Laxity Release Optimization for Simulink Models

Kaijie Qin, Guiming Luo, Xibin Zhao

School of Software, Tsinghua University, Tsinghua National Laboratory for Information Science and Technology, Beijing 100084, China (Email: danielqkj@gmail.com, gluo@mail.tsinghua.edu.cn).

Abstract: In Simulink models with single-processor multitask implementation, time delays and transaction buffers emerge when Rate Transition (RT) blocks are added. This paper examines Simulink modeling and buffer optimization. The concept of laxity release is defined for the priority assignment procedure. The algorithms of laxity prediction and laxity release are proposed for the task scheduling problem. The laxity bounds and laxity release bounds are obtained, and the response time based on laxity release is calculated. Some experimental results are given to show that with our approach, total system buffer costs are reduced and system performance is improved.

Keywords: Discrete event modeling and simulation; Task scheduling of hybrid systems; Model predictive control of hybrid systems

1. INTRODUCTION

Embedded systems are developing very quickly in modern industry. System resource cost and performance issues are very import to the development of complex embedded systems. Thus, reducing system cost and guaranteeing schedulability under strict circumstances are important issues to address. Previous work has analyzed preemptive scheduling in modelized embedded systems (Scaife and Caspi, 2004) and static-priority scheduling algorithms for multitasking problems (Tripakis et al., 2005). A laxity prediction and buffer optimization algorithm used to complete the priority assignment was proposed in (Natale and Pappalardo, 2008), but this algorithm did not consider the different frequencies of functional blocks. Although Mixed Integer Linear Programming (MILP) in (Di Natale et al., 2010) can determine the feasible region for task mapping, it still cannot solve the laxity problem for priority assignment. In this paper, we analyze the laxity prediction problem in the priority assignment procedure of multitask implementation. The laxity release method is discussed in terms of improving system schedulability, as well as reducing the buffer cost.

1.1 Modeling and Simulation in Simulink

Simulink can be used for the modeling and simulation of control systems, and it is based on the synchronous reactive model of computation. In Simulink, every functional block has a fixed sample time, and the base-rate time is the least common multiple of all sample times in the system.

There are two different code generation options in the RTW/EC code generator: single-task and fixed-priority multitasking (Benveniste et al., 2003; Scaife and Caspi, 2004). For single-task implementation, the execution order is computed by the code generation tool based on the topology of the tasks and the partial order derived from the Simulink semantic rules. All the functional block computations form a task chain that represents the sequence of task executions. Single-task implementation requires that the longest task chain be finished in the base-rate time; otherwise, the assumption of synchronous reactive model semantics is not met.

For multitask implementation (Caspi et al., 2008), there can be more than one task chain, and every functional block is mapped into a task chain. The execution order in each task is decided by the topology of the tasks and the partial order derived from the Simulink semantic rules (Agrawal et al., 2004). The same is true in single-task implementation, but the difference here is that the task may be interrupted and preempted by other tasks with higher priorities, and will resume when the higher-priority tasks finish computing. Every task may be preempted by other tasks one or more times in one cycle time. Task preemption results in a new problem. The situation can be summarized as follows (Natale and Pappalardo, 2008):

- Type HL: high-rate (priority) blocks driving low-rate (priority) blocks;
- Type LH: low-rate (priority) blocks driving high-rate (priority) blocks.

Simulink uses Rate Transition (RT) buffers to solve the data consistency and time determination problems (Baleani et al., 2005; Stuermer et al., 2007). The RT block acts like a Zero-Order Hold block for the first situation, or a Unit Delay block (Astrom and Wittenmark, 2011) plus a Hold-back for the second situation. We will use type HL RT blocks and type LH RT blocks to distinguish among the different types of RT buffers.
This paper is structured as follows: Section I provides the necessary background related to the schedulability and buffer optimization problems in Simulink models. Section II will outline the implementation, including the formulation, of Simulink models. The lower bound, upper bound, and response time calculation of the laxity are presented in this section. Next, in Section III, the laxity release algorithms are introduced and demonstrated. In Section IV, we benchmark our algorithm versus existing methods, and Section V concludes the paper.

