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Abstract 

This paper presents a two-level approach for integrating model based dynamic real-time optimization (D-
RTO) and control of industrial processes, which is being developed in the INCOOP* project. In the 
presence of disturbances and changing parameters, a re-optimization at the D-RTO level may be neces-
sary for optimal operation. A sensitivity based hybrid strategy is presented for triggering a D-RTO and 
quickly calculating feasible control updates. This avoids unnecessary re-optimizations. Results from dy-
namic optimization and sensitivity analysis of an industrial process are presented.  
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Plant operation is made up of decision-making tasks at 
different levels such as planning and scheduling, optimiza-
tion and control. Increasing competition in the chemical 
industry requires a more agile plant operation in order to 
increase productivity under flexible operating conditions 
while decreasing the overall production cost (Backx et al., 
1998). This demands integrated economic optimization of 
the overall plant operation. However, existing techniques 
such as stationary real-time optimization and linear MPC 
(Marlin, 2000) use steady-state and/or linear representa-
tions of a plant model. They are limited with respect to the 
achievable flexibility and economic benefit, especially 
when considering intentionally dynamic processes such as 
continuous processes with grade transitions and batch 
processes. In our philosophy, dynamics is at the core of 

plant operation. Systematic integration of model based 
dynamic optimization and control for an optimal plant 
operation is an open field of research, which is e.g. studied 
in the EU-funded project INCOOP*. In this paper we pre-
sent a systematic approach, initially proposed by Kadam et 
al. (2002), for integrating dynamic real-time optimization 
(D-RTO) and model predictive control (MPC) for large-
scale industrial processes. No application of integrated D-
RTO and control to large-scale processes has been re-
ported, so far. This work focuses on the interplay between 
D-RTO and MPC by proposing a new technique for trig-
gering the D-RTO for a potential re-optimization and 
hence, an increase in the economic value of the dynamic 
operation.  



 

Two-level strategy of integrated D-RTO and control 

The main objectives of a process optimization and 
control system are minimization of operating cost and a 
flexible and feasible operation even in the presence of 
various uncertainties or disturbances. Mathematically, the 
overall optimization problem can be written as: 
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Φ denotes an economic objective function to be minimized 
on a time horizon [t0, tf] corresponding to a certain cam-
paign of process operation. x(t) denotes the system state 
with initial condition x0, free operational variables u(t) and 
uncertain parameters d(t) which can be external distur-
bances (demand, product specification, prices),  nominal 
process disturbances, model-plant mismatch and measure-
ment noise. f(.) contains a DAE plant model, and g(.) maps 
the system states to the outputs y(t). Operational con-
straints are collected in h(.). Off-line solutions to problem 
P1 can be determined by standard techniques for dynamic 
optimization in case d(t) and x0 are known.   

Integrated framework of two-level strategy 

In practical applications, an off-line solution of prob-
lem (P1) is not sufficient due to the uncertain parameters 
d(t) and unknown initial conditions x0. Hence, successive 
re-optimizations of problem (P1) with updated models and 
initial conditions based on process measurements are re-
quired. This implies a closed loop D-RTO strategy that 
takes into account the information gathered from meas-
urements at each sampling time. 

 

Figure 1: Closed-loop two-level strategy 

However, the control relevant dynamics of typical proc-
esses will be too fast to enable real-time closed loop dy-
namic optimization because the current numerical tech-
niques are not able to solve problem (P1) sufficiently fast 

on the sampling frequency for industrial-size applications 
involving large complex models. Besides these problems, 
incorporating various types of uncertainty/disturbances in 
the closed loop D-RTO strategy is not straightforward. 

To solve the overall optimization problem, we propose 
a two-level strategy which can be extended to consider the 
supply chain optimization  as part of the complete prob-
lem. The problem is composed of an upper level economic 
optimization problem (D-RTO)  
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and a lower level control problem (MPC) 
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The two different time-scales prese t in the problem for-
mulation, 

n
t  in the ith D-RTO and ~ in the jt th MPC rob-

lem with corresponding sampling times 
p

t∆ and ~  re-
spectively, are shown in Figure 2.  As given in Figure 1, 
the D-RTO problem (P2a) determines optimal trajectories 
u

t∆

ref, yref for all relevant process variables such that an eco-
nomical objective function Φ  is minimized and con-
straints h  are satisfied. Only economic objectives such as 
maximization of production or minimization of process 
operation time are considered in Φ . The process model 
f  used for the optimization has to have sufficient predic-

tion quality and should cover a wide range of process 
dynamics. Hence, a fundamental process model is a natural 
candidate. For closed loop D-RTO, the problem is repeti-
tively solved on the rest of the entire time horizon 
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 for an update 
of the previous reference trajectories (see Figure 2). The 
sampling time has to be sufficiently large to capture the 
slow process dynamics, yet small enough to make flexible 
economic optimization possible. Re-optimization is not 
necessary at each sampling time ~ , rather, based on the 
disturbance dynamics.  

