Gaussian Trajectories in Motion Control for Camless Engines

Benedikt Haus, Paolo Mercorelli
Institute of Product and Process Innovation
Leuphana University of Lueneburg
Volgershall 1, D-21339 Lueneburg, Germany
Tel.: +49-(0)4131-677-5571, Fax: +49-(0)4131-677-5300
Email: {haus,mercorelli}@leuphana.de

Abstract—In the last few years, variable engine valve control has attracted a lot of attention because of its ability to reduce pumping losses and increase torque performance over a wider speed and load range. Variable valve timing also allows control of internal exhaust gas recirculation, thus improving fuel economy and reducing NOx emissions. One of the most important issues in this context is to track suitable variable (optimized in terms of engine speed and load) motion profiles for the intake and exhaust valves. This can be achieved using dedicated actuators for the valves instead of a traditional camshaft. This contribution considers a new kind of actuator for this purpose and its control for motion tracking in the context of camless systems. However, this paper's main intention is to introduce a method of generating variable engine valve trajectories that are based on Gaussian curves and exemplarily provide the reader with information on how to exploit their favorable mathematical properties for control design purposes. As a demonstration of this kind of curve's variability, a delay-compensating phase-adaptive feedforward action is derived from a linear model description of the actuator. Simulations show the effectiveness of a simple heuristic delay-estimation algorithm in combination with the mentioned feedforward action.

Index Terms—Engine applications, servo hydraulic systems, trajectory generation

I. INTRODUCTION

Conventional valve actuators with camshafts often have no variability of the valve trajectory. It is the same in all speed and load ranges. Implementation of the Miller or Atkinson Cycle could achieve improvements in fuel consumption and exhaust emission. This approach, however, would lead to a power reduction as well. Therefore, by charging the filling phase of the cylinder via a compressor or a turbocharger, the power reduction in comparison with conventional internal combustion engines could be compensated. This compromise can be circumvented with a variable valve timing and stroke as proposed in this contribution. Fig. 1 shows the full potential variability of the engine valve trajectory. While the general properties of the curve are always the same (closed - open - closed), there are different parameters relevant to the application. These are mainly the maximum valve lift, the opening duration and the opening timing. Of course, the general shape of the curve must be considered as well, since it is implicitly defined by the (traditionally fixed) camshaft profile. In dependence of engine speed and load, these parameters must be changed in an optimal way to achieve the goals of reduction in fuel consumption, a cleaner combustion and more power. Full variability can be achieved by employing

![Classification of the variable parameters of the valve trajectory actuators instead of the traditional camshaft. If these can be controlled to track user-defined trajectories, all parameters can be changed. These are usually electromagnetic actuators or combinations with pneumatic or hydraulic servo-systems. The presented actuator consists of a piezo-electric actuator with a hydraulic displacement amplifier, driving a servo valve that is in turn driving one or more double-acting hydraulic cylinders. This architecture combines the advantages of piezo actuators (speed and precision) with those of hydraulic systems (high power and compactness of the actuator itself). The actuator can be seen as two decoupled subsystems:]

- **Piezo actuator with hydraulic displacement amplifier**
 - input signals: input voltage of the piezo actuator
 - output signal: position of the valve spool

- **Servo valve and hydraulic cylinder with the engine valve**
 - input signal: position of the valve spool
 - output signal: position of the engine valve.

Obviously, retroactive effects caused by the hydraulic sub-system, which are acting on the valve spool position, are not considered in the overall model as the authors deem them negligible in satisfying accuracy, based on experimental experience. In [1], an optimization-based polynomial trajectory generation algorithm for variable valve control in camless combustion engines is presented. However, in practical applications, schemes with as few parameters as possible are helpful. [2] gives an overview of different analytic expressions of elementary trajectories, e.g. in an exponential form. Using Gaussian bell curve-like trajectories like those in [3], [4], the number of parameters to achieve full variability can be reduced to three.

