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Abstract: This paper presents some preliminary results of using a systematic approach for identifying the 
interactions between splashing and the variables measured from the basic oxygen furnace. Splashing is an 
undesired phenomenon and thus its analysis is important. Earlier the analysis is carried out mainly 
manually while the systematic approach used in this paper uses forward-selection for selecting the 
significant variables and multivariable linear regression as a modelling technique for identifying a model 
between splashing and process variables. The results show that the procedures used are able to find a 
variable subset that can be used for explaining some changes in splashing. Despite the promising results 
the process and the studied approach needs more research in the future. Especially, the procedure used 
needs to be complemented with data selection.  
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1. INTRODUCTION 

Basic oxygen furnace (BOF) is a sub-process in steelmaking 
where hot metal is converted into molten steel by reducing 
the carbon content. To burn carbon, pure oxygen is blown 
from above while the batch is stirred using an inert nitrogen 
gas blown from the bottom of the vessel. Controlling of the 
process is challenging because different additional materials 
are fed to the vessel during processing. These additions lead 
to unstable burning, for example, the addition of silicon 
causes disturbances. The consequence of unstable burning is 
material losses due to splashing. Splashing can be monitored 
by using image-based measurement.  

The analysis of the causes of splashing is significant to 
identify and to avoid processing conditions leading to 
splashing. This analysis is earlier carried out mainly manually 
by clustering (Ruuska et al. 2006, Ruuska 2012). Some 
clustering criteria applied are converter type, heat size, target 
carbon content and amount of silicon added in the early 
stages of the process. The results obtained are promising but 
even better results may be obtained if automated procedures 
are used. Such an automatic procedure may be, for example, 
an algorithm which detects the significant process variables 
by identifying a model between splashing and process 
variables. This paper presents some preliminary results 
obtained from a study where models are identified between 
process variables and splashing.   

The accuracy of the model obviously depends on the model 
structure and thus on the input variables. Thus the careful 
selection of input variables is very significant. It has been 
reported that excess variables lead to, for example, 
deterioration of model performance (Alexandridis et al. 
2005), increased time consumption in model training (Guyon 

and Elisseeff 2003) and more difficult interpretation of the 
developed model (Smit et al. 2008).  

In the literature, many methods have been proposed for 
selecting the appropriate variable subset. These methods can 
be roughly divided into filters and wrappers (Kohavi and 
John 1997). Filters are computationally efficient methods 
where variables are added to the model according to some 
ranking. However, the modelling technique applied also has 
an influence on variable selection. Wrapper methods take this 
into account and include the model identification procedure 
into the selection procedure. Typical wrapper methods are, 
for example, forward-selection, backward-elimination and 
genetic algorithms.  

In this study, an automatic procedure is used for analysis of 
splashing. The results given are, however, preliminary. The 
algorithm uses a simple deterministic variable selection and 
multivariable linear regression models to map the interactions 
between splashing and process measurements. Instead of 
finding variables that individually explain splashing the aim 
is to find a subset of process variables able to predict 
splashing accurately.  

2. MATERIALS AND METHODS 

2.1 Basics of BOF 

The idea of basic oxygen furnace in its simplest form (Fig. 1) 
is performed in a vessel with a basic refractory lining and an 
off-gas cleaning system. The vessel is tilted in order to charge 
the predetermined and weighed amounts of liquid hot metal 
and solid recycled steel. Gaseous oxygen is blown onto the 
metal bath until the estimated chemical composition and 
temperature are achieved. Fluxes such as burned lime and 



 
 

     

 

dolomite are added from the top of the vessel to regulate the 
process while for example iron ore is added as a coolant and 
ferrosilicon is added to produce additional heat. In normal 
cases, steel samples are taken and steel bath temperatures are 
measured from the tilted converter only after the end of the 
heat. When the heat has ended, the vessel is tilted to the other 
side and steel is tapped through a tap hole into a steel ladle. 
Slag is then tapped into a slag pot and the converter is ready 
for the next batch. 

Specific aims for BOF include precisely described end point 
values for steel weight, temperature and composition. 
Carbon, phosphorus and sulphur and often also nitrogen, 
manganese and hydrogen concentrations need to be within 
the target windows. Typical end point temperatures rose by 
50 °C to 1650 - 1700 °C or even higher depending on the 
steel grade and the subsequent process stages. Stricter quality 
demands resulted that sulphur limits had to be lowered to 
prevent for example crack formation. Modern steel quality 
also required better phosphorus removal and the oxygen 
content in the liquid steel became far more critical. Moreover, 
it became more critical to get the heat ready at the right time 
for the following process phases. (Boom 2003) 

 

 

Fig. 1. Basic Oxygen Furnace. 