The MPC problem (P2b) is then solved in a conven-
tional delta-mode to track the optimal reference trajectories 
(see Figure 1) in a strict operational envelope computed on 
the D-RTO level. This envelope is a small region around 



 

the reference trajectories uref. The MPC sampling time 
~ has to be significantly smaller than the D-RTO sam-

pling time 
t∆

t∆  to handle the fast, control relevant p ocess 
dynamics. One requirement for the process model 

r
f
~

used 
on the MPC level, which might be different from the model 
f (albeit derived from it) used on the D-RTO level, is that 

it has to be simple enough, such that the problem (P2b) can 
be solved in the available computation time ~∆ . A good 
prediction qu lity of 

t
 a f

~
is required for the shorter time 

horizon ]~,~[ 0 ftt
jj

of ( 2b). The initial conditions P
ji

x0x0
~,  

and disturbances dd
~

, for D-RTO and MPC are estimated 
from process measurements by a suitable estimation pro-
cedure such as an extended Kalman filter (EKF).  

Note that only an economic objective is handled at the 
D-RTO level, while disturbance rejection is accounted for 
on the MPC level. Consequently, any soft constraints (e.g. 
product quality on short time horizon) can be moved to the 
D-RTO level. The process models ( f , f

~
) used at each 

level should be consistent; e.g. a linear time variant model 
along the reference trajectories determined by linearization 
of the D-RTO model and subsequent model reduction at 
each sampling time can be used at the MPC level.   

D-RTO trigger: Sensitivity based approach 

At 
j

t0
~ state and disturbance estimates (

j
) are 

available. As the process may have disturbed from the 
reference trajectories, updated control profiles need to be 
applied for the future time horizon. As shown in Figure 1 
updates can be done by again solving the D-RTO problem 
which is computationally expensive. The updated solution 
and the predicted benefits (objective function) may not be 
significantly different from the reference solution. Hence, a 
trigger strategy is embedded into the two-level strategy in 
Figure 1 to trigger a D-RTO solution only if necessary, 
otherwise it provides quick linear updates of u

jdx ˆ,ˆ0

ref, yref. D-
RTO trigger is based on disturbance sensitivity analysis. 
The schematic of D-RTO trigger is given in Figure 2.       

 

Figure 2: Schematic of D-RTO trigger 

An optimal solution is available at the nominal dis-
turbance values 

ref
iu

id  from the previous optimization at 
i
. 

At each sampling time 
t0

j
t0
~  Lagrange function sensitivities 
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c lculated. Here, La j is a scalar computed at sampling time 
j

t0
~ ;  is a vector, i.e. the derivative of LjS j w. r. t. all com-
ponents of . Similarly,  are the sensitivities to the 
disturbances 

jd̂ iS
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 at the previous optimal solution. Simulta-
neously, the parametric sensitivities Uj  of controls w. r. t. 

 and the possibly changed active constraint set are cal-
culated by solving a QP problem (Kadam and Marquardt, 
2002a). As shown in Figure 2 if the change in sensitivities 
( ) and Lagrange functions ( ∆ ) 
are larger than a threshold value S

jd̂

S∆ jj S= ijj LLL −=
th and  the active con-

straint set is changed, a re-optimization has to be done. 
This signifies that the linear approximation of L as 

)idˆ(T
i d j −jL∆ S=  is not valid anymore and the re-

optimized solution may be different. The trigger criteria 
mentioned above can be tested in very little computation 
time. If the criteria is not met, just a linear update of the 
solution based on already computed sensitivities Uj would 
be sufficient (cf. Büskens and Maurer, 2001). The thresh-
old value Sth is determined by doing off-line simulations of 
the problem. By employing this strategy, a re-optimization 
is started only if persistent disturbances have been de-
tected, and if they have high impact on L with possible 
constraints activation or de-activation. The compu tion of 
the second kind of sensitivity U

ta
t0j computed at 

j

~  uses 
second order information (Hessian of the Lagrange func-
tion; so far computed by using a finite difference tech-
nique) for optimal updates and only first order information 
for feasible updates.  