Fig. 1. Classification of the variable parameters of the valve trajectory actuators instead of the traditional camshaft.
The paper is structured in the following way. Section II gives some details on the modeling of the proposed actuator, which is divided in two decoupled subsystems. Section III explains how the Gaussian trajectories are generated using analytically evaluated equations. The simple heuristic time delay estimation algorithm that was developed in [5] is described in section IV. Section V shows how to deploy the phase correction in the trajectory generation to yield an adaptive feedforward action. Simulations and a conclusion close the paper.

II. DESCRIPTION OF THE WHOLE SYSTEM AND SOME SPECIFICATIONS

The actuator described in the previous section is modeled as three submodels: The double-acting hydraulic cylinder (see Fig. 3), the hydraulic displacement amplifier (which is shown in Fig. 2) and a five milliseconds time delay of the signal \(x_2(t) \) (the valve spool position) between the two former parts, representing the (so far, unmodeled) hysteresis caused by friction. The cylinder is modeled in a linearized form and described by simple differential equations while the displacement amplifier model is modeled in a SISO state space form. As detailed in [6], the corresponding state space parameters are:

\[
\dot{x}(t) = Ax(t) + Bv_x(t), \quad y(t) = Cx(t), \quad (1)
\]

\[
x(t) = \begin{bmatrix} x_2(t) \\ \dot{x}_2(t) \end{bmatrix}, \quad A = \begin{bmatrix} 0 & \frac{1}{m_{VS}} \\ A_{21} & 0 \end{bmatrix}, \quad \text{with}
\]

\[
A_{21} = \left(\frac{K^2_{FL2}}{K_{FL1} + K_{FL2}} - K_{VS} - K_{FL2} \right.
\]

\[
+ \frac{\left(\frac{K_{FL1}}{K_{FL1} + K_{FL2}} \right)^2}{K + \frac{K_{FL1} K_{FL2}}{K_{FL1} + K_{FL2}}} \left(K + \frac{K_{FL1} K_{FL2}}{K_{FL1} + K_{FL2}} \right) \right), \quad \frac{1}{m_{VS}},
\]

\[
B = \frac{A_1}{A_2} \begin{bmatrix} \frac{D_{c} K_{SP} K_{FL1}}{K_{FL1} + K_{FL2}} m_{VS} \\ 0 \end{bmatrix}, \quad C_2 = \begin{bmatrix} 1 & 0 \end{bmatrix},
\]

where \(A_1 \) is the surface of the piezo-side piston and \(A_2 \) that on the servo valve side. The hydraulic cylinder (driving the input and exhaust valves) is depicted in Fig. 3 and can be modelled in the following way, as described in [7]. In general, it is a nonlinear system [8]. However, for constant pressures, the volumetric flow into and out of the cylinder \(Q_{th}(t) \) can be approximated to be proportional to the length of the opening slit that equals \(x_2(t) - \bar{x}_2 \):

\[
Q_{th}(t) = (x_2(t) - \bar{x}_2(t)) \cdot K_{SP}, \quad (2)
\]

where the model parameter \(K_{SP} \) described in [6] is used. It includes hydraulic fluid density, tank pressure, system pressure of the hydraulic aggregate as well as some parameters of the 4/3 way servo valve. As described in [6], the differential equations describing the valve motion are linearized and simplified using several approximations:

\[
\dot{y}(t) = K_H Q_{th}, \quad (3)
\]

Here, \(K_H \) is a constant model parameter, depending on the steady-state behavior of the hydraulic cylinder.

III. REALISATION OF THE VARIABLE TRAJECTORIES

The desired engine valve trajectory is chosen as a Gaussian

\[
y_{d}(t) = H \cdot e^{-\left(\frac{mt+a}{b}\right)^2}, \quad (4)
\]

which has favourable properties and belongs to the class of \(C^\infty \) functions. The expression \(mt + a \) denotes a periodic and resettable ramp function covering the range \(-360^\circ\) (crank angle) to \(360^\circ\). The ramp \(mt \), with \(m = n \cdot \frac{360^{\circ}}{\text{rpm}} \) (where \(n \) is the engine speed in RPM and must be kept constant within a period) is implemented in dSpace as a resettable integrator:

\[
\int n \cdot \frac{360^{\circ}}{60s} dt, \quad (5)
\]

that is set to 0 as soon as it reaches 720\(^\circ\), implementing a crank angle as typical for four-stroke engines (see Fig. 4). The constant \(a \) has a value of \(-360^\circ\), so the numerator maintains in \([-360^\circ, 360^\circ]\), yielding the characteristic bell curve \(y_{d} \).