2. SIMULINK MODELING

A Simulink model can be represented by a graph $G = (V, E)$, with points representing the blocks and edges representing the links between the blocks.

- $V = \{F_1, \ldots, F_n\}$ is the set of functional blocks. Each block F_i represents a basic computing unit of the system; it has one or more inputs and one output. The basic sampling period of F_i is t_i, and the worst-case computing time is γ_i, which means that signals will come into F_i at the rate of $1/t_i$ for processing. It will take block F_i the time of γ_i to finish the task and generate the result signal.

- $E = \{l_1, \ldots, l_m\}$ is the set of links. A link $l_i = (F_k, F_k)$ connects the output port of F_k to one of the inputs of F_k. F_k is the source of l_i and F_k is the destination, denoted by $F_k = \text{src}(l_i)$ and $F_k = \text{dst}(l_i)$, respectively.

- There may be feed through semantics between F_h and F_k, and F_h must be finished before F_k, which is denoted by $F_h < F_k$.

- $\tau = \{\tau_1, \ldots, \tau_t\}$ is the set of tasks. Each task τ_i has an activation period T_i, and all the tasks start at the same time $t = 0$. The execution order of task τ_i is decided by its priority π_i; the tasks with higher priority will have the privilege to execute first.

- $\text{map} = (F_i, \tau_j, k)$ is a task mapping relation between functional block F_i and task τ_j. Each task has several functional blocks assigned to it with the same period or priorities from the task will not be able to match into that task. The mapping $\text{map} = (F_i, \tau_j, k)$ denotes that F_i is executed in task τ_j with an order index of k.

- r_j is the worst-case response time of task τ_j, denoting the time of task τ_j that finishes all the functional blocks mapped into it. With c_j denoting the worst-case computing time of τ_j, r_j can be computed by the following formula (Joseph and Pandya, 1986): $r_j = c_j + \sum_i |\tau_i| c_i$, where the index i spans over higher-priority tasks $\tau_i (\pi_i \geq \pi_j)$.

- $S(F_i)$ denotes the synchronous set of functional block F_i. It represents the transitive closure of the immediate predecessor and successor relations of blocks with the same rate. The set $S(F_i)$ can be constructed as follows:

 First, $S(F_i) = F_i$. Then, at each step for each F_j in $S(F_i)$, if the immediate predecessors and successors have the same rate as F_j, add it to $S(F_j)$. The procedure ends when no more functional blocks can be added to the set. All the functional blocks in one synchronous set share the same rate, and are linked together by edges between the blocks in the set. Thus, the entire graph can be denoted as $S = (S_1, S_2, \ldots, S_m)$. S_i has a period of T_i and $C_i = \sum_{F_j \in S_i} c_i$ is the sum of the worst-case computation times of all the functional blocks in S_i.

For each set S_i, $\text{succ}(S_i)$ defines the set of all its successor sets. If $S_j \in \text{succ}(S_i)$, there exists $F_k \in S_i, F_l \in S_j$, and $l_j = (F_k, F_l) \in E$. Furthermore, $\text{path}(S_i)$ is defined as $\text{path}(S_i) = S_i \cup S_1, S_2, \ldots, S_k$ a set of synchronous sets with the following properties: S_i has no incoming link, $S_k = S_i$, and there exists (at least) a link s_j connecting each pair S_j, S_{l_j+1}, where $j = 0, k - 1$. For each set S_i, there can be multiple $\text{path}(S_i)$ sets.

Laxity is a key concept in this paper. The idea of proposing laxity is to give an evaluation of the schedulability of tasks. The schedulability of one task has a close relationship with the time remaining in the period time after the task finishes computing.

As (Natale and Pappalardo, 2008) pointed out, the sum of the computation times of all the members in each set $\text{path}(S_i)$ is a lower bound for the worst-case computation time of S_i. The upper bound laxity of S_i is defined as follows:

$$l_{\text{upper}, i} = \min S_i (T_k - \max_{\text{path}(S_i)} \sum_{S_i} C_i) \quad (1)$$

where $S_i \in \text{path}(S_i)$ and $S_k \in \{\text{succ}(S_i) \cup S_i\}$. The o in the $l_{\text{upper}, i}$ means that the laxity in Equation 1 is the original formula from previous research. In this paper, other laxity calculation methods will be proposed and compared with the original.