Application of two-level strategy to industrial processes 

In the INCOOP project two continuous industrial 
processes are being considered for benchmarking of the 
proposed two-level strategy. A prototype software platform 
has been developed, which consists of the dynamic opti-
mizer ADOPT and its extension for MPC problems, an 
EKF routine, process models in gPROMS and an INCA-
OPC server for a flexible data communication between 
different applications and a plant. The algorithmic details 
of each module are beyond the scope of this paper.  

Problem description and optimization results 

The process considered here is a continuous polymeri-
zation reactor with a subsequent separation unit and mono-
mer recycle, which produces different grades of a polymer. 
Frequent production rate and grade changes are common. 
An optimal grade change operation from polymer grade A 
to B is considered. Objective of the grade change operation 
is to minimize the off-spec polymer production and the 
transition time with operational constraints on reactor 
temperature, monomer and catalyst feed rate and the 
polymer content in the reactor, etc. and a subsequent 
steady state operation corresponding to grade B after the 
transition. Besides the presence of uncertainties due to 
unknown reaction parameters, catalyst activity etc., the 
process is operated at an open loop unstable operating 
point. Thus the optimization-control problem is a challeng-
ing one. A detailed process model consisting of about 2000 



 

DAEs has been developed. Two reaction parameters are 
considered here, which are believed to be, however uncer-
tain, varying by 5% of their nominal value.  ±

 

Figure 3: Dynamic optimization results and 
feasible updates due to  a change in  parameter 

1   

The two-level strategy has not yet been completely applied 
to this industrial case. Here, we present results from the 
dynamic optimization and D-RTO trigger problems. The 
optimization problem is solved at time . The open loop 
scaled nominal optimal profiles are shown in Figure 3 as 
bold line. The objective of the D-RTO trigger is to decide 
if a re-optimization is required or a linear feasible update 
using the sensitivity information is sufficient. 

0t

 

Figure 4: Lagrange function sensitivities 

The parameters are randomly perturbed between their 
bounds in the simulated plant. They are assumed to be 
estimated in a real-time application of the strategy as . 
As discussed in the previous section, sensitivities of the 
Lagrange function S

jd̂

j and the parametric sensitivities Uj 
(with and without 2nd order Lagrange function information) 
of the controls with respect to the disturbances (the two 
reaction parameters) along with active set changes are 
calculated. Scaled absolute changes in sensitivities at dif-
ferent disturbance parameter values are plotted in Figure 4. 
The changes in sensitivities are not uniformly distributed; 

especially, those  with respect to parameter 2 are larger 
than Sth in the negative direction. Even for small parameter 
changes active set change has been observed. However, 
feasible linear updates shown as dotted line in Figure 3, are 
possible for up to changes of  +4% in parameter 1 and –3% 
parameter 2. The QP Hessian matrix is observed to be 
indefinite when using second order information (its accu-
racy depends upon finite difference perturbation and inte-
gration tolerance) at the above mentioned parameter 
changes. This problem needs further consideration. The re-
optimized profiles depicted as dash-dashed line steer to the 
desired grade, in contrast to the feasible-only updates. The 
sensitivity based strategy adaptively triggers optimization, 
which is a critical part of the two-level strategy.      

Conclusion and future perspective 

A systematic approach has been proposed for an inte-
grated D-RTO and control of industrial processes. The 
two-level strategy distinguishes economic and control 
objectives and solves the problem on different time scales. 
This allows to consider different but consistent models and 
sets of constraints at each level. The D-RTO problem is 
not solved frequently, but triggered only if potential eco-
nomic benefits are sensed. A sensitivity analysis based 
strategy has been formulated for a potential re-optimization 
and feasible updates, albeit sub-optimal. Some of the tech-
niques are already presented by other research groups 
although in  bits and pieces. We have shown here the value 
of a hybrid approach using these techniques in an inte-
grated framework. The proposed two-level approach is 
viable for industrial processes and can guarantee overall 
feasibility (end point product specifications), that may not 
be achievable with nonlinear MPC. Only few representa-
tive results are shown in the paper. Full implementation of 
the two-level approach to industrial processes is underway. 
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