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Introduction

During the operation process many quantities and parameters could be blended with some unwanted
data which might be fluctuated in times. In other words, the measured variables in system identifi-
cation are often disturbed by some kinds of structural disturbances (such as trends, levels shifts or
outliers) and noises. It is important to eliminate outliers and trends in the data, as these might oth-
erwise deteriorate the identification accuracy [?].According to [?] ,Trend filtering applications are so
vast and very useful in several areas such as macroeconomics [?], [?], geophysics [?],[?],[?], finan-
cial time series analysis [?], social sciences [?], revenue management [?], and biological and medical
sciences [?][?].

Sparse Representation of Signal

The problem of finding the sparse representation of a signal is that ,when the equations are linear, one
would like to determine an object x0 ∈ Rn from data y = Φx0, where Φ is an m×n matrix with fewer
rows than columns; i.e., m > n . The problem is that a system with fewer equations than unknowns
usually has infinitely many solutions and thus, it is apparently impossible to identify which of these
candidate solutions is indeed the correct one without some additional information [?].

In [?], by using the property of l1 regularization in regression, estimated the model parameter of
system.

L1 Filtering

L1 trend filtering proposed the minimizer of the weighted sum objective function which can be written
in matrix form as

(1/2)
N

∑
k=1

(
y(k)− x(k)

)2
+λ‖Dix‖1 (1)

λ is a non-negative parameter for controlling the trade-off between smoothness of x and size of the
residual. The weighted sum objective (??) is strictly convex and coercive in x and so has a unique
minimizer [?] .

1



Problem formulation

We consider a linear system

y0(k) = a1y0(k−1)+ · · ·+any0(k−n)+b1u(k−1)+ · · ·+bmu(k−m)+ e(k) (2)

where is e(k) random noise disturbance. It is assumed the measured output is given by

y(k) = y0(k)+d(k) (3)

where d(k) is an unknown variable, which we assume can be described as the outlier signal, level
shifts and piecewise constant trends. A sequence of outliers can be modeled by Sequence of outliers:

d0(k) =
{

di, k = ki, i = 1, . . . ,M0
0, otherwise

Similarly, level shifts are described by piecewise a constant variable

d1(k) = di, ki ≤ k < ki+1, i = 1, . . . ,M1

and Sequence of trends are modeled by a piecewise linear signal

d2(k) = d2(k−1)+βi,ki ≤ k < ki+1, i = 1, . . . ,M2

The problem is to identify the system model (??) and the variables d(k) from a sequence {y(k),u(k),k=
1, . . . ,N} of measured outputs y(k) and known inputs u(k). Note that it is assumed that neither the
values nor the time instant ki of the discontinuities are known. However, it can be assumed that the
number of discontinuities M0,M1 or M2 is small in relation to the total data points.

Combining ( ?? ) and ( ?? ) gives

y(k) = a1

(
y(k−1)−d(k−1)

)
+ · · ·+an

(
y(k−n)−d(k−n)

)
+d(k)

+b1u(k−1)+ · · ·+bmu(k−m)+ e(k) (4)

or
y(k) = θaϕy(k)+θbϕu(k)−θaϕd(k)+d(k)+ e(k) (5)

where

θa = [a1 · · · an]
T

θb = [b1 · · · bm]
T (6)

and

ϕy(k) = [y(k−1) · · · y(k−n)]T

ϕu(k) = [u(k−1) · · · u(u−m)]T (7)

ϕd(k) = [d(k−1) · · · d(k−n)]T

In identification of the system parameters θa and θb, and the disturbance sequence d(k), one needs
to take into account that the disturbance sequence {d(k)} can always be selected so that the model
output matches the measured output exactly. However, the disturbance sequence would in general
not satisfy the condition that the number of discontinuities be small. In order to satisfy this condition
while achieving a small prediction error, sparse optimization will be applied.
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A sparse optimization approach

Normally the standard approach in system identification is to remove disturbances by data prepro-
cessing first, then try to estimate the system, but this kind of method is difficult to separate between
the effects of known system inputs and unknown disturbances (trends, etc.).
In sparse optimization approach, we are trying to remove disturbances as before but also identifying
the model system simultaneously by exploiting sparsity properties of d(k) and minimize an objective
function of the form

J(θa,θb,d) =
N

∑
k=1

(
y(k)−θaϕy(k)−θbϕu(k)+θaϕd(k)−d(k)

)2
+λ‖Did‖1 (8)

where λ is a positive constant,
d = [d(1) · · · d(N)]T

and Di is a weighting matrix selected in accordance with the type of disturbance.