 

2.2 Splashing 

Splashing is a serious problem in BOFs. It causes economic 
losses and has therefore been widely researched. The 
negative effects of splashing are well-known, for example 
lower yield, different kinds of skull formation; in the lance, 
upper BOF cone, BOF mouth and gas hood; hard blowing, 
poor dephosphorisation and desulphurisation (Bock et al. 
2000). To prevent splashing, the factors that cause foaming 

need to be known. A significant amount of research has been 
carried out on this field. Jung and Fruehan (2000) 
investigated the effects of FeO content, basicity, TiO2, MgO 
and temperature of slag on foaming. Koch et al. (1993) 
determined the critical amount of blown gas when splashing 
starts, depending on the jet impulse, depth of crater and 
surface tension. Tang et al. (2008) studied the effects of lance 
height and bottom stirring flow rate on the mixing time, the 
amount of splashing, the penetration depth and level 
fluctuation using a water model. These studies found 
optimum levels for the parameters in the different phases of 
the heat. Luomala et al. (2002) investigated the effects of the 
following variables: lance height, gas flow rate, lance nozzle 
angle, bottom blowing, lance position and foamy slag. The 
reduction of the lance nozzle angle increased the total amount 
of splashing. The usage of bottom blowing increases 
splashing on the lower parts of the converter. 

2.3 Measurements and Data Sets Used 

The measurement data of different heats are obtained from 
the Ruukki’s Raahe Steel Works’ database. An example of a 
heat is given in Fig. 2. The analysis of these heat trajectories 
in time-domain may reveal the interactions between process 
conditions and splashing. However, such an analysis is 
complex and significant interactions may not be found. The 
complexity arises from the great number of variables and 
their individual and combined effects on splashing. The 
dynamics of the effects of different variables also vary which 
makes the analysis even more complex. The time-
dependency of the process is neglected in this study and the 
variables are averaged. The models are systematically 
identified for the averaged values from the whole data set and 
from the data sets corresponding to different phases of the 
heat shown in Fig. 2. In this study, the first 20% of the data 
represents the ignition phase and the last 10% the end of heat 
phase. The remaining 70% represents the actual heat phase. 
Splashing occurs mainly in the set of actual blowing phase as 
shown in Table 1 which shows the average splashing in each 
data set. In later studies this splitting may need to be revised. 

Splashing measurement has been developed at Ruukki’s 
Raahe Steel Works. It is based on image analysis. At 
Ruukki’s Raahe steel works, there are video cameras for 
monitoring purposes under the BOFs. These existing cameras 
were utilised when the splashing measurement was 
developed. The picture pixels were analysed from a snapshot 
captured with the camera. The amount of splashing was 
investigated inside a predefined area by counting the ratio of 
bright and dark pixels; the limiting value of brightness was 
predefined. The ratio of bright and dark pixels gives a 
numerical value for the splashing. The splashing integral for 
the whole heat was calculated from the momentary values. 
The variation of splashing within the heats can be seen from 
Fig. 3. (Ruuska 2012) 

The data sets include the measurements of 8 continuous and 9 
batch variables from 397 heats. The continuous 
measurements are flow rates of oxygen, nitrogen and argon, 
off-gas temperature, FeSi and burnt lime added and lance 



 
 

     

 

height. The batch information includes, for example, heat size 
and content of main chemical components. 
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Fig. 2. A typical BOF heat and different phases. 

 

Fig 3. Variation of splashing in different heats. 

Table 1.  The average splashing in the data sets 

Data set Splashing 
Ignition 0.10 

Actual heat 2.91 
End of heat 0.04 
Whole data 2.06 

 

2.4 Multivariable Linear Regression 

A multivariable linear regression (MLR) model is given by 
(Harrel 2001) 

bXy ˆˆ = ,  (1) 

where y is the output variable (N×1), X is the input variable 
matrix (N×M) and b is the vector of regression coefficients 
(M×1). N is the number of data points and M is the number of 
variables. It should be noticed that the equation above is 
written for a single output variable. The regression 
coefficients are obtained as the least squares solution given 
by  

( ) yXXXb TT=ˆ .  (2) 

The MLR model structure is capable of capturing the major 
interactions even though it is limited to linear relationships. 
The obtained model can be easily interpreted and thus 
significant information about the underlying interactions 
between process conditions and splashing can be identified.  

2.5 Stepwise Variable Selection 

The data sets used include many variables. The identification 
of appropriate models needs the selection of significant 
variables from the set of candidate variables and the 
identification of the regression coefficients of the MLR 
model. The variable selection methods reported in the 
literature can be roughly divided into filters and wrappers 
(Kohavi and John 1997). Filters are based on the ranking 
according to which variables are added to the model. Typical 
ranking criterion is correlation. The filter approaches seldom 
lead to optimal result even though their computational 
efficiency makes their use intriguing (Guyon and Elisseeff 
2003). This study, however, uses wrapper approaches and 
thus filter approaches are not further discussed. 

In the wrapper methods, variable selection and model 
parameter identification are carried out simultaneously which 
makes them computationally more expensive. The wrapper 
approaches are further divided into deterministic and 
stochastic. Stochastic approaches such as genetic algorithms 
lead to better results but are computationally more expensive. 
Deterministic methods are usually stepwise algorithms where 
one variable at a time is added or removed from the candidate 
subset of features. Forward-selection is the simplest one 
starting from an empty set of variables. The variable that 
leads to greatest improvement in model behaviour is added 
next. The additions are continued until model behaviour no 
longer improves. The drawback of forward-selection is that 
once a variable is selected its relevance is never questioned. 
Thus the algorithm may be trapped into local optima (Guyon 
and Elisseeff 2003). Despite the drawback, forward-selection 
is used in this study. 

