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Abstract: In large-scale chemical processes, disturbances can easily propagate through the process units 
and thereby adversely affect the overall process performance. In recent years, causal analysis has played 

a key role in the diagnosis of plant-wide disturbances. Causal analysis enables to identify the propagation 

path of the disturbance and thereby disclose the root cause. Data-driven causal analysis utilizes historical 

process data in the form of time series and examines to what extent the time series influence each other. 

If directionality between time series can be inferred, it is taken as evidence for a cause-and–effect 

relationship. Data-driven causal analysis can efficiently complement knowledge-based causal analysis 

and provide valuable insights on process dynamics with minimal efforts.  

The aim of this study is to apply several time and frequency domain data-driven causal analyses on an 

industrial case study of a paper board machine and to evaluate the effectiveness of each method. The 

analyses are applied on the drying section of a board machine due to its importance in the board making 

process and the high share of faults associated with this section. The outcome of each method is a causal 

model in the form of a directed graph describing the interactions among the variables in the process. The 

results of each method are discussed and methods are evaluated and compared using process knowledge. 

In addition, root cause analysis based on the frequency domain analysis is successfully applied.  

Keywords: Causal model, Digraph, Fault diagnosis, Cross-correlation, Granger causality, Frequency 

domain, Board machine, Control loops. 



1. INTRODUCTION 

Causality, a physical phenomenon based on a cause-and-

effect relationship between variables, is one of the prominent 

features of large-scale industrial systems (Pearl, 2000). 

Capturing causality between different plant variables is a 

vital tool in the diagnosis of faulty systems. 

When faults occur in large-scale processes, they can easily 

propagate along the process units and cause the process to 

deviate from its desired operating conditions, thereby 

increasing the operation costs. Detection of the root cause of 

disturbance by human labour is usually very time consuming 

and expensive. The study of inter-dependencies between 
process variables enables to idnetify the root cause of the 

disturbance and its propagation path as early as possible with 

minimal efforts.  

Typically, the outcome of a cauasal analysis is a causal model 

in the form of a directed graph (digraph) which qualitatively 

describes the influences among variables. Causal models 

have mainly been derived from process knowldege. (Yang et 

al., 2012) Modelling based on process knowledge can be 

based on mathematical equations (e.g., a set of differential 

equations) (Yang & Xiao, 2012) or it can be undertaken 

directly from Piping and Instrumentation diagrams (P&IDs) 

(Yang et al., 2012). Knowledge-based causal models capture 
quite precisely the causality among variables; however, they 

provide only a qualitative representation of plant topology. 
Moreover, in many cases the dynamics of a physical system 

are unknown or unavailable, and even if it is known, 

insignificant information can disturb the modelling procedure 

and make it too complex (Yang & Xiao, 2012).  

Data-driven causal analysis utilizes process historical data in 

the form of time series and measures to what extent the time 

series corresponding to specific variables influence each 

other. Its main advantage is that it does not require prior 

information on the interior system. Moreover, unlike 

knowledge-based analysis that produces only a qualitative 

model; data-based causal analysis produces a quantitative 
model due to its ability to estimate the strength interactions 

among variables. 

Data-based methods can be classified into three types: time 

domain methods, frequency domain methods and information 

theory methods (Yang & Xiao, 2012). The time domain 

methods capture and explore the temporal aspects of 

measurements. Time domain methods include the cross-

correlation method (Bauer & Thornhill, 2008) and the 

Granger Causality (GC) method (Bressler & Seth, 2011).  

The frequency domain methods are able to quantify the 

magnitude and direction of information flow in terms of 

energy transfer and to detect whether the influence between a 
pair of signals is along a direct or indirect path (Gigi & 

Tangirala, 2010). Information theory methods include 



 

 

     

 

transfer entropy method (Schreiber, 2000) and utilization of 

Bayesian networks for estimating probabilities for fault 

occurrence (Yang & Xiao, 2006).  

Bauer et al. (Bauer & Thornhill, 2008; Bauer et al., 2007) 

have successfully demonstrated how the cross-correlation and 

transfer entropy methods can be employed to identify the root 

cause of a plant-wide disturbance in industrial case studies. 

