An LQG/LTR approach towards piezoactuator vibration reduction with observer-based hysteresis compensation

Lukasz Ryba *, Alina Voda **, Gildas Besançon ***

Control Systems Department
GIPSA-lab, BP 46, 38402 Saint-Martin d’Hères, France
Email: {lukasz.ryba, alina.voda, gildas.besancon}@gipsa-lab.grenoble-inp.fr

* Grenoble INP
** Joseph Fourier University - Grenoble 1
*** Institut Universitaire de France

Abstract: This paper presents a SISO robust control of some lightly damped micro/nano-positioning system equipped with a piezoactuator. The adverse phenomenon of nonlinear hysteresis in the actuator is first compensated using an observer-based approach. Then an LQG/LTR method is proposed to additionally reduce vibrations affecting the system in a higher frequency range. Illustrative experimental results show a significant improvement of the closed-loop system behaviour with respect to the open-loop one.

Keywords: Micro/Nano-positioning, LQG/LTR, robust control, observer, hysteresis, vibration.

1. INTRODUCTION

Piezoelectric actuators, due to their high resolution, fairly high stiffness and fast response are commonly used in micro/nano-scale applications like in Scanning Tunneling Microscope (STM) or Atomic Force Microscope (AFM). On the other hand, they exhibit some adverse effects like hysteresis, mechanical vibration, creep or thermal noise. Nonlinear hysteresis can significantly reduce the accuracy especially in long-range positioning like during imaging large samples. When positioning over extended periods of time is required, the piezo can drift due to creep phenomenon, which also leads to the loss of precision. In imaging applications, one may want to achieve also high resolution of the scanned images, which takes sometimes several minutes or even fractions of an hour (Abramovitch et al., 2007). An increase of scanning frequency shortens that time but fast triangular waveforms may excite the resonance peaks of the positioning device and as a result the scanning speed is often limited to about 1% of piezo’s first resonant frequency (Moheimani, 2008).

A large number of works has been devoted to overcoming these phenomena and they can be classified into open-loop and closed-loop methods. The open-loop feedforward control for both hysteresis and vibration can be found for example in Croft et al. (2001) (an inversion-based compensation), and in Rakotondrabe et al. (2010) (an inversion and input shaping compensation). The most popular models used for hysteresis, the Preisach (Hughes and Wen, 1997) and the Prandtl-Ishlinskii (PI) (Kuhnen and Janocha, 2001) models, though computationally intensive, are a common solution in cases where sensors are not available. On the other hand, closed-loop techniques are accurate and need not model inversion, but the drawback is that they require (sometimes expensive) sensors for feedback control. A simple proportional-integral (PI) controller often fails in dealing with highly resonant positions. Popular feedback methods like Integral Resonant Controller (IRC) (Bhikkaji and Moheimani, 2008) or Positive Position Feedback controller (PPF) (Mahmood and Moheimani, 2009) can effectively suppress these vibration effects. One can also take advantage of known desired reference trajectory and use Repetitive Control (RC) as in Necipoglu et al. (2011). In Wu and Zou (2007) an iterative control approach (IIC) was used for compensating both, hysteresis and vibration of the piezo scanner during high-speed, large-range positioning. (Leang and S., 2002) combined high gain feedback (for hysteresis and creep) and feedforward inverse-based control (for vibration). Both bandwidth and scanning range can be increased significantly by using a dual actuated system (combination of long-range, low-bandwidth actuator with a short-range, high-bandwidth actuator) as Schitter et al. (2008a) or Kuiper et al. (2010) did for AFM. One can also increase AFM scanner’s bandwidth by cutting a sharp top of the triangular reference trajectory (see Schitter et al. (2008b)).

In Yi et al. (2009), a disturbance observer (DOB) was proposed for hysteresis compensation. The idea is to consider hysteresis as a slowly varying disturbance on the input of a linear system, translate the difference between the response of the real plant and its model (through model inversion) into observed disturbance and subtract it at the plant input. In the present paper, a similar DOB is implemented, with the difference that this...
disturbance is added as a new entry in a state vector of a simplified system (with one mode) and reconstructed via state observer (see Besançon et al. (2009)), which allows to compensate it directly without model inversion.

