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Abstract— Extremum seeking control was originally pro-
posed for adaptive optimization of static systems and later
extended to Hammerstein and Wiener systems. More recently,
stability and convergence results were presented also for general
type dynamic systems with a focus on the local behavior around
the optimum and under assumptions of relatively slow gradient
estimation and control. In this paper we derive properties
characterizing any stationary solution of the extremum seeking
control scheme, i.e., we do not restrict ourselves to solutions
close to optimum and allow for any frequency in the sinusoidal
perturbation based gradient estimation scheme. By considering
the linear properties around a stationary solution of the system,
we show that stationary solutions are characterized by either
a zero gradient or a phase lag condition. The former condition
is satisfied at the optimum only for systems in which the zero
gradient at the optimum is due to a static nonlinearity. The
phase lag condition is shown to be satisfied close to the optimum
for low frequency excitations, but can also be satisfied at solu-
tions arbitrarily far from the optimum. The results imply that
the extremum seeking control scheme applied to general type
dynamic systems can have multiple stable stationary solutions of
which some are sub-optimal and potentially far removed from
the optimum. For illustration we consider extremum seeking
control of a tubular bioreactor, displaying a maximum yield,
and show that the closed-loop has two saddle-node bifurcations
resulting in a total of three possible stationary solutions for
some perturbation frequencies. A stable sub-optimal solution,
with a yield less than 10% of the optimal yield, exists even with
relatively slow gradient estimation.

I. I NTRODUCTION

Extremum seeking control (ESC) is a classic adaptive con-
trol technique used to achieve and maintain optimal operating
conditions even for complex processes with unknown input-
output mappings. The classic approach to ESC is to employ a
perturbation based metod for estimating the gradient and then
combine this with feedback to force the gradient to zero. The
use of feedback increases the robustness of the scheme by
suppressing the effects of uncertainty and disturbances. Even
some of the earliest descriptions of ESC were in principle
based on this combination of perturbation based estimation
and feedback, e.g., Leblanc (1922)[1]. Initially the method
was derived for purely static systems, but in the 50s and 60s
linear dynamics were added to yield models of Hammerstein
or Wiener type. See e.g., [2], [3] for reviews. However,
stability issues were largely neglected in the early works on
ESC.

It was only at the beginning of this century that a
rigorous local stability analysis of ESC applied to general
dynamic systems was presented. Krstić and Wang [4] employ
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averaging and singular perturbation analysis of the system
in the vicinity of the optimum to show that the ESC will
converge to a stationary solution close to optimum under
certain well defined conditions. The result is only local,
and furthermore, employment of averaging combined with
singular perturbations implies that it is necessary to assume
that the feedback is slow relative to the perturbation based
estimation, and that the perturbations again be slow relative
to the open-loop dynamics of the plant. Tan et al. [5] extend
the results to allow for semi-global stability analysis, still
relying upon averaging and singular perturbations. Recently,
Moase and Manzie [6] consider the problem of convergence
from arbitrary initial conditions using arbitrarily fast gradient
estimation and feedback. However, their method is only
applicable to Hammerstein systems.

Krstić and Wang [4] also find that, for the case of
general dynamic models, the ESC will locally converge to
a solution deviating somewhat from the optimum, with the
error being proportional to the square of the amplitude of
the perturbation signal. Chioua et al. [7] consider the impact
of the perturbation frequency and show that the error also
will be proportional to the square of the frequency. Similar
to the results of Krstíc and Wang, their result is based on a
local analysis around the optimum.

In this work we consider ESC of general dynamic systems,
but rather than focus on the local properties around the
optimum our aim is to characterize the properties ofany
stationary solution of the ESC scheme. Furthermore, we
allow any frequency in the perturbation signal and put no
restrictions on the bandwidth of the feedback. Our motivation
for this work comes from a simulation study on ESC of the
CANON process, a complex biological process for ammo-
nium removal in wastewater [8]. This process has a sharp
optimum in terms of removed ammonium with dissolved
oxygen as the input, but the optimal conditions are unknown
and furthermore varying with the quality of the incoming
water. Thus, ESC is an obvious choice for this process.
However, the CANON process involves biofilm transport
and growth, something which makes the open-loop dynamics
exceedingly slow and hence employing gradient estimation
significantly slower than the process time-constant is not
practical. Based on simulation studies we found that the ESC
could move the CANON process close to optimum even with
high perturbation frequencies and relatively fast feedback.
But, we also found that for some initial condition the
ESC could convergence to stationary solutions far from the
optimum. Thus, we detected sub-optimal solutions as well
as existence of multiple stable stationary points. The results
presented in this paper serve to explain these observations.