Yang et al. (Yang et al., 2012) applied both the cross-

correlation and transfer entropy methods on an industrial case 

study in order to validate a knowledge-based causal model. 

In recent years, some remarkable developments to the data-
based methods have been proposed.  Guo et al. (Guo et al., 

2008) introduced the partial Granger causality which is able 

to eliminate the influence of latent variables, thus leasing to 

less spurious results. Ladroue et al. (Ladroue et al., 2009) 

extended the GC and the partial Granger causality to the 

complex Granger causality and the partial complex Granger 

causality respectively, which defined the GC between groups 

of time series. Feldmann and Bhattacharya (Feldmann & 

Bhattacharya, 2004) introduced the predictability 

improvement (PredI) method which is based on the concept 

of transfer entropy and is applicable to short time series.  

However, each of the data-based methods suffers from 

several limitations and drawbacks (Yang & Xiao, 2012; Yang 

et al., 2010). The main challenges in the data-driven causal 

analysis are in establishing the statistical significance of the 

results and in distinguishing between direct and indirect 

interactions in multivariate (MV) processes. Yang et al. 

(Yang et al., 2012) claim that although both process 

knowledge and process data are used to capture causality 

between variables, neither of them can be solely used to find 

causality without validation.  

The aim of this study is to evaluate the effectiveness of 

several time and frequency domain methods by applying 
causal analysis on an industrial large-scale system. For this 

purpose, a case study of a large-scale board machine is 

studied, with a particular focus on the interactions between 

the control loops in the drying section. Cause-and-effect 

analysis is applied using the cross-correlation method, 

Granger causality method and frequency domain methods. 

This paper is organized as follows. Section 2 provides an 

overview of the data-base methods for capturing causality 

which were utilized in this study. Section 3 describes the 

process case study. In Section 4 the results of each causal 

analysis are given and in Section 5 the methods are compared 
and evaluated using process knowledge.  Concluding remarks 

are given in Section 6. 

2. CAUSAL INFERENCE BASED ON PROCESS DATA 

Causal relationships between time series can be investigated 

from several points of view: time lags, energy transfer and 

information transfer (Yang & Xiao, 2012).   This section 

presents the data-based methods which were employed in this 

study for causal inference.   

2.1  Cross-correlation method 

The cross-correlation function (CCF) describes statistical 

properties of two time series by quantifying their similarity 

over time (Box et al., 1994). The CCF between two series,   

and   , sampled at discrete times   when         (  is the 

total number of samples) and a lag   is: 
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where  ̂ and  ̂ are  derived from   and   after mean centering 
and scaling to a unit standard deviation. The cross-correlation 

analysis recognizes cause-and-effect relationships by finding 

the maximum absolute value of the CCF of two time series. 

The sign of the lag at which the CCF gets its maximum 
absolute value is the estimated time delay. If the CCF gets its 

maximum absolute value for     then  ̂ is shifted by   

samples while if the CCF gets is absolute maximum value for 

     then the actual delay is from  ̂ to  ̂. More explicitly, 

both the minimum and the maximum of     are recorded: 
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The time delay λ is defined as: 
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and the maximum correlation is: 

     {          } 
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Bauer and Thornhill (Bauer & Thornhill, 2008) introduced 

the directionality index, which measured the difference 

between the minimum and the maximum of    : 

   
           

           
 

 

(5)  

In their study, Bauer and Thornhill (Bauer & Thornhill, 
2008) have investigated the statistical significance of the 

correlation value and the directionality index and selected a 

threshold for significance for each of them depending on the 

total number of observations.  

The cross-correlation method is a practical and efficient way 

for disturbance detection as well as validation for knowledge-

based causal models (Yang et al., 2012; Bauer & Thornhill, 

2008). However, the method has many shortcomings, such as 
being non-credible when dealing with non-linear systems or 

pure oscillations (Bauer & Thornhill, 2008). In addition, the 

cross-correlation method is based on pairwise analysis, thus it 

cannot distinguish between direct or indirect influences. For 

example, causality between A and C can be a combined result 

of the causal relations from A to B and from B to C; thus, all 

possible relationships should be analysed in order to establish 

a causal model or process knowledge should be used. (Yang 

et al., 2012) 