In the recent years, a rapid growth of modern robust control designs has been recorded in mikro/nano-positioning due to uncertainties of different natures (different operating conditions, hysteresis, unmodelled dynamics etc.) (Sebastian and Salapaka, 2005). In Chuang et al. (2011) a robust H_∞ control for fast scanning in AFM in presence of sector bounded hysteresis uncertainty obtained much higher bandwidth than PID controller. Spatial resonant controller applied to piezoelectric laminate beam has been designed in order to minimize H_2 norm of the system in Halim and Moheimani (2001). LQG control can be used as another damping technique as Habibullah et al. (2012) did for lateral positioning of an AFM. However, pure LQG controller is not guaranteed to be robust. It is commonly known that LQR controller (i.e. full state feedback quadratic optimal controller) has at least 60° phase margin, 6dB gain margin and thus provides always a stable closed loop system (Safonov and Athans (1977)). On the other hand, not all the states can be available either because there is a lack of sensors in the system or some states are simply impossible to measure. One can then incorporate a state observer to reconstruct the state of the system on the basis of the measured outputs (output feedback controller). However, the observer is based on the nominal model of the system, and its performance strongly depends on the level of system uncertainty. In this case the above mentioned robust stability margins of LQR solution are no more assured, since in practice the real plant differs from the nominal one and there is a need of robust controller which takes into account these differences. Moreover, even for minimum phase, open-loop stable systems, the margins can be arbitrarily small (Zhou et al. (1996), Doyle and Stein (1981)). In these cases, a simple approach of "speeding-up" observer dynamics of LQG design via properly chosen process and measurement covariance matrices may be not sufficient. To come out against lack of robustness of LQG, an LQG/LTR (Loop Transfer Recovery) procedure was proposed by Kwakernaak (1972), furtherly developed by Doyle and Stein (1979). Its main idea is to recover the desirable properties of LQR loop by relaxing the optimality either of the Kalman filter or quadratic feedback controller. This can be achieved by proper modification of their corresponding Algebraic Riccatti Equations. This procedure can be done either w.r.t. the uncertainty on the plant input or output and the system is assumed to be minimum phase.

In Munteanu and Ursu (2008), the application of LQG/LTR method is shown to successfully avoid dangerous vibration of the piezo smart composite wing of the aircraft. This technique has been also reported in Hu et al. (1999) and allowed to achieve high track density for dual-stage actuators in HDDs. In micro/nano-scale applications the LQG/LTR method was applied to piezoelectric tuning fork in AFM in vertical direction (Z-axis) (see Yeh et al. (2008)). However, as indicated in this work the hysteresis effect was omitted because of the small operating range (less than 100nm). This motivated us to check experimentally the efficiency of this method in terms of vibration reduction in the presence of nonlinear hysteresis of piezoactuator. The approach is applied to an STM-like mikro/nano-positioning platform under development in GIPSA-lab (Grenoble, France), in the horizontal fast scanning direction (X-axis), for which the induced vibration are unavoidable and play an important role for fast varying input voltages.

The paper is organized as follows: the experimental setup and system description are given in section 2. Section 3 is devoted to observer-based hysteresis compensation. Next, in Section 4 the identification and compensation of vibration is done using the LQG/LTR control procedure. Finally we conclude the paper in section 5.

2. EXPERIMENTAL SETUP AND SYSTEM DESCRIPTION

The considered experimental setup consists of a voltage amplifier E-240-100 (gain 15 [V/V] and bandwidth 4kHz), a piezoelectric actuator Triton T-402-00 (gain 235 [nm/V] and bandwidth 630 Hz) and a capacitive sensor CS005 with capaNCDT 6500C measuring system (gain 200 [V/mm] and bandwidth 8.5 kHz) connected in cascade as shown in Fig. 1. The application designed in Matlab\&SimulinkTM and xPC TargetTM software on development PC is downloaded via Ethernet interface into Target PC equipped with data acquisition card. The DAC forms an analog control signal 0-10 [V] which feeds the
voltage amplifier. The ADC of the same board converts
the output voltage 0–10 [V] from the capacitive sensor
and returns the digital value to the real-time application
running in Target PC. The sampling time is set to 20 kHz.