We start the paper by briefly describing the ESC algorithm
with periodic excitation for gradient estimation. Expressions
for the stationary solutions of the ESC in terms of the local
linear frequency responses are then derived. Based on this
we characterize the stationary solutions in terms of amplitude
and phase lag of the open-loop frequency response. The
results show that there may be two distinct properties that
characterize the stationary solutions of ESC, one related to
the gradient and one related to the phase-lag of the system
at the excitation frequency. To shed some light on the re-
lationship between the derived characteristics and properties
of a general dynamic system around an extremum point, we
present some results on the dynamics of systems with steady-
state input multiplicity. We also present a simple stability
analysis of the ESC to show that both type of solutions,
satisfying either the gradient or the phase lag condition, can
be locally stable. Finally, we illustrate the results with a
simple example involving maximization of the yield in an
tubular isothermal bioreactor with plug flow. As shown, the
reactor with ESC displays multiple stable stationary solutions
even for relatively low excitation frequencies in the gradient
estimation. We finally discuss some possible remedies to
avoid sub-optimal solutions to the ESC.

II. EXTREMUM SEEKING CONTROL WITH PERIODIC

EXCITATION

The principal idea behind extremum seeking control is to
use gradient feedback to bring a process to the maximum or
minimum, corresponding to the zero gradient point, of the
input-output map in which the output represents the objective
function and the input is the main control variable. There
exists several approaches to ESC, e.g., based on sliding mode
[9] or numerical optimization methods [10]. In this paper
we consider the classical and much studied variant based
on sinusoidal perturbations [2], [11], [3]. The corresponding
ESC loop is outlined in Fig. 1, which also defines the various
signals of the scheme. An important motivation for choosing
this particular scheme is that it is model independent and also
relatively simple to implement.
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Fig. 1. Structure of the ESC system.

We consider the process to be described by a general
set of nonlinear differential equations combined with a
nonlinear state-to-output map. It is assumed that the system

is asymptotically stable for all inputsθ and can be described
by a state space model of the form

ẋ = f(x, θ)
y = h(x)

(1)

The assumption of asymptotic stability can easily be relaxed
by introducing a stabilizing feedback control law. The func-
tions f : R

n × R → R
n and h : R

n → R are assumed
to be sufficiently smooth such that all necessary derivatives
exist. Furthermore, we assume that there exist a sufficiently
smooth functionl : R → R

n such that

0 = f(x, θ)

if and only if
x = l(θ)

The assumptions above imply that the stationary solutions of
(1) are parametrized byθ and that the composite function

h ◦ l : R → R (2)

exists and is sufficiently smooth. The function (2) is the
steady-state map betweenθ and y, and as such, it is the
function we want to optimize by employing ESC. We will
assume that (2) has an extremum which is either a maximum
or a minimum.

The addition of the sinusoid in Fig. 1 is motivated by the
fact that the product of the sinusoid itself and the system
response to the sinusoid will have a DC component which
is proportional to the local gradient of the input-output map
h◦l, provided the system acts as a static map. The purpose of
the high-pass filterFH is to remove the DC component from
the process response, while the low-pass filterFL serves to
retain only the DC component of the predicted gradient.

We next consider deriving the characteristics of the sta-
tionary solutions to the ESC as outlined above.

III. STATIONARY SOLUTIONS OF THEESCSCHEME

Consider the system given in (1) controlled by an ESC-
loop as shown in Fig. 1. We are interested in determining
the stationary solutions of this loop, here taken to be the
solutions for which the control̂θ is a constant. Clearly, this
implies thatξ(t) = 0 for the solutions considered. With a
constantθ̂(t) = θ̄, the input to the process becomes

θ(t) = θ̄ + a sin(ωt)

This input will in turn yield a stationary response in the
process outputy(t) which is composed of a DC component,
resulting fromθ̄, combined with the frequency response for
a sin(ωt). If we assume that the amplitude of the sinusoid
a is small, then the frequency response can be described by
the transfer-functionG(s) obtained by linearizing the process
around the steady-state corresponding toθ = θ̄, i.e.,

y(t) = h ◦ l(θ̄) + |G(iω)|a sin(ωt+ arg(G(iω)))