2.2  Time domain Granger Causality 

The concept of Granger causality (GC) was first introduced 

by Wiener (Wiener, 1956) and eventually formulated by 

Granger (Granger, 1969). The basic notion of GC is that if 

one time series affects another series then the knowledge of 

the former series should help to predict the future values of 



 

 

     

 

the latter one (Granger, 1969). To illustrate bivariate GC 

analysis, consider two time series   ( ) and   ( ) and their 

corresponding autoregressive (AR) model: 
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(6)  

where   is the model order,  and   ,    are the residuals for 
each series. Equation (6) is referred to as the unrestricted 

model (Bressler & Seth, 2011). The GC from    to    is 

defined as: 
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where   
  is obtained from (6) by omitting all    (for all  ) 

coefficients (Seth, 2010). The model after omitting all     

coefficients is referred to as the restricted model (Bressler & 

Seth, 2011). The statistical significance of the GC can be 

determined via the  -statistic test (Greene, 2002): 
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where      and       are the residual sum of squares of the 
restricted and unrestricted models respectively, T is the total 

number of observations and   is the model order.  

For multivariate (MV) processes, the MV GC, which is based 

on the expansion of a univariate AR model to a Multivariate 

Auto Regressive (MAR) model to include all measured 

variables (Guo et al., 2008) can be used. Then, one variable is 
assumed to cause a second variable if the variance of the 

residuals of the first variable significantly reduced by 

inclusion of the second variable in the MAR model (Seth, 

2010). 

The method requires that the time series are stochastic and 

Wide Sense Stationary (WSS). In addition, the model order 

should be chosen carefully. A suitable model order should 

produce residuals which are close to white noise (Bressler & 

Seth, 2011). Furthermore, since the method is based on AR 

models, it is only suitable for linear systems and its 

application to non-linear systems may not be appropriate 

(Bressler & Seth, 2011).  

2.3  Frequency domain methods 

The frequency domain methods can be seen as a 

decomposition of the energy transfer between pairs of time 

series at each frequency. The evaluation of directional 
interactions in the frequency domain is especially useful for a 

process with oscillatory behaviour (Faes et al., 2010). 

The methods are applied by estimating the MAR model of 

the time series followed by Fourier transform into frequency 

domain. A MAR model is defines as: 
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where    (                )  is the vector of N process 

vairables,    (                ) is N dimensional vector of 

the MV noise terms,  ̂   ̂     ̂  are     matrices of the 

model coefficients and   is the model order. By applying the 

Z transform operation (            ) on (9), the equation is 

transformed into frequency domain: 

 ̂( )   ̂( ) ̂( ) (10)  

where  ̂( ) is the transfer function of the model with the 
following relation to model coefficients: 
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Kaminski and Blinowska (Kaminksi & Blinowska, 1991) 
introduced the Directed Transfer Function (DTF) which is 

defined as (from variable   to  ): 
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The DTF represents the signal power that spreads from 

variable   to variable   over all possible pathways. The DTF 
is constructed solely from the transfer function and does not 

depend on the noise covariance matrix.  

In contrast, the Partial Directed Coherence (PDC), introduced 

by Baccala and Sameshima (Baccala & Sameshima, 2001) 

reveals only the power of the direct interactions between 

pairs of variables. The PDC from   to   is defined as: 
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The PDC is a function of    ( ) alone and similarly to the 

DTF it does not depend on the noise covariance matrix. 

While DTF can be seen as a spectral measure of the total 

causal influence of one variable on the other, the PDC can be 

seen as a measure of the direct influence of one variable on 

the other. Gigi and Tangirala (Gigi & Tangirala, 2010) found 

that the total energy transfer is in fact composed of three 

components: direct energy transfer, indirect energy transfer 

and interference effect and were able quantify each of those 

components. Moreover, Gigi and Tangirala (Gigi & 

Tangirala, 2010) have shown that the PDC cannot be seen as 

a quantitative measure of the direct energy transfer.  

3. PROCESS DESCRIPTION 

The process case study is a board machine (BM) which 

produces a three-layer liquid packaging boards and cup 

boards. Analysis is focused on the drying section of the BM 

due to its importance and effect on board quality (Jämsä-

Jounela et al., 2013) . Furthermore, due to the high 

interactions between the control loops in this section, faults 

can easily propagate through the units of this section.  