This setup is designed as a tunneling current measurement
system. In this paper we are focused only on the horizontal
motion in X direction (a full 3-D problem formulation can be
found in Ryba et al. (2013)). Both voltage amplifier and
and capacitive sensor can be described as first order
systems (see Ryba et al. (2013)). On the other hand
their bandwidths are relatively high (4 kHz and 8.5 kHz,
respectively) w.r.t. the bandwidth of the piezoactuator
(630 Hz) and the frequency of the signal to be tracked,
thus they are assumed as constant gains (G_{ext} and G_{capx},
respectively). In every notation we use subscript x
 to indicate that we are focused on the X direction.

3. HYSTERESIS COMPENSATION

Two methods of hysteresis compensation were checked
in our experiments. In the first approach, hysteresis is
modelled using Prandtl-Ishlinskii (PI) model, while in the
second approach a simple disturbance model is used in or-
der to design a disturbance observer (DOB) for hysteresis
reconstruction and compensation. It finally appeared that
the second approach works better than the first one in
terms of both simplicity and accuracy, as it is insensitive
to model errors and in some way it adapts to changing
tions or to different initial settings of the capacitive
sensor. In this paper only the second approach is presented
for brevity. From now on, the time-dependence of variables
will be omitted for simplicity.

A static nonlinear hysteresis $H_x[v_{px}]$ is considered here as:

$$H_x[v_{px}] = G_{px}(v_{px} + d_x(v_{px}))$$

where d_x is a slowly varying disturbance acting on the input
of v_{px} of the piezoactuator (see internal block in the
whole scheme of Fig. 2).

![Fig. 2. Observer-based hysteresis compensation.](image)

The following simplified second order model of the horizon-
tal axis dynamics (including gain G_{ext} of the input voltage
amplier $V_{A_x}(s)$, piezo dynamics $D_x(s)$ and gain G_{capx}
of the capacitive sensor $CS_x(s)$) is used to get an estimation
of d_x of the low frequency disturbance d_x:

$$\ddot{x}_p + 2\xi_p \omega_p \dot{x}_p + \omega_p^2 x_p = \omega_p^2 G_{px}(v_{px} + d_x)$$

or in state-space (with state variables: $x_1 = x_p$, $x_2 = \dot{x}_p$):

$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} -\omega_p^2 & -2\xi_p \omega_p \\ -2\xi_p \omega_p & -\omega_p^2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} \frac{H_x[v_{px}]}{H_x[u]} \\ 0 \end{pmatrix}$$

where u is the input voltage to the voltage amplifier
$V_{A_x}(s)$, y is the output voltage from the capacitive sensor
$CS_x(s)$, w and v are the process and measurement noises,
respectively.

If the observer dynamics is sufficiently faster than the
of the disturbance d_x, the reconstruction is fast
ough and the disturbance variations can be assumed
constant ($\dot{d}_x = 0$) from the observer point of view.

Extending the state vector of (3) into $x_c = [x\ d_x]^T$
gives the following state space representation:

$$\begin{pmatrix} \dot{x}_c \\ \dot{d}_x \end{pmatrix} = \begin{pmatrix} A & B \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x_c \\ d_x \end{pmatrix} + \begin{pmatrix} L \end{pmatrix} v$$

where the matrices of an extended system are defined as

$$A_c = \begin{pmatrix} A & Bd \\ 0 & 0 \end{pmatrix}, \quad B_c = \begin{pmatrix} B \\ 0 \end{pmatrix}, \quad C_c = \begin{pmatrix} C \end{pmatrix}$$

This system is checked to be observable, and its steady-
state Kalman observer is given by:

$$\hat{x}_c = A_c x_c + B_c u + L(y - C_c \hat{x}_c)$$

where the observer gain matrix $L = PC_c^T V^{-1}$ can be
chosen such that \hat{x}_c is an optimal state estimate of (4)
in terms of minimizing $E[\hat{x}_c - x_c]^T [\hat{x}_c - x_c]$ (the mean
square error). P is solution of Algebraic Riccati Equation
(ARE):

$$A_c P + P A_c^T - L V L^T + W = 0$$

Here, the covariance matrices W and V are chosen
to guarantee proper dynamics of the observer taking into
account both process and measurement noises.