The presence of the high-pass filterFH will effectively
remove the DC component ofy, resulting in the response

y(t)− η(t) = |G(iω)||FH(iω)|a sin(ωt+ ϕ)



where ϕ = arg(G(iω)) + arg(FH(iω)) is the combined
phase lag of the system and the high-pass filter. The signal
y − η is ”demodulated” by multiplication witha sin(ωt) to
yield

(y(t)− η(t))a sin(ωt) =

|G(iω)||FH(iω)|a2 sin(ωt+ ϕ) sin(ωt).

The trigonometric identity

sin(α) sin(β) =
1

2
(cos(α− β)− cos(α+ β))

yields

(y(t)− η(t))a sin(ωt) =
a2

2
|G(iω)||FH(iω)|(cos(ϕ)−

cos(2ωt+ ϕ))

Note that the demodulated signal consists of a DC compo-
nent and a sinusoidal component with twice the excitation
frequency. Low-pass filtering the demodulated signal yields

ξ =
a2

2
|FL(0)||G(iω)||FH(iω)| cos(ϕ)−

a2

2
|FL(i2ω)||G(iω)||FH(iω)| cos(2ωt+ ϕ+ arg(FL(i2ω)))

The low pass filter is assumed to effectively filter out the
high frequency component, i.e.,

|FL(i2ω)| = 0, (3)

which yields

ξ =
a2

2
|FL(0)||G(iω)||FH(iω)| cos(ϕ). (4)

Sinceξ = 0 is required to yield a constant̂θ, it follows
that we for stationarity require

a2

2
|FL(0)||G(iω)||FH(iω)| cos(ϕ) = 0 (5)

Clearly, a
2

2
|FL(0)||FH(iω)| > 0, so the only possibility for

(5) to be true is if either

|G(iω)| = 0 (6)

or
cos(ϕ) = 0 ⇒ ϕ =

π

2
+ nπ, n = 0, 1, 2, . . . (7)

From the analysis above we draw the conclusion that the
stationary solutions are characterized either by the system
being output invariant with|G(iω)| = 0 ∀ω or the phase lag
fulfilling (7). Since these criteria can be fulfilled irrespective
of the optimality conditions, there may exist stationary
solutions completely unrelated to the optimum. Furthermore,
the phase lagϕ at the frequencyω can in principle vary with
the inputθ in such a way that (7) can be fulfilled for several
different stationary points. Some systems could therefore
have multiple stationary solutions for a single excitation
frequency.

The derivation above is not strict since it depends on (3),
a condition that no filters actually fulfill. However, if we

consider the full ESC-loop, it is clear that high-frequency
components will be attenuated not only by the low-pass filter
but also by the integrator and typically by the process itself
as well. Furthermore, if we consider the average ofξ over
one periodT = 2π/ω we get

1

T

∫
T

0

ξdt =
1

T

a2

2
|G(iω)||FH(iω)|

∫
T

0

(|FL(0)| cos(ϕ)−

|FL(i2ω)| cos(2ωt+ ϕ+ arg(FL(i2ω))))dt =

1

T

a2

2
|G(iω)||FH(iω)|

(
∫

T

0

|FL(0)| cos(ϕ)dt−

∫
T

0

|FL(i2ω)| cos(2ωt+ ϕ+ arg(FL(i2ω)))dt

︸ ︷︷ ︸

=0







=

a2

2
|FL(0)||G(iω)||FH(iω)| cos(ϕ).

This corresponds exactly to what is assumed in (3), i.e., the
assumption is equivalent to studying the average behaviour
of the system which makes sense since we are interested in
stationary solutions. If the assumption (3) is not made, then θ̂
would not be constant for stationary solutions and we would
instead have to consider limit-cycles of small amplitude.

A. Relation of stationary solutions to optimality

From the above we find that stationary solutions of the
ESC scheme either satisfy the amplitude condition

|G(iω)| = 0

or the phase lag condition

ϕ =
π

2
+ nπ

To better understand how these conditions relate to properties
of a general dynamic system at the optimum, it is interesting
to consider the dynamic properties of systems with an
extremum in the input-output mapping, i.e., systems with
steady-state input multiplicity. Steady state input multiplicity
is a property that all systems viable for ESC exhibits, i.e.,
there are multiple inputs yielding the same output at steady-
state due to the existence of a maximum or minimum.
Such systems have previously been shown to possess certain
dynamical properties [12] that are relevant for the stationary
solutions of the ESC as derived above.

