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Abstract: Most advanced process control systems are based on Model Predictive Control
(MPC). In this paper we discuss three critical issues for the practical implementation of
linear MPC for process control applications. The first issue is related to offset free control
and disturbance models; the second issue is related to the use of soft output constraints in
MPC; and the third issue is related to the computationally efficient solution of the quadratic
program in the dynamic regulator of the MPC. We have implemented MPC in .Net using C#
and the MPCMath library. The implemented MPC is based on the target-regulator structure.
It enables offset free control; it can be computed efficiently on-line using several optimization
algorithms; and accommodates soft constraint for the outputs and for shaping the set-point
tracking penalty function.
We report selected observations using this implementation and discuss their practical impli-
cations for process control. If the control and evaluation intervals are chosen too short, the
predicted behaviour of the controllers may have unstable characteristics. Depending of the
degrees of freedom, offset-free control of a number of the controlled variables can be achieved
by introduction of noise models and integration of the innovation errors. If the disturbances
increases, offset-free control cannot be achieved without violation of process constraints. A target
calculation function is used to calculate the optimal achievable target for the process. The use of
soft constraints for process output constraints in the MPC controllers, ensures feasible solutions.
The computational load as function of controllers type, model dimension and constraint type
are shown.

Keywords: Advanced Process Control, Linear Quadratic Regulators, Model Predictive Control,
Disturbance Modelling, Offset Free control, LQR, MPC, Riccati, C#, .NET, MPCMath

1. INTRODUCTION

This paper describes some of the practical issues encoun-
tered when implementing a LQR or MPC controller for a
linear process. During the initial phase of implementation
of an Advanced Process Control system, the attention is
often focused around the important task of developing
a suitable model for the process. Having the model, a
number of new practical issues arises. Which controller
algorithm should be applied? How long control and evalu-
ation horizons are required? How are stationary offsets due
to set-point changes, unmeasured disturbances and model
errors treated? What are CPU requirements for the MPC
controller?

The LQR and MPC algorithms used in this work are
widely described in literature. Rao et al. (1998) describes
application of interior-point method to MPC and uses a
discrete-time Riccati recursion to solve the linear equa-
tions efficiently. Jørgensen (2004) has a systematic treat-
ment of numerical methods for MPC, and recently Frison

(2012) made a systematic analysis of numerical methods
for MPC comparing condensed and Riccati based MPC
algorithms.

Muske and Rawlings (1993) present the framework for
MPC based on state-space models, and integral control
schemes designed to remove steady-state offsets. Muske
and Badgwell (2002) and Pannochia and Rawlings (2003)
presents generalized disturbance models for unmeasured
disturbances and analyses the conditions required for de-
tectability and the necessary requirements for achieving
offset-free control. Rajamani et al. (2009) show that the
disturbance model does not affect the closed-loop perfor-
mance if appropriate covariances are used in specifying
the state estimator. Huusom et al. (2012) shows how to
apply these methods on plants described by ARX models.
Olesen et al. (2012) tuning procedures for offset-free MPC
controllers.

The Four Tank Process introduced by Johanson (2000), is
used for simulated examples.



The LQR and MPC controllers are implemented in C#
using the MPCMath library suitable for inclusion in in-
dustrial DCS systems. (Knudsen, 2010a,b)

The paper is organized as follows. Section 2 describes
the control problem and gives an introduction to the
algorithms used to solve the problem. Section 3 introduces
the Four Tank Process used as a simulation example for
the controllers. Section 4 discusses the terminal effect from
finite control and prediction horizons. Section 5 handles
noise models and offset-free control. Section 6 introduces
the test scenario with simulated measurement and process
noise. Section 7 reports the achieved CPU usage with the
applied control algorithms. Conclusions are presented in
section 8.

2. THE CONTROL PROBLEM

The LQR and MPC controllers have the objective:

min
{y,∆u}

Φ =

eh∑
k=0

1

2
(yk−rk)′θk(yk−rk)+

ch−1∑
k=0

1

2
∆u′kρk∆uk

(1)

Subject to process dynamics equality constraints:

xk+1 = Axk +Buk k = 0, ....., eh− 1 (2)

yk = Cxk k = 0, ....., eh (3)

where k is the time or controller step, ch is the control
horizon and eh is the evaluation horizon (eh ≥ ch). yk
are the measured plant outputs, rk the references and
∆uk are the movements of the process inputs, defined as
∆uk = uk − uk−1.

In-equality constraints for the MPC controllers will intro-
duced in section 2.3.