Finally, the hysteretic dependency between the control
input u and the plant output y can be obtained from the
reconstructed disturbance \hat{d}_x as follows:

$$y = \hat{H}_x[u] = G_{\text{capx}} H_x[u] = G_{\text{capx}} G_{px}(G_{\text{ext}} u + \hat{d}_x)$$

Fig. 3(a) shows a good consistency of the measured and
reconstructed hysteresis between the input u and output
y. To compensate for the disturbance d_x, its estimate \hat{d}_x
is then subtracted from the original piezo input voltage
as shown in Fig. 2. In Fig. 3(b) the reference voltage
x_h (see Fig. 2) being a triangle of variable amplitude
of 1, 3, 5 and 7 V (which corresponds to the displacement
p of 5, 15 and 35 mm, respectively) and frequency 1
Hz was chosen and the corresponding output voltage y
was measured (in red) and with (in blue) disturbance
observer. The corresponding tracking performance
is shown in Fig. 4(a), where it can be seen that the
hysteresis is totally eliminated. Moreover, Fig. 4(b) shows
that also creep phenomenon was successfully compensated.
This cannot be achieved with PI model of hysteresis and
it is another advantage of the present method. However,
4. VIBRATION COMPENSATION

In this section the vibration model is first identified, then its reduction is done using balanced truncation method and finally an LQG/LTR control is designed on the basis of this model.

4.1 Vibration model identification and model reduction

The model already compensated for hysteresis (see Fig. 2) with unit static gain, used as a vibration model, is identified here. The input identification signal x_h is a chirp voltage of amplitude 0.5 V around 3 V with frequencies linearly growing with time from 0.1 Hz to Shannon frequency 0.5f_s, where f_s is the sampling frequency of 20 kHz. Fig. 5(a) shows the input/output identification data, and Fig. 5(b) the zoom of the model/measured data fitting near the first three resonant peaks (around 370, 620 and 1200 Hz). A continuous-time transfer function of order 16 is finally obtained, to catch a good vibration model.

However, this model is quite complex for control design, and a reduction is thus looked for. This is done here using balanced truncation method. First the full order model is converted to its balanced form and next the states which are weakly controllable/observable (with small corresponding singular values) are neglected. Fig. 6(a) depicts Hankel singular values of the full order model. The states with singular values less than 0.2 (on the right of the red line) are then neglected while keeping a minimum-phase behaviour and frequency responses of both full 16-order model and the resulting reduced 9-order model are shown in Fig. 6(b). One can notice good consistency between both models, despite order reduction.

4.2 Vibration reduction using LQG/LTR controller

On the basis of the obtained model, an LQG/LTR controller can be designed. This model is given by:

$$P_h : \begin{cases} \dot{x} = A_h x + B_h x_h + \xi; & x \in \mathbb{R}^9 \\ y = C_h x + \eta \end{cases}$$

(9)

where the subscript h means that the system is already compensated for hysteresis and ξ and η are its process and measurement noises, respectively.

The optimal LQR solution $x_h^* = -K_h x$ minimizes the following cost function on trajectories of (9):

$$J = \int_0^\infty (x^T Q x + x_h^T R x_h) dt$$

(10)

We consider here an LTR design on the plant output (it can be recovered also on the plant input, since the problems are dual). From Fig.7 one can see that the loop transfer function obtained by breaking the LQG loop at point P_1 ((Kalman Filter (KF) loop transfer function) is:

$$LTF_{P_1}(s) = C_h \Phi(s) K_f; \quad \Phi(s) = (s I_{9 \times 9} - A_h)^{-1}$$

(11)

and the loop transfer function obtained by breaking the LQG loop at point P_2 is:

$$LTF_{P_2}(s) = P_h(s) K_{LQG/LTR}(s)$$

(12)

Now, the aim of LTR procedure is to make $LTF_{P_2}(s)$ to approach $LTF_{P_1}(s)$ by properly designed LQR controller. In other words, the LQG/LTR design consists of two steps: 1) Loop transfer design - design LQG loop transfer function on the basis of LQR (full-state feedback) at point P_1. 2) Loop transfer recovery (LTR) - approximate the desired
Fig. 7. LQG/LTR feedback loop.

loop transfer function obtained from step 1 with a recovery
procedure at point P2 (plant output).