In the drying section, the remains of excess water in the web 

are evaporated to achieve the desirable moisture content in 

the board using steam-filled cylinders. The condensing steam 
in the cylinders releases latent heat which is used to 

evaporate the bound water. The condensate from the 

cylinders is collected by siphons to condensate tanks where 
steam and condensate are separated. Steam is then delivered 

back to the process and condensate is returned to a power 



 

 

     

 

plant. The drying section is divided into five drying groups 

(DG) containing 74 drying cylinders and six steam groups 

(SG). Each SG has its own controllers to control steam 

pressures, steam pressure difference between steam and 

condensate headers and level of the condensate tanks. 

A scheme of the drying section and its control valves can be 

seen in Figure 1.  

 

Fig. 1. Flow sheet of the drying section. Red lines indicate 

steam pipes, blue lines are condensate pipes and purple lines 

indicate mixed flow of steam and condensate 

The stem pressure is controlled by two steam headers: 5 bar 
and 10 bar headers (at the top of Figure 1). PC651, PC653, 

PC 1652, PC654, PC659 and PC660 are pressure controllers 

that are used to control steam pressure in each SG using 5 

and 10 bar steam. The pressure difference control between 

the steam headers and the condensate tanks is important for 

proper operation of the drying section since condensate 

removal with a siphon requires pressure difference. The 

pressure difference has to be high enough to enable efficient 

condensate removal from the cylinders but simultaneously 

not too high in order to prevent steam from blowing directly 

through the cylinders. This is achieved by manipulating the 
control valves in the steam outlet of the condensate tanks 

using controllers PC1653, PC0652, PC0670, PC0671, 

PC0672, PC0673 and PC0674. The level of the condensate 

tanks is controlled by regulating outlet flow control valves 

using controllers LC1653, LC0651, LC0652, LC0653, 

LC0654, LC0657 and LC0658. 

4. RESULTS 

The application of the cross-correlation, Granger causality 

and frequency domain methods on the basic control level of 

the drying section of the BM is demonstrated in this section.  

First, visual inspection of the normalized time trends is 

performed. Then, measurements oscillating at same 
frequency are identified by examining the power spectra of 

the signals and their auto-covariance function (ACF).Then, 

cause-and-effect analysis is applied according the methods 

described in the previous section. The final outcome of each 

method is a causal model which can be evaluated using 

process knowledge. Process knowledge, in the form of a 

Piping and Instrumentation Diagram (P&ID) was utilized in 

several occasions in the modelling procedure in order to 

eliminate redundant links. Furthermore, the causal model 

constructed based on the P&ID of the process was used to 

evaluate the accuracy of the data-based causal models. 

4.1 Visual inspection of the time series 

The time trends which were used for the analysis are the 

controlled variables (PVs) and controllers outputs (OPs). 

The data analysed was sampled with a sampling period of 10 

seconds. The time series were normalized by removing the 

mean values and scaling to a unit standard deviation. Figure 2 

shows the normalized time trends of the PVs. Oscillating 

signals can be clearly seen in variables PC0653, PC0670, 

PC1652, PC0671, LC0653, LC0654 and PC0668. 

 

Fig. 2. Process measurements (PVs) 

4.2 Oscillation analysis of the time series 

Spectral analysis can detect measurements having a similar 

behaviour. Time series whose spectra are similar are usually 

subject to the same disturbance. Since the power spectra are 

invariant to the phase of a signal, they are insensitive to the 

time delays between the signals. (Bauer et al., 2005) 

The power spectra of the process measurements (PVs) can be 

seen in Figure 3. The results show that the most prominent 

oscillation occurs at a frequency of 0.007 Hz (0.07 on the 
frequency axis) corresponding to 1/0.07≈14 samples per 

cycle. The loops oscillating at a common frequency are: 

PC0668, PC1653, PC0651, PC0652, PC0653, PC0670, 

LC0652, PC1652, PC0671, LC0653, PC0672 and PC0673. 

Thus, the disturbance is mainly affecting SG1, SG2 and SG3. 