To increase the valve opening duration, one can simply freeze the crank angle in implementation, achieving a behaviour like that shown in Fig. 5, resulting in a change of the valve profile like depicted in Fig. 6. The constant \(b = 65^\circ \) is a parameter that controls the aperture of the Gaussian, different manifestations can be seen in Fig. 7. The parameter is proportional to the full time width of the valve curve at a height of \(\frac{1}{2} \) with a factor of \(\frac{m}{2 \pi \sqrt{2 \pi}} \). Here, \(H = 10 \) mm denotes the maximum valve lift. The main advantage of this symbolic approach function is its infinite differentiability which is beneficial for calculating the time derivatives of the desired trajectory for use in the control structure, \(\text{e.g.} \), the first time derivative

\[
\dot{y}_{d}(t) = -2n \cdot \frac{mt + a}{b^2} \cdot H \cdot e^{-\left(\frac{mt+a}{b}\right)^2}. \quad (6)
\]
Fig. 4. Graphical presentation of the automatically resettable ramp function used in the Gaussian, in the case of 8000 min$^{-1}$.

Fig. 5. Holding the ramp function at 360° results in a prolonged opening duration of the valve at the peak position.

Fig. 6. Demonstration of the consequence of holding the ramp function at 360°.

Fig. 7. Valve trajectory with different parameters for the opening time.

Fig. 8 shows the shape of the generated trajectory in the worst case of $n = 8000$ RPM as well as the relevant region of its frequency spectrum. Here, frequency components larger than 500 Hz can be neglected in good accuracy. A Fourier analysis like this can be helpful when using approximations in order to simplify a linear model, which is often necessary to invert the system to design a feedforward action. A simple Bode plot of the original and the simplified model, in combination with the trajectory’s spectrum, will tell if the simplification is acceptable. In this paper, however, the subsystem model in question (the hydraulic displacement amplifier) is differentially flat (see section V), so no further model order reductions are necessary and the feedforward action design exploits the flatness property.

Fig. 8. Desired valve trajectory and its frequency content (FFT) at $n_e = 8000$ RPM.
IV. REALISATION OF A VARIABLE PHASE SHIFTING
CONTROL BASED STRATEGY

The time delay, which is caused by an unmodeled hystereticness related to friction, must be determined to allow for heuristic phase compensation. For this purpose, the algorithm first presented in [5] that can be seen in Fig. 9, is used. It is based on a comparison of the current valve lift with the reference signal. The time that passes between the reference trajectory reaching a specified threshold, and the obtained one reaching it, too, is determined by using an integrator, very similarly to the ramp generation in section III. The resulting time is multiplied by a factor of \(-60^\circ \cdot n\), with \(n\) being the speed of the engine, to yield the phase correction \(c\) in degrees (in analogy to the crank angle). The implementation which can be seen in in Fig. 9 results from (5). The phase calculation algorithm is activated when an Enable Bit (see Fig. 9) is set to true. A reasonable calculation-starting condition to be chosen is \(y_d \leq 1\) mm and \(y \leq 1\) mm to ensure that the whole phase difference is captured and not only a fraction of it. The result is the necessary phase correction (hence the negative sign) in degrees. The phase correction is added to the periodical ramp, resulting in \(mt + c\), which maintains inside the crank angle interval \([0^\circ, 720^\circ]\) (see next section).