2.1 Condensed controllers

Many MPC implementations eliminate the state vari-
ables xk from the control problem using a finite impulse
response, FIR, model instead of the state-space model
(Prasath et al., 2010) :

yk = fk +

i∑
j=1

Hjuk−j (4)

where fk = CAkX0 is the free response to the initial
state-space condition X0 . The Markov parameters Hk are
defined by Hk = CAk−1B

The FIR model requires the process to be stable. Processes
with unstable poles or pure integrators must be stabilized
by a simple proportional controller in order to apply the
FIR model approach (Maciejowski, 2002).

Defining the vectors Y , R, F and U as

Y =


y0

y1

...
yeh

 R =


r0

r1

...
reh

 F =


f0

f2

...
feh

 U =


u0

u1

...
uch−1

 (5)

and the matrix Γ

Γ =



0 0 . . . 0 0
H1 0 . . . 0 0
H2 H1 . . . 0 0
...

...
. . .

...
...

Heh−1 Heh−2 H1 0

Heh Heh−1 . . . H2

eh−ch∑
j=1

Hj


(6)

The prediction from (4) can be expressed as

Y = F + ΓU (7)

Define the matrix Λ and vector I0 by

Λ =



I 0 0 . . . 0 0
−I I 0 . . . 0 0
0 −I I . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . I 0
0 0 0 . . . −I I

 I0 =


I
0
0
0
0
0

 (8)

define Qθ and Qρ

Qθ =


θ0

θ1

. . .
θeh

Qρ =


ρ0

ρ1

. . .
ρch−1

 (9)

then the control problems ends in a QP problem:

min
{U}

Φ =
1

2
U ′QU + q′U (10)

where Q and q are defined by

Q = Γ′QθΓ + Λ′QρΛ (11)

q = Γ′Qθ(F −R) − Λ′QρI0u−1 (12)

There are no equality constraints included. The matrix Q
is dense. The computational effort in solving the QP (1)
is proportional to (ch nu)3, as the main operation is the
factorization of the Hessian matrix, Q.

If the process moves to a new operation region, the matrix
of Markow parameters Γ (6) has to be recalculated.

2.2 Riccati based controllers

In the Riccati based LQR and MPC algorithms, the
process dynamics (2) are kept as equality constraints.

There a many advantages in the optimization by augment-
ing the state space space model (2) to:[

xk+1

uk

]
=

[
A B
0 I

] [
xk
uk−1

]
+

[
B
I

]
∆uk (13)

x̃k+1 = Ãx̃k + B̃∆uk (14)

The QP problem becomes

min
{W}

Φ =
1

2
W ′QW + q′W (15)

subject to:

AW = b (16)

with:

W ′ =
[
x̃′0 ∆U ′0 x̃

′
1 ∆U ′1 . . . x̃′N−1 ∆U ′N−1 x̃

′
N

]
(17)



Q =


C ′θ0C 0 . . . 0

0 C ′θ1C
...

...
. . .

0 0 . . . C ′θNC

 q =


−r0θ0C 0
−r1θ1C 0

...
−rNθNC 0


(18)

A =


I 0 0

−Ã −B̃ I

0 0 −Ã −B̃ I
...

. . . I

0 0 0 . . . −Ã −B̃ I

 b =


X0

b
b
...
b


(19)

The dimension of the QP problem has increased, but the
equations can be solved using a Riccatti sequence.

The computational effort is ≈ ch (nx̃+nu)3. The computa-
tional effort is linearly proportional to the control horizon,
which is important when the control horizon is increased.

Including the process dynamic as equality constraints
(19) makes it straightforward to exchange the model
during controller executions if the plant moves to another
operational region. The real problem is to find the all the
required models for all the plants operational regions.

2.3 Process constraints for MPC controllers

The process constraints are:

umin ≤ uk ≤ umax k = 0, . . . , N − 1

∆umin ≤ ∆uk ≤ ∆umax k = 0, . . . , N − 1

ymin + ηLk ≤ yk ≤ ymax − ηLk k = 0, . . . , N

dymin + ηDk ≤ yk − rk ≤ dymax − ηDk k = 0, . . . , N

0 ≤ ηLk k = 0, . . . , N

0 ≤ ηDk k = 0, . . . , N

The soft constraint on ymin ≤ yk ≤ ymax ensures that a
feasible solution to the QP problems can be found. The
soft constraint on deviation from the reference dymin ≤
yk ≤ dymax can be used to minimize unnecessary control
actions due to measurement noise.