Iterative refinement

As in sparse optimization, for good results reweighting may have to be performed iteratively, and we
need to study how these can be interpreted in terms of the primal problem. In [?], proposed a weighted
formulation of l1 minimization designed to more democratically penalize nonzero coefficients: larger
coefficients are penalized more heavily in the l1 norm than smaller coefficients, unlike the more
democratic penalization of the l0 norm.
Algorithm 1 shows the sparse optimization with iterative refinement as follows:

Algorithm 1

Step 1. Set W=1 and minimize the cost by using Bilinear Matrix Inequalities

J1(θ̂a, θ̂b,d) =
N

∑
k=1

(
y(k)− θ̂aϕy(k)− θ̂bϕu(k)+ θ̂aϕd(k)− d̂(k)

)2
+λ‖WDid̂‖1 (9)

for the required estimates θ̂a, θ̂b and d̂(k).

Step 2. Use re-weighting to put small weight on the points that have large error and reduce the
affection of them on identification parameter of system.

W = diag(
1

ε + |Did(k)|
) (10)

Step 3. Minimize the cost with the new weight

J1(θ̂a, θ̂b,d) =
N

∑
k=1

(
y(k)− θ̂aϕy(k)− θ̂bϕu(k)+ θ̂aϕd(k)− d̂(k)

)2
+λ‖WnewDid̂‖1 (11)

in each iteration we calculate new weight and apply to our minimization in step 3, if our result is
perfect and converge good we exit and Finish the iterative.
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AIC model selection

One of the popular statistical methods for selecting the model of the system in system identification
is Akaike Information Criterion. In this part, finding the best lambda is out goal to find better fittting
with simpler model in our identification and trends.

Standard AIC is only based on maximum log-likelihood and model order and it typically selects
more complex model as the sample size increases.For solving this problem and select better model
we need to penalize the maximized log-likelihood with more precisely calibrated factor. In corrected
AIC, penalizes complexity more strongly than standard AIC, with less chance of over fitting the model
[?].

Numerical examples

In this section, we apply the proposed identification de-trending method to an ARX models.

Example 1

The system is defined by

y0(k) = a1y0(k−1)+a2y0(k−2)+b1u(k−1)

+b2u(k−2)+ e(k) (12)

where the parameter vector
θ = [a1 a2 b1 b2]

T

which is

θ = [1.50 −0.7 1.00 0.5]T ,

(13)

where u(k) and e(k) is Normally distributed signal with variances 1 and 0.1, and d(k) is a structured
disturbance, which was added to the original system to make measured output. we should model the
disturbance as

d(k) = d0(k)+d1(k)+d2(k) (14)

where d0(k),d1(k),d2(k) are the outlier signal, level shifts and piecewise constant trends.

It is assumed the measured output is given by

y(k) = y0(k)+d(k) (15)
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we change the form of our problem to equation ?? and then by minimizing the cost with Iterative
refinement we can find the preliminary value of our identification.

In this example we add simultaneously three kinds of disturbances, trends, level shifts and spikes
to the system.