Introducing a phase correction \(c\), the desired trajectory is generated as:

\[
y_d(t, c) = H \cdot e^{-(\frac{mt + a + c}{b})^2},
\]

and its derivative, expressed with a time and phase dependent function \(c_1\) is:

\[
\dot{y}_d(t, c) = c_1(t, c) y_d(t) = -2m \frac{mt + a + c}{b^2} y_d(t) \tag{9}
\]

while the corresponding acceleration is

\[
\ddot{y}_d(t, c) = c_2(t, c) y_d(t) = \frac{2m^2(2(mt + a + c)^2 - b^2)}{b^4} y_d(t). \tag{10}
\]

In order to obtain a feedforward action, eqs. (2,3) are inverted. With the practical design choice of \(\dot{x}_2 = 0\), the flat feedforward action on the cylinder part of the system results as

\[
x_{2,a}(t, c) = \frac{y_d(t, c)}{K_{ff}K_{SP}} \Rightarrow \dot{x}_{2,a}(t, c) = \frac{\ddot{y}_d(t, c)}{K_{ff}K_{SP}}. \tag{11}
\]

Exploiting the multiplicative properties of eqs. (9) and (10):

\[
\dot{x}_{2,a}(t, c) = \frac{c_2(t, c)}{c_1(t, c)} x_{2,a}(t, c) = \frac{m(2(mt + a + c)^2 - b^2)}{b^2(mt + a + c)} x_{2,a}(t, c). \tag{12}
\]

Now, the model of the subsystem corresponding to the displacement amplifier, (1), can be inverted after a Forward Euler discretization, using sampling time \(T_s\), and inserting the calculated phase-corrected desired values for \(x_2\) and its derivative:

\[
V_z(n - 1) = \text{pinv}(B) T_S^{-1} \left(x_2(n) - (I + AT_S)x_2(n - 1) \right), \tag{13}
\]

where \(\text{pinv}(B) = (B^T B)^{-1} B^T\) and the necessary approximation \(V_z(n) = V_z(n - 1)\). It is to be noticed that \((B^T B)\) is just a scalar in this SISO case.

V. PHASE-ADAPTIVE FEEDFORWARD CONTROL

Exploiting the infinite differentiability of (4), a flatness-based feedforward action of the hydraulic cylinder can be derived. In the last decade, a large number of papers on control applications using flatness-based control techniques was published. Trajectory tracking and feedforward control are simple if the output to be controlled is flat. Flatness-based control has already been used to address soft landing problems, see [9] and [10]. A dynamical system is differentially flat if it is possible to find a set of outputs (the number of output variables is equal to the number of inputs) that allow for an algebraic parametrisation of all state variables and all input variables using those flat outputs and their derivatives. Considering a system with \(n\) state variables \(x \in \mathbb{R}^n\), and \(m\) inputs \(u \in \mathbb{R}^m\), the system is differentially flat, see [11], if the outputs \(y = y(x, u, \dot{u}, \ldots, u^{(p)}) \in \mathbb{R}^m\) and their time derivatives algebraically define both the states and the inputs according to

\[
x = x(y, \dot{y}, \ldots, y^{(q)}), \quad u = u(y, \dot{y}, \ldots, y^{(q+1)}). \tag{7}
\]
Please note that the first, uncompensated, cycle is used to calculate the necessary phase correction as described above. The PI controller that is necessary to feedback-control the valve position is activated at t = 50 ms, thus the relatively small offset, that is due to an inherently imperfect model inversion done in eq. (13), is corrected.

VII. Conclusion

To summarize, the paper presents a simple yet effective way to generate engine valve trajectories. Gaussian trajectories have the following favorable properties:

- Infinite differentiability, which greatly helps when working with flatness-based approaches,
- Low number of parameters, in this case only three,
- Parameters that are defined in analogy to traditional engines with a camshaft (crank angle, etc.) and can be changed freely, and
- Rapid decline towards high frequencies in the signal spectrum, which entails fewer bandwidth-related challenges for model simplifications.

Of course, they are suitable for other areas as well, e.g. \(\int y_d(t) dt \) for robotic motion planning like in [2]. The proposed actuator, that can be used to achieve fully variable combustion engine valve control, is modelled, including a time delay to be compensated, and controlled to track the valve trajectory. The adopted models are linearizations of the nonlinear models described in [8], [7]. These simplified models have shown to be sufficient for position control purposes in the speed ranges relevant for combustion engines, since the very fast oil pressure dynamics (which is the main challenge when dealing with nonlinear models) can be neglected.

References