The two soft constraints requires an expansion of objective
(1) to:

min
{y,ηL,ηD,∆u}

Φ =

eh∑
k=0

1

2
(yk − rk)′θk(yk − rk)

+

ch−1∑
k=0

1

2
∆u′kρk∆uk+

eh∑
k=0

1

2
η′LkµLkηLk+

eh∑
k=0

1

2
η′DkµDkηDk

(20)

3. THE FOUR TANK PROCESS EXAMPLE

The four tank process is used to illustrate controller
actions. The four tank system, illustrated in Fig. 1, was
introduced by Johanson (2000) as a benchmark for control
design.

The process outputs are the water levels in the four tanks,
H1, H2, H3 and H4. The process inputs are the two
inflows, F1 and F2.

Fig. 1. Four tank process used to illustrate controller
actions

Fig. 2. LQR controller, horizon = 150, θ = (100, 100, 1, 1)
, ρ = (10, 10)

Outputs ymin ys ymax
H1 0.0 33.58 50.0 Left lower tank level
H2 0.0 27.49 50.0 Right lower tank level
H3 0.0 10.97 50.0 Left upper tank level
H4 0.0 9.21 50.0 Right upper tank level
Inputs umin us umax
F1 0.0 300.0 450.0 Left pump
H2 0.0 300.0 450.0 Right pump

Fig. 2 shows the performance of a LQR controller where
the input movement penalties ρ are tuned to keep the
flows F1 and F2 below their high limits. Fig. 3 shows
the performance of a MPC controller with less penalty on
the inputs movements. The MPC keeps F1 and F2 below
their high limits.

4. TERMINAL EFFECT FROM FINITE CONTROL
AND PREDICTION HORIZONS

The prediction part of the typical operator pictures are
very useful for the operator to evaluate the performance
of the controller. In some cases the controller shows an
unstable behaviour at the end of the evaluation horizon,



Fig. 3. MPC controller. horizon = 150, θ = (100, 100, 1, 1)
, ρ = (1, 1)

Fig. 4. Terminal effect from finite control and prediction
horizons. horizon = 150, θ = (100, 100, 1, 1) , ρ =
(0.1, 0.1)

which might be optimal, but will not be accepted as such
by the operators. Fig. 4 shows an example of such a
behaviour obtained by decreasing penalty on the input
movement further. This problem can be removed by apply-
ing a increased control and evaluation horizons. Increasing
the evaluation horizon to 300 removes the deficiency. Ric-
cati based controllers can be implemented with increased
evaluation horizon without increasing the CPU load, by
calculation of a suitable penalty at the end of the control
horizon.

5. OFFSET-FREE OPERATION

The LQR and MPC controllers above are unable to remove
offsets caused by set-point changes, unmeasured distur-
bances and models errors. The offsets are demonstrated in
Fig. 5 and Fig. 6

Something like the integral action in the PID controllers
is needed. The solution is to introduce noise-models, inte-
grate the estimated errors and calculate best possible tar-
get, depending on the estimated disturbances. An overview
of these methods is given by Jørgensen (2004).

Fig. 5. Increasing the reference for H1 by 5.0 cm results
in a stationary offset in H1

Fig. 6. An unmeasured disturbance is simulated by adding
extra water into tank H3. A stationary offset is
achieved, but the controller thinks it can remedy the
offset in the future.

5.1 Noise Models

The plant model (2) is expanded with a vector of unmea-
sured disturbances dk.

xk+1 = Axk +Buk +Bddk (21)

yk = Cxk + Cddk (22)

The disturbances in dk are assumed to be constant, only
changing value now and then. The prediction equations
are:

x̂k+1|k = Ax̂k|k +Buk +Bdd̂k|k (23)

d̂k+1|k = d̂k|k (24)

The innovation

ε̂ = yk − ŷk = yk − Cx̂k|k−1 − Cdd̂k|k−1 (25)

end the Kalman filtering equations

x̂k|k−1 = x̂k|k + Lxε̂k (26)

d̂k|k−1 = d̂k|k−1 + Ldε̂k (27)

If the noise characteristics are known, Lx and Ld can
be calculated as the stationary Kalman filter gains. A
pragmatic solution is to specify Ld as diagonal matrix,
with integrations factors in the range 0.0 ≥ Ifac ≥ 1.0.
The different noise models used in practice are described
by (21) by substituting Bd and Cd with:



Noise model Bd Cd
Input noise B 0
Output noise 0 I
ARX process K I

where the ARX process is described by the model:

x̂k+1|k = Ax̂k|k +Buk +Kε̂k|k (28)

ŷk|k = CXk|k + ε̂k|k (29)

The output noise model cannot be applied for plants
with pure integrators because the resulting model is not
detectable.