Let

G(s) = K
b0 + b1s+ · · ·+ bmsm

a0 + a1s+ · · ·+ ansn
, n ≥ m

be the transfer-function from inputu to output y of (1)
linearized about a steady-state solutionx̄ = l(θ̄). Then the
stationary gain is given by

G(0) = K
b0
a0

= (h ◦ l)′(θ̄)

Let θ∗ be the value for whichh ◦ l achieves its extremum.
Then it follows that(h◦l)′ switches sign through zero atθ =
θ∗, i.e. the sign of(h◦ l)′(θ∗+ε) is opposite of(h◦ l)′(θ∗−



ε) for small values ofε. This implies that the stationary
gainG(0) also will switch sign through zero when linearized
aboutx∗ = l(θ∗). This can only happen if either of

K = ±0, or b0 = ±0 (8)

are true at the optimum (a0 = ±∞ is not possible for proper
systems). IfK = 0, then all dynamics disappear at the
extremum sinceG(s) = 0 ∀s, i.e., the output is invariant
at the optimum. If insteadb0 = 0 and somebk 6= 0, then a
real zero will cross between the LHP and the RHP asG(0)
changes sign and hence there exists such thatG(s) 6= 0. In
this case the system will have a dynamic response to small
changes inθ even at the extremum point and, furthermore,
the linearized system will be non-minimum phase, at least
locally, on one side of the extremum. This is an interesting
observation as it severely limits the ability to stabilize or
speed up the dynamics of a system prior to applying ESC.
However, we will here merely focus on the implications of
the zero crossing for the existence of stationary solutionsto
the ESC itself and will leave the implications for inner loop
feedback to future work.

Consider now the case of a Hammerstein/Wiener model, as
considered in most previous studies on ESC. For such models
it is clear that the optimum corresponds toK = 0, and hence
the optimum is a stationary solution of ESC for sufficiently
smalla. Furthermore, the phase lag of such models does not
vary with θ̄ and hence there will only be singular frequencies
for which the ESC can lock on to a solution withϕ = π

2
+nπ.

Thus, for essentially any choice of the excitation frequency
ω there will be a unique stationary solution of the ESC
which is the optimal solution for smalla. Furthermore, the
deviation from optimality for largera will only depend on
the degree of non-symmetry of the mappingh◦ l around the
optimum. As shown in [4], the solution will also be stable
for an appropriate choice of controller parameters, including
a sufficiently small excitation frequencyω.

Consider next the case in which the optimum corresponds
to b0 = ±0, i.e., a transmission zero crosses the imaginary
axis through zero as̄θ passes the extremum. In this case,
the system has a zero ats = 0 and hence a phase lag of
π/2 at ω = 0 at the optimum. We here make the usual
assumption that the cut-off frequencyωh ≤ ω in the high-
pass filter. Thus, the stationary solution will asymptotically
approach the optimum asω → 0. For solutions close to
the extremum there will be a zero close to0, either in
the LHP or RHP, and hence a small non-zero frequency
for which the phase lagϕ = π/2. Thus, for small non-
zero excitation frequenciesω the ESC will converge to a
solution in the vicinity of the optimum. Since the zero moves
away from the origin as̄θ moves away from the optimum, it
implies that the distance to the optimum will increase with
increasing frequency. This also corresponds well with the
results based on local approximations around the optimum
in [7]. Note that the slower the zero moves with changes
in θ̄, the larger the distance to the optimum will in general
be for a given excitation frequency. Also, note that as the
zero has moved some distance from the imaginary axis the

impact of other poles and zeros are likely to interfere with
its phase contribution and we may not get a phase lag of
ϕ = π

2
+ nπ at any solution in the vicinity of the optimum.

Thus, for sufficiently large frequencies there will probably
not be any stationary solutions related to the existence of a
process optimum.

