 - Model reduction
 - Empirical modelling
 - Grey box modelling

Success Stories (I)
Development of process control models

- **Real Process**
 - Rigorous dynamic modelling
 - Training simulator
 - Operability analysis
 - Startup investigation

- **Process Control Model**
 - Model identification (open loop, closed loop)
 - Model reduction
 - Empirical modelling
 - Grey box modelling

Dr. Joachim Birk, BASF SE
Success Stories (II)
Control of Semibatch Reactors

Initial situation: best PID control

Modelling for flatness based control:
- Calorimetric reactor model
- Detailed model of cooling system

Success Stories (III)
Flatness Based Control of Semibatch Reactors

- Flatness based control of semibatch reactors enables
 - significant better temperature control
 - higher reproducibility of batches
 - significant batch time reductions

- High control performance requires high state estimation quality
 - Detailed modelling of cooling system necessary
 - Model reduction

- Orthogonal collocation for cooling systems with constant coolant flow rate
- Finite differences for fluctuating coolant flow rate
Success Stories (IV)
Control of Plug-Flow Reactor

Problem: heavy oscillations e.g. after load changes
Cause: strong dynamic coupling between flow and conversion
Solution: model based analysis and robust control

Initial situation

New control

Result: + 8% capacity

Success Stories (V)
Development of process control models

Real process

Rigorous dynamic modelling
- training simulator
- operability analysis
- startup investigation

Reuse steady state flowsheet
(plant structure, physical properties)
Dynamization by supplement of buffers, holdups, controllers

Empirical modelling
Grey box modelling

Model identification
(open loop, closed loop)

Model reduction
-> reduction of apparatus and chemical components

Model identification
(open loop, closed loop)

Process control model
Success Stories (VI)
Dynamic Simulation for Design of Process Control Concepts

- Starting point: steady state flowsheet
- Aim: efficient development of dynamic simulation
- Comparison:
 - reuse of plant structure, physical properties, supplement buffers, holdups, manual reduction of apparatus and chemical components
 - reuse only physical properties, reimplement simplified process model -> faster!
- Dynamic modelling 10x faster as 2000
- Advanced analysis ⇒ 2 PID + 2 injections for approximate decoupling
- Consideration of control concept in early phase of plant engineering

Further need: Configurable model transfer from steady state flowsheet to dynamic simulator -> model reduction
Success Stories (VIII)
Development of process control models

- real process
- rigorous dynamic modelling
 - training simulator
 - operability analysis
 - startup investigation
- reuse steady state flowsheet
 (plant structure, physical properties)
 Dynamization by supplement
 of buffers, holdups, controllers
- empirical modelling
 grey box modelling
- model identification
 (open loop, closed loop)
- model reduction
 -> reduction of apparatus
 and chemical components
- model identification
 (open loop, closed loop)

Success Stories (IX)
Model identification

- 95% educt from
 recovery section
- Educt and water
 From recovery section
- fresh educt
- control valves
- controlled variables
- level measurement
- density measurement
- column reflux
- to synthesis section
- activation of
 new control concept

- Controlled variables: density, level
- Manipulated variables: valve positions for educt and water supply
- Linear 2x2 model derived from historical PIMS data
 - closed loop identification
 - without step tests
- New controller delivers significantly reduced variance
 ⇒ No need for more detailed model or more effort
Model Based Control in Life Cycle of a Process

Product Development → Process Development → Engineering → Operation

- **Challenge:** time pressure in projects
- **Challenge:** uncertainties
- **Available:** measurement data

Contributions to Operational Excellence in all phases

Vision:
Efficient Re-Use of all Model Information by Consistent Model Database

Models Used During Life Cycle
[Bausa, Dünnebier: Life Cycle Modelling in the chemical industries: Is there any reuse of models in automation and control? ESCAPE 2006]

- **Operator training:** Dynamic
- **Control concept:** Dynamic
- **Dynamic optimization:** Dynamic
- **Data reconciliation:** Steady-state
- **Observer:** Dynamic
- **Diagnosis:** Dynamic
- **Soft sensor:** Steady-state
- **Online-optimization:** Steady-state

Process development: Steady-state
Unit design: Steady-state
Loop-Pairing: Steady-state

Design → **Operation**
Challenges and Requirements (I)

Aim in industry: Maximization of added value
Modelling requires trade-off between

<table>
<thead>
<tr>
<th>Modelling effort</th>
<th>Model transparency for different target groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>-modelling effort</td>
<td>-modelling effort for different target groups</td>
</tr>
<tr>
<td>-integrated software platform</td>
<td>-model transparency for different target groups</td>
</tr>
<tr>
<td>-steady state simulation, dynamic simulation, model reduction and identification, controller design</td>
<td>-model transparency for different target groups</td>
</tr>
<tr>
<td>-pragmatic „80/20“ approach</td>
<td>-model transparency for different target groups</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model accuracy and robustness</th>
<th>Model maintainability in plant life cycle (especially plant changes, …)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-online model check</td>
<td>-complexity</td>
</tr>
<tr>
<td>-event based model updates</td>
<td>-ownership of models (Responsibilities are spread over the organization)</td>
</tr>
<tr>
<td>-fallback concepts</td>
<td>-life cycle of modelling, simulation and control software -> compatibility for years</td>
</tr>
</tbody>
</table>

Challenges and Requirements (II)

- **In Process industry,**
 Process control starts with a capital P and a small c

- Important to understand first the process and then to start with the control part

- Need for
 - intelligent software
 - qualified process engineers from universities
 - modelling know-how
Model Based Optimization in Process Control - Potentials and Challenges

Dr. Joachim Birk, BASF SE

ReduCT, 04.11.2008, Frankfurt