"Model Reduction applied on Natural Gas Pipeline Systems"

Hans Aalto
Main pipeline system components: Compressor stations, pipeline segments and offtakes

Compressor station discharge pressures are usually used to operate the pipeline

50-100 km
Start with the PDE for a (=each!) pipeline segment

\[
\frac{\partial P}{\partial t} + b \frac{\partial q}{A \partial z} = 0
\]

\[
\frac{\partial q}{\partial t} + A \frac{\partial P}{\partial z} + f \frac{b}{DA} \frac{q^2}{P} = 0
\]

This is the simplest isothermal PDE model for pipelines in the horizontal plane only and with small gas velocities!
Discretize w.r.t. to the space co-ordinate \(z \), using \(N \) elements (nodes) for each segment (\(!\)) \(i=1,2,\ldots,N \)

\[
\frac{dP_i}{dt} = \frac{b_i}{A_i \Delta z_i} (q_{i-1} - q_i)
\]

\[
\frac{dq_i}{dt} = \frac{A_i}{\Delta z_i} (P_i - P_{i+1}) - f_i \frac{b_i}{D_i A_i} \frac{q_i^2}{P_i}
\]

Compressor station between node “k-1” and “k” : PI-controller of discharge pressure manipulating gas flow:

\[
\frac{dq_{k-1}}{dt} = -K \beta_k (q_{k-1} - q_k) + \frac{K}{T_i} (P_{k,SET} - P_k)
\]
Nonlinearity measure (example)

1 bar perturbation: @ 48 bar Gain=3.08 , Timeconst. 119 min.
@ 64 bar Gain=1.53 , Timeconst. 59 min.
Transfer functions from reduced models:

How would we obtain the transfer function between 2 variables of a given pipeline?

- Identify from true pipeline system data
- Identify from dynamic simulator data

“Direct method”: from design data to transfer functions!
... Linearize this \textbf{large} ODE model in a given steady state operating point

\[
\frac{d \Delta P_i}{dt} = \alpha_i (\Delta q_{i-1} - \Delta q_i)
\]

\[
\frac{d \Delta q_i}{dt} = \beta_i (\Delta P_i - \Delta P_{i+1}) - 2\gamma_i \frac{\Delta q_i}{P_{i,SS}} + \gamma_i \frac{q_{i,SS}^2 \Delta P_i}{P_{i,SS}^2}
\]

or:

\[
\frac{dx(t)}{dt} = Ax(t) + Bu(t),
\]

\[y(t) = Cx(t)\]

where \(x \land [\Delta P_1 \Delta q_1 \Delta P_2 \Delta q_2 \ldots \Delta P_N \Delta q_N]^{\top}\)
Matrices A (2Nx2N) and B (2Nxm) depend on the geometry, physical parameters, node partition and steady state data = design (engineering) information

C (1x2N) is needed just to select which state variable is of interest

The rest is easy, obtain the transfer function from (A,B,C) using standard methods

$$\frac{dx(t)}{dt} = Ax(t) + Bu(t),$$

$$y(t) = Cx(t)$$

$$G(s) = \frac{K(T_a s + 1)(T_b s + 1)\ldots}{(T_1 s + 1)(T_2 s + 1)(T_3 s + 1)\ldots}$$

eg. ss2tf of Matlab
NO! Transfer function from large system is difficult, even if dominating time constants may be obtained. In our case, numerator dynamics has relevance!
Use Linear Model Reduction techniques!

Truncation: Solve \(P \) and \(Q \) from

\[
\begin{align*}
AP + PA^T + BB^T &= 0 \\
A^TQ + QA + C^TC &= 0
\end{align*}
\]

Compute Hankel singular values

\[\sigma_i = \sqrt{\lambda_i(PQ)} \]

Arrange eigenvectors of \(PQ \) into: a transformation matrix

\[T = [v_1 \ v_2 \ ... \ v_{2N}] \]

The upper \(N_r << 2N \) submatrices of the transformed matrices = a reduced linear state space system

\[
\begin{align*}
\tilde{A} &= T^{-1}AT \triangleq W^TAV \\
\tilde{B} &= T^{-1}B \triangleq W^TB \\
\tilde{C} &= CT \triangleq CV
\end{align*}
\]
Balanced truncation: \(P \) and \(Q \) required to be diagonal

\[\ldots \]

Transfer function from reduced model with \(N_r = 3 \ldots 4 \) is easily obtained with standard methods!
Pipeline system w. 6 segments, 8 offtakes, 4 compressor stations and 70 nodes => 2N=140
Transfer function from CS2 discharge pressure to “Pa”, far downstream CS2 [time constant]=minutes!:

\[
\frac{1.44(116.9s + 1)}{(117.7s + 1)(190.6s + 1)} \approx \frac{1.44}{(190.6s + 1)}
\]

Dito for “Pb”, close to CS2:

\[
\frac{1.16(83.5s + 1)}{(11.2s + 1)(183.6s + 1)}
\]
Empirical calculation of the Gramians P and Q