From Equation 1, we can see that when calculating the laxity of S_i, the time remaining after execution for both S_i and all the tasks in $\text{succ}(S_i)$ will be considered.

The lower bound is not sufficient for calculating laxity. Suppose there are only two function blocks with different rates. Function block F_1 has a period of time 1, and its worst-case computing time is c_1. Function block F_2 is F_1’s successor, which has a period of time 2 and a worst-case computing time c_2. The premises here are that $c_1 \leq 1$ and $c_2 < 2$. Since F_2 is F_1’s successor and has a greater period time than F_1, its processing may be preempted. There are three main execution results for different c_1 and c_2.

- Case 1 ($c_2 \leq c_1$): Start from $t = 0$; F_1 starts to execute, and at $t = c_1$, F_1 finishes computing. Then, F_2 starts its execution. F_1’s execution, but a new process request of F_1 has not yet arrived. The processor is idle until $t = 1$, when a new process request of F_1 arrives. At $t = c_1 + 1$, F_1 finishes its execution, and both F_1 and F_2 have therefore finished all their executions.

- Case 2 ($c_1 + c_2 > 1$ & $2c_1 + c_2 \leq 2$): Start from $t = 0$; F_1 starts to execute, and at $t = c_1$, F_1 finishes computing. Then, F_2 starts its execution. F_1 does not finish its execution as a result of $c_1 + c_2 > 1$, but a new task for F_1 arrives, since it has a period of time of 1. The execution of F_2 will be preempted. At $t = c_1 + 1$, F_1 finishes its execution, and F_2 continues to execute until $t = 2c_1 + c_2 <= 1$.

9606
• Case 3 (1 <c1 + c2 ≤ 2 & 2c1 + c2 > 2): As c1 + c2 > 1, F2 will not finish its execution at t = 1. Thus, it will be preempted by a new execution by F1. After the second execution of F1, block 2 will continue to execute and will finish at \(t = 2c1 + c2 \). As a result of 2c1 + c2 > 2, block 2 did not meet its deadline and the system cannot be considered feasible.

If we use Equation 1 to calculate the laxity of the two blocks, then \(t_1 = c1 \) and \(t_2 = c1 + c2 \). Let’s consider the three cases above. F1 has the highest priority and will preempt any other blocks when a new F1 execution arrives. Therefore, any execution of F1 starting at \(t_s \) will finish at \(t_s + c1 \). In case 1, the execution of block 2 may start at \(t = 0 \) but is preempted by F1, so it will start at \(t = c1 \) and finish at \(t = c1 + c2 \). The result is the same as that given by Equation 1. But in case 2 and case 3, we have different results. Both case 2 and case 3 give a result of \(t_2 = 2c1 + t_2 \). In case 2, 2c1 + c2 ≤ 2, which means block 2 meets its deadline. In case 3, the execution of block 2 finishes at \(t = 2c1 + c2 \) and exceeds its deadline, but Equation 1 gives a laxity prediction of \(l_{upper,2} = t_2 - (c1 + c2) > 0 \). Thus, it cannot represent the actual situation.

What we call a frequency-doubling (FD) situation is defined as follows: for any two blocks in the system \(S_i \) and \(S_j \) with block period times of \(T_i \) and \(T_j \), respectively, if \(T_i < T_j \), then \(T_i \) must be an integral division of \(T_j \). The above case shows how Equation 1 fails to correct the laxity in the FD situation. The situation is more complicated when the period of one block is not the integral multiple of other blocks, which we call a non-frequency-doubling (NFD) situation.