Finally, it is clear that a process may have frequencies
where the phase lagϕ = π

2
+ nπ without any relation

whatsoever to the optimality conditions discussed above. If
this frequency varies with̄θ, then we will have a continuous
range of excitation frequencies for which a sub-optimal
stationary solution will exist. In such cases it is also possible
that multiple solutions will exist, of which one is related
to the optimality of the process while the others are not.
However, there may also exist situations where all stationary
solutions are sub-optimal in the sense that they are not related
to the optimality conditions of the process. This is shown
for the example bio-reactor below. First, we derive a simple
stability condition for the stationary solutions of the ESCas
derived above.

B. Stability of the stationary solutions

As shown above, depending on the dynamic properties of
the process and the excitation frequencyω, the ESC may
lock on to different types of stationary solutions. In practice,
one will of course only observe stable stationary solutions
and hence it is of interest to determine if all the various
types of stationary solutions can be stable, at least for some
choices of controller parameters.

To simplify the stability analysis we will assume that the
control is so slow that the process in combination with the
low-pass and high-pass filters acts as a static map fromθ to
ξ. Note that the control can be slow even if the excitation
frequency is relatively high since the response time also
depends on other parameters such as excitation amplitude
a and integrator gaink. Also note that the purpose of the
stability analysis presented here simply is to show that in
principle all types of stationary solutions discussed above
can be asymptotically stable.

Consider the ESC closed loop in Fig. 1. The block diagram
can be simplified into the one shown in Fig. 2, in which all
blocks but the integrator block have been included in the
block labelledL.

L
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Fig. 2. Simplified representation of ESC scheme in Fig.1

To investigate the stability of the simplified loop we seek
to find an algebraic expression for the relation

ξ = L(θ̂).

If θ̂ is varying slowly, then the local response of the
system (1) to small and relatively fast perturbations can



be approximated by the system linearized about the current
θ̂. Thus, we approximate the system by a linear parameter
varying (LPV) system witĥθ as a parameter. We form

ẋ =A(θ̂)x+B(θ̂)θ

ỹ =C(θ̂)x

which yields theθ̂-parametrized transfer-function

G(s, θ̂) = C(θ̂)(sI −A(θ̂))−1B(θ̂).

If ω is fast compared to the variations in̂θ, we can
consider the problem using separate time scales. For the fast
time scale, we approximatêθ as a constant and follow the
same steps as in deriving (4) to characterize the stationary
solutions. We get

ξ =
a2

2
|FL(0)||G(iω, θ̂)||FH(iω)| cos(ϕ(θ̂)) = L(θ̂).

This static map is the relation betweenθ̂ and ξ in the slow
time scale. Again, we are interested in stationary solutions
corresponding toξ = 0, or θ̂ = θ̄ constant. To determine the
stability of such solutions we consider a linearization ofL
around the stationary solutions forL(θ̄) = 0

L(θ̂) ≈
dL(θ̄)

dθ̂
θ̃, θ̃ = θ̂ − θ̄.

Now if we replaceL by its linear approximation in the closed
loop in Fig. 2, it should be clear the closed loop will have a
single pole at

k
dL(θ̄)

dθ̂
.

The stability of the loop is determined by the sign of the
pole and the stability criterion thus becomes

k
dL(θ̄)

dθ̂
< 0 (9)

Condition (9) can in principle be satisfied for any type of
stationary solution discussed above, and hence all types of
solutions can in principle be stable. Also, note that any
stationary solution can be made stable by simply choosing
the appropriate sign of the controller gaink.

IV. EXAMPLE : CONTROL OF A CONTINUOUS TUBULAR

REACTOR

As stated in the introduction, our motivation behind this
work was observations made when applying ESC to a
bioreactor used for ammonium removal from waste water.
The model for this process is highly complex and we
therefore consider a simpler example here to make the results
more transparent as well as reproducible by the reader. The
qualitative results obtained are similar to those observedin
the bioreactor for wastewater treatment.

The system considered here is a simple isothermal tubular
bioreactor with plug-flow for converting speciesA into
speciesB, but in which there also is a side reaction producing
speciesC fromB [13]. The side reaction implies that there is
a maximum in the yield ofB with respect to the residence

time in the reactor. The residence time can be controlled
using the total flow into the reactor as the input. The reactor
model is

∂α

∂t
+

1

q

∂α

∂z
= −αβ

∂β

∂t
+

1

q

∂β

∂z
= αβ −

β

φ(1 + ρβ)

Hereα andβ are dimensionless concentrations ofA andB,
respectively,q is the total flow andφ andρ are parameters
describing the reaction kinetics. The dimensionless length
of the reactor is1, i.e., z ∈ [0, 1]. We consider the same
nominal parameter values as in [13], i.e.,φ = 20, ρ = 3
andα(t, 0) = 0.8 andβ(t, 0) = 0.2. We use the method of
lines for simulation and employ simple backward Euler with
N = 10 elements for the spatial discretization.