- Step (impulse) perturbations on the system or on a full-scale simulation model
- After obtaining T, define a transformed state and apply a Galerkin projection to get a reduced non-linear model:

$$\dot{x}(t) = f(x(t), u(t)) \ , \ y(t) = g(x(t), u(t))$$

$$\dot{x}_r(t) = P T f(T^{-1} \tilde{x}(t), u(t))$$

$$\dot{x}_{N-r}(t) = 0, \ x_{N-r}(t) = x_{N-r, SS}$$

$$y(t) = g(T^{-1} \tilde{x}(t), u(t))$$

$$\tilde{x}(t) \triangleq \begin{bmatrix} x_r \\ x_{N-r} \end{bmatrix} = T x(t) \ , \ P = \begin{bmatrix} I_r & 0 \end{bmatrix}$$
Response of original ODE model for 92 km pipeline with 58 states, reduced nonlinear model Nr= 8 (circles) and dito with Nr=4.
General problem (not necessarily natural gas pipeline): We need an EKF for a large non-linear system

\[\dot{x}(t) = f(x(t), u(t)) \]
\[y(t) = g(x(t)) \]

\[\hat{x}(t) = f(\hat{x}(t), u(t)) + K[y_M(t) - g(\hat{x}(t))] \]

Steady state Riccati equation applies for linearized continuous time system, \(\text{dim}(K) = n \times ny \):

\[K = PC^T R^{-1} \]
\[AP + PA^T + Q - PC^T R^{-1} CP = 0 \]
All “mappings” in the sequel from a smaller matrix K_r to a bigger K, actually mean:

$$K = f(K_r) \overset{\triangle}{=} f\left(\begin{bmatrix} K_r & 0 \\ 0 & \varepsilon I \end{bmatrix}\right), \quad \varepsilon \rightarrow 0$$

Kalman filter for the reduced model also obeys Riccati:

$$K_r = P_r C_r^T R^{-1}$$

$$A_r P_r + P_r A_r^T + Q_r - P_r C_r^T R^{-1} C_r P_r = 0$$

Then, if:

$$K = V K_r, \quad Q = W Q_r W^T$$

The Riccati equation for the full system holds, and:

$$P = W P_r W^T$$

True also for discrete-time system
Example: 90-km long true pipeline segment:

$$\Delta z = 1667 \text{ m} \Rightarrow 82 \text{ elements} = 164 \text{ states}$$

Design Kalman filter for $$n_r = 4$$ and then scale up $$K = V^* K_r$$ to obtain state estimator for 164 states
... Results:

Estimated upstream pressure

Estimated P_a

Measured P_a

Estimated gas flow after CS

Simulated gas flow
What if we want to do the EKF exercise but do not have access to the full scale linear n-dimensional system \((A,B,C)\) ?

Recall:
- Empirical Gramians would give us \(P,Q,V\) and \(W\)
- Low dimensional model \((A_r, B_r, C_r)\) could be obtained by identification

\(\Rightarrow\) Do the matrices match, can we do “scale up” \(K = V*K_r\) ?

Let us borrow some results from discrete-time subspace identification (The state space model realisation part of it)
Use the system impulse response to form a Hankel matrix:

\[
H = \begin{bmatrix}
 h_1 & h_2 & h_{N+1} \\
 h_2 & h_3 & h_{N+2} \\
 \vdots & \vdots & \vdots \\
 h_N & h_{N+1} & h_{2N+2}
\end{bmatrix}
\]

\[h_i = CA^{i-1}B\]

Svd of \(H\), which is actually an estimate from data, \(H^\hat{\}

Choose a model order "r" and partition:

\[
Q = \begin{bmatrix} Q_r & Q_{N-r} \end{bmatrix} \quad V = \begin{bmatrix} V_r & V_{N-r} \end{bmatrix}
\]

\[
H = QS\!V^T
\]
S_r is a diagonal matrix with r principal singular values. Observability and Controllability matrix estimates:

$$
\Gamma_N = \begin{bmatrix}
C \\
CA \\
\vdots \\
CA^{N-1}
\end{bmatrix} = Q_r S_r^{1/2} \\

\Omega_N = \begin{bmatrix}
B \\
AB \\
\vdots \\
AB^{N-1}
\end{bmatrix} = S_r^{1/2} V_r^T
$$

Read C, actually C_r from Γ_N and B_r from Ω_N

For A, actually A_r, apply the "shift invariance" $\Gamma_N = \Gamma_{N-1} A$

Solve A using pseudo-inverse
Actually we have done a **balanced truncation**!

- Using H, make a full state dimension model with $r \rightarrow n < N$:
 - $P = \Omega_N \Omega_N^T$
 - $Q = \Gamma_N^T \Gamma_N$
- Calculate A_n, B_n and C_n as above = **linearization**!
- Calculate T (as above), call $W = T^{-T}$ and $V = T$
 Use W and V for a lower-dimensional model $r<n$:

$$\tilde{A} = W^T A_n V, \quad A_r = \tilde{A}(1:n_r,1:n_r) \quad \text{etc.}$$

r:th order model can also be obtained by repeating the realisation procedure.

NOTE, that V is needed to do the ”scale up” for the Kalman filter.
Impulse response data from a simulation model = no noise problem = should work, but non-linearity may harm

Fix: Discrete-time EKF innovations part to be combined with continuous-time non-linear model

Find weak points of "scale up" procedure, some horrible counter-example etc.

Subspace realisation for a large full order linear (=n) system may be tough; almost redundant states etc.
Thank You!