The suitability of the candidate variable subset is evaluated 
with the root-mean-squared error (RMSE) of prediction. It is 
obtained from 

( )∑
=

−=
N

i
CV,ii ŷy

N 1

21RMSE ,  (3) 

where CV,iŷ is the predicted output obtained through leave-
one-out (LOO) cross-validation procedure. Before the 
selection the variables are normalised so that the 
interpretation of their significance is easier. 

3. RESULTS AND DISCUSSION 

3.1 Variable Selection Results 

The variable selection is carried out with the forward-
selection method as described in Section 2.4. The number of 
variables selected greatly depends on the data set. For the 
data set corresponding to the ignition phase only two 



 
 

     

 

variables are selected. The resulting model is poor having 
only a correlation coefficient of 0.20 between the measured 
and predicted splashing. This is due to the fact that splashing 
hardly occurs in the ignition phase as shown in Table 1. If 
splashing in the ignition phase is to be modelled, the data 
should first be filtered so that only the heats with significant 
splashing are used. Minor splashing is also observed in the 
end of heat data set. The variable selection and subsequent 
modelling of splashing still produces better results compared 
with the ignition phase data set. This is likely to be due to the 
fact that in the end of heat the lance height is kept constant 
and also otherwise the process is more stable than in the 
ignition phase meaning that identifying of process 
circumstances is less challenging. 

The variables selected for the actual heat phase data set are 
somewhat interesting. Altogether 9 variables are selected but 
only six of them are significant. Significance is evaluated 
from the value of the corresponding regression coefficient. 
First it is noticed that the amount of FeSi is not selected even 
though it is usually associated with splashing. Another 
interesting variable is the amount of P which is selected and 
significant but its influence on splashing is unknown. These 
observations which are not in correspondence with the prior 
knowledge need a lot more research. Anyway, the variables 
that are selected may be strong together with some other 
variable even though they are weak alone. It is also possible 
that they give indication about some important phenomenon 
which cannot be directly measured from the process.  

The forward-selection used in this study may be trapped into 
local optima and thus select only a sub-optimal subset of 
variables. However, it still gives reasonable models as shown, 
for example, in (Sorsa et al. 2012). The weaknesses of 
forward-selection are that it easily gets trapped into local 
optima as mentioned earlier and it also tends to find variables 
that are strong alone but miss variable combinations that are 
strong together. These issues can be solved by using, for 
example, so called floating search or genetic algorithms. 
Floating search uses sequential forward-selection, backward-
elimination and variable replacement steps to avoid local 
optima and to find the appropriate subset of variables 
(Nakariyakul and Casasent 2009). Floating search is a 
deterministic method but computationally much more 
expensive than forward-selection. Genetic algorithm is a 
stochastic methods mimicking evolution. It is 
computationally even more expensive but is usually reported 
to give better results than deterministic methods. Genetic 
algorithm is used for variable selection, for example, in 
(Sorsa et al. 2013). 

3.2 Modelling Results 

The modelling results are given in Table 2. The table shows 
that the correlation between the measured and predicted 
splashing is not very high. Still the present authors find the 
results promising because the main thing is that the algorithm 
found a subset of variables that is able to explain some of the 
variation in splashing. As mentioned earlier, the data used is 
very challenging because it includes quite a lot of heats with 
practically no splashing. This leads to a data set where the 

interactions cannot be unanimously detected and identified. 
To overcome this challenge, the approach studied here may 
be complemented with a data selection procedure. This 
means that the data must be selected so that the interactions 
are observable. From such data, it is possible to identify and 
analyse the conditions leading to splashing. An approach 
where both variable and data selection are considered is 
reported in (Isokangas et al. 2005). 

Table 2.  The performance of the identified models 

Data set RMSE R 
Ignition 0.19 0.20 

Actual heat 1.15 0.43 
End of heat 0.04 0.55 
Whole data 0.83 0.38 

 

4. CONCLUSIONS 

Splashing is an undesired phenomenon in a basic oxygen 
furnace leading to material losses. Thus the analysis of the 
reasons leading to splashing is important. Earlier the analysis 
is carried out mainly manually. This paper presented some 
preliminary results of using a systematic approach for 
identifying the interactions between splashing and the 
variables measured from the basic oxygen furnace vessel. 
The systematic approach used forward-selection for selecting 
the significant variables and multivariable linear regression as 
a modelling technique for identifying a model between 
splashing and process variables. The results showed that the 
procedures used were able to find a variable subset that holds 
information for explaining some changes in splashing. The 
selected variables were interesting but their role was not 
analysed in this study. However, this issue should be studied 
in the future to better validate the models obtained. The 
prediction accuracy of the models identified was not very 
good but it is due to the challenging data set. Thus a careful 
selection of data needs to be also included in the procedure in 
order to find the real interactions between splashing and 
process variables.   
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