In addition to spectral analysis of the time series, the zero-

crossings of the ACF were determined in order to 

characterize oscillations present in the data set. According to 

Bauer et al. (Bauer et al., 2005), it is more beneficial to 

utilize the ACF when analysing the zero-crossings rather than 

the time trends since it is much less noisy while retaining the 
same period of oscillation. Figure 4 shows the zero-crossings 

of the PVs. Similarly to the spectral analysis, the variables 

with a similar interval between the zero crossings are: 

PC1653, PC0652, PC0653, PC0670, LC0652, PC1652, 

PC0671, LC0653 and PC0673. The oscillation period as 

determined from the ACF and its zero crossings is 14 



 

 

     

 

samples per cycle, similarly to the oscillation period 

determined by the spectral analysis. 

 

 

Fig. 3. Power spectra of the process measurements (PVs) 

 

Fig. 4. The zero crossings of the process measurements based 

on the ACF (PVs) 

4.3 Cross-correlation analysis 

The cross-correlation method was applied by calculating the 

time delays between each OP and PV. Therefore, the concept 

of the control loop digraph (Jiang et al., 2008) was adopted. 

According to this concept, in order to analyse a process from 

a control point of view, each controller in the process is 

defined as a node in the causal model and a direct interaction 

from node   to node   exists if the output of controller   can 

directly affect the controlled variable of controller   .Hence, 

each element (   ) in the causality matrix shows the time 

delay between controller output   and controlled variable  . 
Due to the oscillations present in the time series, the 

directionality test (Bauer & Thornhill, 2008) failed in many 

cases where the minimum and the maximum of the CCF were 

of similar magnitude. Thus, only the threshold for the 

correlation index   (Bauer & Thornhill, 2008) was used to 

determine the statistical significance of the correlation values. 

The causal model was constructed according to the algorithm 

presented by Yang et al. (Yang et al., 2012). The causal 

model can be seen in Figure 5. The numbers on the arcs 

correspond to the estimated time delay (in samples).  

 

Fig. 5. Causal control loop digraph based on the cross-

correlation analysis 

4.4 Granger Causality 

Similarly to the cross-correlation analysis, the GC method 

was applied by evaluating the influences of the OP on the PV 

variables. A MV (conditional) GC analysis was applied 

according to the approach presented by Baccala and 
Sameshima (Baccala & Sameshima, 2001). Model estimation 

was performed using the least squares method and model 

order was chosen based on the AIC criteria (p=10). The 

primary condition for the GC analysis is that the time series 

are wide sense stationary (WSS) (Seth, 2010). WSS was 

examined by testing for ‘unit roots’ using the augmented 

Dicky-Fuller’ (ADF) test (Seth, 2010). Time series which 

were found to be non-WSS were differentiated (i.e.,   
  

       ). The statistical significance was determined via 

the F-statistic test (Granger, 1969) and results were corrected 
using the Bonferrori correction for multiple comparisons 

(Seth, 2010). The causal digraph based on the GC analysis is 

shown in Figure 6. Red arcs correspond to GC values higher 

than 0.1 to indicate strong interactions. 

 

Fig. 6. Causal control loop digraph based on the GC analysis 

 

 



 

 

     

 

4.3 Frequency domain analysis 

The frequency domain analysis was performed by evaluating 

the values of the PDC and the DTF between each pair of PV. 

The MAR model was estimated similarly as in the GC 

analysis. Some of the diagonal variance terms of the noise 

covariance matrix obtained from the MAR model differed by 

order of magnitude. According to Winterhalder (Winterhalder 
et al., 2005) , false detection of influences from a low 

variance process to a process with a higher variance can 

occur in such cases. Thus, a renormalization of the PDC and 

the DTF using the variance terms (Baccala et al., 2007) was 

used to estimate the values of the PDC and the DTF. 

Consequently, a quantitative analysis of the causal influences 

was performed according to the components of energy 

transfer presented by Gigi and Tangirala (Gigi & Tangirala, 

2010). Since the PDC measures the direct influence of one 

variable on another, it is more suitable than the DTF for 

constructing the causal model. Hence, the causal model was 

constructed by evaluating the PDC values among the PVs 
(Figure 7). The threshold for the statistical significance of the 

PDC values was determined using the direct causal Fourier 

transform (CFTd) surrogates as introduced by Faes et al. 

(Faes et al., 2010). The threshold for significance for each 

PDC value at each frequency was set at the 95th percentile of 

the empirical distribution of the PDC value computed over 

100 sets of multivariate surrogate series.  