5.2 Target calculation

Having estimated the unmeasured disturbance d̂, the opti-
mal achievable target for the controller can be calculated
solving the small quadratic problem:

min
{xtg,utg}

(ytg−ysp)′Qs(ytg−ysp)+(utg−usp)′Rs(utg−usp)

(30)
subject to

(I −A)xtg −Butg = Bdd̂k|k (31)

combined with the limits on the process inputs and out-
puts (20). Offset-free operation can be insured by including
the set-points in the equality constraints (31), but this ap-
proach has the disadvantage that the these constraint must
be removed again if the QP problem becomes infeasible
due to large disturbances. Achieving offset-free operation
by selection of high values in Qs in (30) eliminates this
problem.

Offset-free operation off course has to obey the rules given
by the degrees of freedom. With two process inputs its
only possible to achieve offset-free operation for two of the
controlled variables for the Four tank Process, i.e. H1 and
H2 in this case .

5.3 The APC structure

Fig. 7 illustrates the structure of the APC. The estimator
block estimates the states including the disturbances from
the measurements and the history summarized by the
previous state estimate. The target calculation uses the
estimated disturbances and the set points to compute
steady target states and target inputs for the regulator.
The regulator computes an optimal input sequence that
will drive the process towards the steady target states and
target inputs.

The offset-free handling of a H1 set-point change and H3
disturbance is shown in Fig. 8 and 9. If the disturbances
increases, the offset-free control cannot be achieved as
shown in Fig. 10.

6. CONTROL WITH MEASUREMENT AND
PROCESS NOISE

The scenario for testing the performance of the controllers
are shown in Fig. 11 without noise. The initial condition
are nearly empty tanks. A disturbance in H3 is introduced
from step 100 to 200. Fig. 12 shown the final scenario with
added measurement and process noise.

Fig. 7. APC structure

Fig. 8. Offset-free control of a H1 set-point change

Fig. 9. Offset-free H3 disturbance handling

The MPC controller in Fig. 12 runs with control and
evaluation horizons = 150, θ = (100, 100, 1, 1) and ρ =
(1, 1). With this tuning the controller compensates the
process noise too aggressively. The soft constraint on the
deviation between measurement and reference can be used
to ignore the measurement noise as shown on Fig. 13. This
MPC controller is tuned with θ = (1, 1, 0.01, 0.01), ρ =
(1, 1) and ηD = (100, 100, 1, 1) , dymin = (−5,−5,−5,−5)
and dymax = (5, 5, 5, 5). This controller preserves the
ability to get a fast compensation to the initial condition
and does not try to compensate for the measurement noise.



Fig. 10. Large disturbance in H3 forces a relaxation of
offset-free operation

Fig. 11. Test case before adding measurement and process
noise

Fig. 12. MPC controller performance with measurement
and process noise

7. CPU REQUIREMENTS

In MPC a QP for the regulator must be solved on line
at each sample time. More computational power has in-
creased our ability to solve larger problems. However, an
even larger speed-up can be gained by choosing the correct
numerical algorithm for a specific problem. Using the test
scenario in Fig. 12, the results in Table 1 and 2 illustrate
the speed-up by using the Riccati based factorization in a

Fig. 13. MPC controller performance with soft constraint
on deviations from references

ch eh LQR RiccatiMPC CondensedMPC

40 40 1 146 228
40 80 2 121 324
40 150 2 137 587
40 200 3 141 757
40 300 4 157 1107

80 80 2 267 636
80 150 3 252 1030
80 200 3 260 1387
80 300 4 267 2152

150 150 4 467 2033
150 200 4 482 2637
150 300 5 498 4035

200 200 4 605 3767
200 300 5 623 5427

300 300 6 924 9695

Table 1. CPU time in ms per control step

structured optimization problem compared to dense linear
algebra in a QP arising from state elimination.

The required CPU time per control step is shown in
Table. 1 for LQR, Riccati based MPC and Condensed
MPC without target calculation and Soft constraints. The
LQR controllers are much less CPU demanding than the
MPC controllers. In all the test cases the condensed MPC
algorithm is slower than the Riccati based MPC. The
table also shows how the Riccati MPC’s CPU demand
increases linearly with the control horizon, whereas the
condensed MPC’s CPU demand has the cubic dependence
of the control horizon. Finally Table 1 shows how an
increase in the evaluation horizon can be implemented
without increased CPU demand for the Ricccati based
LQR and MPC. For all test cases the interior-point based
QP algorithm required approximately 10 iterations per
control step.