The static map from the flowu = q to the product
concentration ofB, y = β(1), is shown in Fig. 3. As can be
seen, there is a maximum concentration ofB, y = 0.915, for
a flow u = 6.01. From linearization we find that there is a
zero ats = 0 in the transfer-function of the linearised system
at the optimum, and this zero moves into the RHP for higher
values of the input flowq. Thus, the system does not have any
steady-states for which the amplitude|G(iω)| = 0 for any
non-zero frequencyω. According to the analysis presented
above, this implies that that any stationary solution to the
ESC problem for the bioreactor must satisfy the phase-lag
conditionϕ = π

2
+ nπ.
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Fig. 3. Steady-state input-output map for bioreactor in Example.

We employ the cut-off frequencyωh = 0.01 in the high-
pass filter and compute solutions in terms ofω toϕ = π

2
+nπ

for steady-states within the input rangeq ∈ [0, 200]. The
results in terms of stationary flow and concentration ofB
as functions of the perturbation frequencyω is shown in
Fig. 4. As can be seen, for perturbation frequencies up to
ω = 0.36 the ESC scheme has a stationary solution close
to the optimal concentration0.915. However, as can be seen
from Fig. 4, there is a bifurcation atω = 0.36, resulting
in multiple steady-states in the rangeω ∈ [0.035, 0.36].
From simulations as well as from the simplified stability
analysis presented above, we find that the solutions at the
upper and lower branches are stable while the solutions at



the intermediate branch are unstable. For instance, for the
perturbation frequencyω = 0.05 rad/min we find three
solutions with concentrationsy = 0.913 (stable),y = 0.226
(unstable) andy = 0.033 (stable), respectively. See also
Fig. 4. Thus, depending on the initial conditions, the ESC
may converge to a solution close to the optimal yield or
to a solution with essentially no yield. Note that this is a
perturbation frequency which is low relative to the main
dynamics of the reactor with a time-constant around5 min
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Fig. 4. Stationary solutions of bioreactor in terms of flow andproduct
composition ofB as a function of the perturbation frequencyω with ESC.
The solutions for the perturbation frequencyω = 0.05 are marked, x-stable,
o-unstable. The dotted line is the maximum product concentration.

V. SUMMARY AND CONCLUSIONS

We have in this paper considered stationary solutions of
the extremum seeking control scheme. An analysis of a
general dynamic model revealed that the stationary solu-
tions of the ESC are characterized either by the linearized
dynamics having zero gain for all frequencies|G(iω)| =
0 ∀ω, or the phase lag at the excitation frequency being
π

2
+ nπ. This result was related to previous results on

properties of dynamic systems close to extremum points
in the input-output map [12], and based on this we could
conclude that either condition for stationarity is likely to be
fulfilled in some vicinity of the optimum for sufficiently low
excitation frequencies. In particular, for systems in which the
nonlinearity with an extremum point is purely static, e.g.,as
in Hammerstein systems, the zero gain condition is fulfilled
at the optimum. For systems which display transient behavior

even at the optimum, there is a transmission zero crossing
the imaginary axis at the optimum and hence there will be a
solution close to optimum fulfilling the phase lag condition
for low perturbation frequencies. However, there may also
exist stationary solutions fulfilling the phase lag condition at
operating points with no relation to the optimality condition
whatsoever. Such solutions may coexist with solutions close
to the optimum, resulting in multiple stationary solutionsto
the ESC problem. For higher excitation frequencies, there
may exist no stationary solutions related to the optimalityof
the process and only sub-optimal solutions exist.

We stress that the phase lag condition presented in this
paper, if properly utilized, may represent an advantage for
ESC as it represents a dynamic property reflecting nearness
to optimum, and hence higher excitation frequencies allow-
ing for faster convergence may be employed. However, the
problem of avoiding convergence to sub-optimal solutions
also fulfilling the phase lag condition is an open problem.
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