The outlier (spikes) trends are

d0(k) =


3, k = 330,760
−3, k = 135,255
0, otherwise

The Level shifts are

d1(k) =


-3, k=1-150
5, k=151-250
1, k=251-450
5, k=500-650
-2, k=651-1000

The piece-wise trends are

d2(k) =



2. . . 4, k=1-80
4. . . -1, k=80-200
-1. . . 4, k=200-400
4. . . 0, k=400-600
0. . . 3, k=600-880
3. . . -2, k=880-1000

Table 1: Estimated system parameter in Example 1

∗ a1 a2 b1 b2

θreal 1.50 -0.7 1.0 0.5
θ̂ 1.4971 -0.6960 1.0017 0.4987

θLS 1.5056 -0.6445 0.9966 0.4777

Table 2: Average of RMS value of the prediction error in Example 1

RMS E 0.3226
RMS PE 0.3269

RMS PELS 0.7476
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Example 2: Distillation column

In this example we used the distillation column data [?] to identify system parameter and disturbances.
The inputs are V (reboiling flow) and L(reflux) and output is overhead product of column. The inputs
are PRBS signals that simultaneously apply to the system. By using AIC method,w e found the delay
of system 6 and the parameter λ = 0.4.

The following table shows the comparison between the error of predicted model with ordinary
least square and our method predicted error.

Table 3: Estimated system parameter in Example 2

∗ a1 a2 bV 1 bV 2 bL2 bL2

θLS 0.6220 0.3370 0.0105 0.0110 -0.0322 -0.0059
θ̂ 0.6198 0.3355 0.0105 0.0127 -0.0324 -0.0077
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Table 4: Average of RMS value of the prediction error in Example 2

RMSPE LS 0.064±0.005
RMS PE 0.053±0.005

References

[1] [System identification theory for the user,second edition, by Lennart Ljung]:

[2] L-1 trend filtering, S.-J. Kim, K. Koh, S. Boyd, and D. Gorinevsky.2009. SIAM Review, prob-
lems and techniques section, 51(2):339360, May 2009

[3] R. Hodrick and E. Prescott, Postwar U.S. business cycles: An empirical investigation, J.Money,
Credit, and Banking, 29 (1997), pp. 116.

[4] K. Singleton, Econometric issues in the analysis of equilibrium business cycle models,
J.Monetary Econom., 21 (1988), pp. 361386.

[5] R. Baillie and S. Chung, Modeling and forecasting from trend stationary long memory models
with applications to climatology, Internat. J. Forecast., 18 (2002), pp. 215226.

7



[6] P. Bloomfeld, Trends in global temperature, Climate Change, 21 (1992), pp. 116.

[7] P. Bloomfeld and D. Nychka, Climate spectra and detecting climate change, Climate Change,
21 (1992), pp. 275287.

[8] R. Tsay, Analysis of Financial Time Series, 2nd ed., Wiley-Interscience, Hoboken, NJ, 2005.

[9] S. Levitt, Understanding why crime fell in the 1990s: Four factors that explain the declineand
six that do not, J. Econom. Perspectives, 18 (2004), pp. 163190.

[10] R. Talluri and G. van Ryzin, The Theory and Practice of Revenue Management, Kluwer Aca-
demic, Boston, MA, 2004.

[11] W. Link and J. Sauer, Estimating equations estimates of trend, Bird Populations, 2 (1994),pp.
2332.

[12] S. Greenland and M. Longnecker, Methods for trend estimation from summarized doseresponse-
data, with applications to meta-analysis, Amer. J. Epidemiology, 135(1992),pp. 13011309.

[13] ”Outliers, Level Shifts, and Variance Changes in Time Series.” Ruey S. Tsay; Journal of Fore-
casting, 1988, 7(1), pp. 1.

[14] Tibshirani, R. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society, Series B, Vol 58, No. 1, pp. 267288, 1996.

[15] A.MOGHTADERI, P.BORGNAT and P.FLANDRIN, TREND FILTERING: EMPIRICAL
MODE DECOMPOSITIONS VERSUS l1 AND HODRICKPRESCOTT,Advances in Adaptive
Data Analysis Vol. 3, No. 1,2 (2011) 4161,World Scientic Publishing Company

[16] Emmanuel J. Cands , Michael B. Wakin and Stephen P. Boyd , Enhancing Sparsity by
Reweighted L1 Minimization, J Fourier Anal Appl (2008) 14: 877905

[17] Model Selection and Model Averaging by CLAESKENS, G. and HJORT, N. L. 2008, page 44.

[18] Jari boling,korterik hagbolom, report 08-01, process control lab, Abo akademi

8