Step 1: (the full state design) is done via KF ARE:

\[A_h P + P A_h^T - K_f \Theta K_f^T + \Xi = 0 \] (13)

where \(\Xi = E[\xi \xi^T] = B_h B_h^T, \Theta = E[\theta \theta^T] = \rho I_{1 \times 1}, \rho = 1 \)

are the process and measurement covariance matrices.

Step 2: (LQR loop recovery at plant output) is done via LQR ARE:

\[A_h^T S + S A_h - K_h^T R K_h + Q = 0 \] (14)

where \(Q = q \Theta^T C_h, R = I_{1 \times 1} \) are the weighting matrices
for state and control effort in (10).

The Nyquist plots of the recovered loop transfer function
are depicted in Fig.8. One can observe the convergence
of the desired optimal LQR loop transfer function
when increasing recovery gain \(q \). The obtained state-space
LQG/LTR controller, based on the reduced nominal model is applied
to the real plant, already compensated for hysteresis (see Fig.9). Fig.10 shows the chirp response in open-
loop (red) and in closed-loop (blue). One can see that with
this controller the vibrations are reduced near the resonant
peaks w.r.t. the open-loop response.

Fig. 8. Nyquist plots of \(LTF_{P_2}(s) \) with increasing recovery
gain \(q = [1, 10, 10^2, 10^3, 10^4, 10^5, 10^6] \) (from green to
black, respectively. The desired \(LTF_{P_1}(s) \) is in blue).

Fig. 9. LQG/LTR control.

\[x_{ref} \]

\[\text{LQG/LTR} \]

\[u_{lqg/ltr} \]

\[x_h \]

\[P_h \]

\[y \]

Fig. 10. System response for chirp signal.

The final results for tracking triangular reference trajectories of 100, 200 and 300 Hz respectively are presented in
Fig.11. First the system is uncontrolled and at some time
(red line in Fig.11) the LQG/LTR controller is switched
on. One can see vibration reduction in all cases w.r.t. the
open-loop behaviour, especially for higher frequency cases.

5. CONCLUSION

In this paper a robust LQG/LTR control for vibration
reduction was implemented and tested in experiments for
one axis of a mikro/nano-positioning system. Nonlinear
hysteresis was beforehand compensated using observer-
based approach. The experimental results show a sig-
nificant improvement of the controlled system w.r.t. the
uncontrolled one. It has to be stressed out that further
improvement of tracking could be obtained for example
by inclusion frequency dependent weighting matrices into
quadratic cost function, instead of the static ones.

REFERENCES

Abramovitch, D., Andersson, S., Pao, L.Y., and Schitter,
G. (2007). A tutorial on the mechanisms, dynamics,
and control of atomic force microscopes. In American

observer approach towards force reconstruction from
experimental afm measurements. In 15th IFAC Symp.
on System Identification, 1381–1386.

resonant control of a piezoelectric tube actuator for
fast nanoscale positioning. IEEE/ASME Trans. on
Mechatronics, 13(5), 530–537.

Chuang, N., Petersen, I., and Pota, H. (2011). Robust \(H_\infty \)
control in fast atomic force microscopy. In American

hysteresis, and vibration compensation for piezocantors:
Atomic force microscopy application. J. of Dynamic
Systems, Measurement, and Control, 123(1), 35–43.

Doyle, J.C. and Stein, G. (1979). Robustness with ob-

design: Concepts for a classical/modern synthesis. IEEE
Trans. on Auto. Control, 4–16.
Fig. 11. Reference tracking: (a) 100, (b) 200, (c) 300 Hz.