 

Fig. 7. Causal digraph based on the max PDC values (red 

arcs correspond to 0.2-0.4 PDC values, blue arcs correspond 

to 0.4-0.6 PDC values and the black arcs correspond to PDC 
values higher than 0.6) 

5.  COMPARISON BETWEEN THE METHODS 

Each of the methods applied was able to contribute valuable 

information for estimating the causal influences between the 

control loops. The cross-correlation method offers a model-

free causal analysis and requires the least computational 

effort. Most importantly, it enables to estimate the time 

delays between time series which is highly beneficial when 

investigating the propagation path of a fault. However, the 

method produced a considerable number of spurious results 

and process knowledge had to be used in order to eliminate 
redundant links. This is mainly due to the oscillating 

behaviour of the series which makes it difficult to determine 

which of the series is lagging behind, thus leading to many 

ambiguous results. Furthermore, due the high connectivity 

between the controllers, the consistency check (Yang et al., 

2010) in this case turned out to be very tedious and time 

consuming. 

The GC analysis produced more reliable results than the 

cross-correlation method and most of the identified 

interactions corresponded to the ones identified from process 

knowledge. Yet, several indirect links were erroneously 

identified as direct ones. Thus, also in this analysis process 

knowledge was found to be vital for eliminating ambiguous 
links. A recent improvement to the GC method is the partial 

Granger causality which is able to eliminate the influence of 

exogenous inputs/ latent variables and is therefore can result 

in less spurious links (Guo et al., 2008) . 

The PDC can be seen as the frequency domain representation 

of the GC; hence, it complements the GC time domain 

analysis. Furthermore, since this case study deals with 

oscillating signals, it is only natural to provide a frequency 

domain representation of the causal interactions. Unlike the 

two previous methods, the outcome of the analysis is not a 

causal matrix but a matrix layout plot showing the values of 
PDC/DTF at each frequency for each pair of variables, thus, 

the analysis is more time consuming than the GC and cross-

correlation analyses. Similarly to the GC analysis, the 

spectral analysis produced several redundant links and 

therefore both the CFTd surrogates and PDC max values had 

to be used in order to determine the statistical threshold for 

the results. The main contribution of the frequency domain 

analysis with respect to other methods is in dealing with 

plant-wide oscillations due to its ability to quantify each of 

the components of the total energy transfer at each frequency 

(Gigi & Tangirala, 2010). 

6.  SUMMARY AND CONCLUSIONS 

This study presented the main time and frequency domain 

data-based methods for detecting causal inter-dependencies 

between time series and demonstrated their utilization using a 

case study of a drying section of a large-scale board machine. 

Each of the methods has its own advantages, drawbacks and 

limitations. Consequently, each of the methods produced 

a slightly different causal digraph. However, all the methods 

were able to detect the most powerful interactions among the 

control loops. Most of the spurious results were obtained due 

to the strong indirect interactions that were erroneously 

identified as direct. Therefore, the process flow diagram was 
essential in order to identify redundant links. Furthermore, 

one should remember that the data-based methods identify 

interactions according to their level of influence since when a 

fault propagates along a certain path; it may stop at some 

point due to signal attenuation (Yang et al., 2010). Ergo, 

several nodes corresponding to several controllers do not 

appear in the data-based causal models (e.g., controller 

LC0657).  

The GC method and frequency analysis were found to be 

more appropriate than the cross-correlation analysis for this 

case study, mainly since these analyses were performed under 

a MV framework, thus they result in less redundant links in 
the causal map. Moreover, when dealing with oscillatory 



 

 

     

 

signals, frequency domain methods should be preferred over 

time domain methods.  

To conclude, none of the methods alone is powerful enough 

in detecting cause-and-effect relationships. Therefore, when 

dealing with large-scale industrial systems, one should try 

several methods to obtain useful results and make a good use 

of process knowledge if it is available. In addition, it should 

be taken into consideration that the time and frequency 

domain methods assume linear dependencies among 

variables, which is far from true in mostindustrial processes.  

Therefore, in the future it is recommended to use non-linear 
methods as well. For instance, the transfer entropy method 

can be employed to supplement the linear methods. 
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