Adding the Target calculation block increased the the
CPU load with 2-3 ms seconds per control step. Including
soft limit on deviation from the set-point and the target
calculation block gives the CPU usage shown in Table. 2.

The condensed MPC is extremely CPU demanding when
the control and evaluation horizon increases, but this
algorithm could still be interesting for applications with
many states and few process inputs and outputs as shown
by Frison (2012).



ch eh LQR RiccatiMPC CondensedMPC

40 40 - 218 414
40 80 - 206 733
40 150 - 230 1255
40 200 - 210 1688
40 300 - 210 2493

80 80 - 392 1330
80 150 - 432 2381
80 200 - 405 3183
80 300 - 398 4935

150 150 - 752 4644
150 200 - 718 6156
150 300 - 728 9363

200 200 - 960 8636
200 300 - 956 12802

300 300 - 1494 22098

Table 2. CPU time in ms per control step with
target calculations and soft constraints

The CPU times are only indicative. They were obtained
using and Intel Core I5 2.5 MHz CPU. The algorithms
are written in C# using the MPCMath library (Knudsen,
2010a,b).

8. CONCLUSIONS

The Riccati based LQR algorithm is extremely CPU
efficient, but lacks treatment of process limitations.

The condensed MPC and Riccati based MPC algorithms
provides the same control actions. The Ricatti based MPC
algorithm is much more CPU efficient than the Condensed
MPC algorithm, especially for longer prediction horizons.
The condensed MPC algorithm might be the optimal
choice for processes with many states and few inputs and
outputs.

Terminal effect from finite control and prediction horizons
can be remedied by increasing the control and evaluation
horizon. Preserving the control horizon and increasing the
evaluation horizon can achieve the same stabilization. For
Riccati based LQR and MPC algorithms this can be done
without increasing the CPU demand.

Soft limits on process output limits, guarantees feasible
solutions to the QP problem. Soft limits on deviation be-
tween plant output and set-points can be used to dampen
control actions with sacrificing the ability to handle real
disturbances.

Offset-free control can be achieved by augmenting the
process model with constant step disturbances. These
disturbances are estimated using Kalman type filers and
the optimal achieve-able targets are calculated. Including
offset-free control only increases CPU load marginally.

REFERENCES

Frison, G. (2012). Numerical Methods for Model Predictive
Control. Master’s thesis, IMM, Technical University of
Denmark.

Huusom, J.K., Poulsen, N.K., Jørgensen, S.B., Jørgensen,
and Jørgensen, J.B. (2012). Tuning siso offset-free model
predictive control based on arx models. Journal of
Process Control, 22, 1997–2007.

Johanson, K.H. (2000). The quadruple-tank process:
A multivariable laboratory process with an adjustable

zero. IEEE Transactions on control systems technology,
8(3), 456–465.

Jørgensen, J. (2004). Moving Horizon Estimation and
Control. Ph.D. thesis, Department of Chemical Eni-
neering, Technical University of Denmark.

Knudsen, J.K.H. (2010a). Implementing model
predictive control in the csharp/.net environment.
In Model Based Control Conference. DTU.
”http://www.2-control.dk”.

Knudsen, J.K.H. (2010b). Introduction to mpcmath.
”http://www.2-control.dk”.

Maciejowski, J. (2002). Predictive Control with con-
straints. Prentice Hall.

Muske, R.J. and Badgwell, T.A. (2002). Disturbance
modeling for offset-free linear model predictive control.
Journal of Process Control, 12, 617–632.

Muske, R.J. and Rawlings, J.B. (1993). Model predictive
control with linear models. AICHe Journal, 39, 262–287.

Olesen, D.H., Huusom, J.K.., and Jørgensen, J.B. (2012).
A tuning procedure for arx-based mpc of multivariate
processes. Submitted to 2013 American Control Con-
ference.

Pannochia, G. and Rawlings, J. (2003). Disturbance
models for offset-free model-predictive control. AIChE
Journal, 49, no 2, 426–437.

Prasath, G., Recke, B., Chidambaram, M., and Jørgensen,
J. (2010). Application of soft constrained mpc to a
cement mill circuit. In 9th International Symposium on
Dynamics and Control of Process Systems, pages: 288-
293.

Rajamani, M.R., Rawlings, J.B., and Qin, S.J. (2009).
Achieving state estimation equivalence for misaligned
distrubances in offset-free model predictive control.
AIChE Journal, 55, no 2, 396–407.

Rao, C.V.., Wright, S.J., and Rawlings, J.B. (1998). Ap-
plication of interior-point methods to model predictive
control. JOTA, 3, 723–757.