We define the lower bound of laxity as

\[
l_{lower,i} = \min_{\pi_k} \left(1 - \frac{\sum_{S_i \in \text{Pre}(S_k)} \left\lfloor \frac{T_i}{T_k} \right\rfloor C_i}{T_k} \right)
\]

(2)

\(\text{Pre}(S_k) = \{S_j | \pi_j \geq \pi_k, \pi_j \text{ is priority of } S_j \} \) contains all the block sets with higher priority than \(S_k \). \(\text{Pre}(S_k) = \{\text{pre}(S_k) \cup S_k\} \), \(S_k \in \{\text{succ}(S_i) \cup S_i\} \). \(\left\lfloor \frac{T_i}{T_k} \right\rfloor \) implies that

- \(T_i > T_k \): \(T_i \) is an integral division of \(T_k \), and as a result block \(S_i \) will be computed \(\frac{T_i}{T_k} \) times in one cycle time of \(S_k \);
- \(T_i = T_k \): block \(S_i \) will be computed \(\frac{T_i}{T_k} = 1 \) time in one cycle of \(S_k \);
- \(T_i < T_k \): although \(S_k \) has a shorter period sample time than \(S_i \), block \(S_i \) has to finish computing for one time in the cycle time of \(S_k \), where \(\left\lfloor \frac{T_i}{T_k} \right\rfloor = 1 \) in Equation 2.

Here, we did not use \(\text{path}(S_k) \) because the laxity of \(S_i \) does not only depend on the block sets in \(\text{path}(S_i) \), but also other block sets in other paths. All the block sets with a higher priority than \(S_k \) will contribute to the laxity of \(S_i \), and should be considered when computing laxity. When we have to calculate the laxity of \(S_i \), we suppose that there are \(n \) synchronous sets in total, among which \(n_i \) numbers of the sets’ priorities have been decided, from priority \(n \) as the highest to priority \(n - n_i + 1 \) as the lowest. Then, for \(S_i \), \(R_k \) should mean that we give priority \(n - n_i \) to \(S_i \) and calculate its response time in all the \(n_i + 1 \) sets. If \(S_j \) is the successor of \(S_i \), then we will give priority \(n - n_i \) to \(S_j \) and priority \(n - n_i - 1 \) to \(S_j \) to compute the response time of \(S_j \).

As for different \(S_k \), \(T_k \) will be different, which may bring the system deviation toward laxity, so the laxity is normalized by being divided by \(T_k \).

In the same way, the upper bound of laxity is defined as

\[
l_{upper,i} = \min_{\pi_k} \left(1 - \frac{\sum_{S_i \in \text{Pre}(S_k)} C_i}{T_k} \right)
\]

(3)

Suppose \(F_1 \) has a period of time of \(2 \) and execution time \(c_1 \), and its successor \(F_2 \) has a period of time of \(3 \) and execution time \(c_2 \). The base rate is 1 and the lowest common multiple of their periods is 6. If \(c_1 = 1.2 \) and \(c_2 = 0.7 \), from \(t = 0 \) to \(t = 6 \), \(F_1 \) has executed 3 times, each taking \(c_1 \) time to compute, while \(F_2 \) has executed 2 times. In the first execution of \(F_2 \), it is preempted by \(F_1 \) one time and finishes at \(t = 1.9 \) after it starts. In the second execution, \(F_2 \) is preempted one time and finishes at \(t = 3.9 \), and the laxity should be \(l_2 = \min(1 - 1.9/3, 1 - 0.9/3) = 0.3667 \). But the laxity given by the lower bound is \(l_{lower,2} = \min(1 - 0.7 - 1.2/2)/3 < 0.0333 < 0.3667 \), meaning that \(F_2 \) did not finish all the computing before its deadline, while in fact it did. The upper bound of laxity failed to represent the accurate laxity because \(F_2 \) finished its computing before the second occurrence of \(F_1 \), while the upper bound of laxity still counted in the computing time of the second occurrence of \(F_1 \).

Accurate laxity lies between the lower bound and upper bound, and can be represented by the response time of the tasks:

\[
l_{resp,i} = \min_{\pi_k} \left(1 - \frac{R_k}{T_k} \right)
\]

(4)

where \(S_k \in \{\text{succ}(S_i) \cup S_i\} \) and \(R_k \) denotes the response time of \(S_k \) in the current priority assignment system. The laxity prediction algorithm is shown as Algorithm 1.

Algorithm 1 Laxity Prediction Algorithm

Input:
Set \(S_i \) for laxity calculation

Output:
\(l_i \) as the laxity of \(S_i \) and the corresponding tail set \(S_k \)

1. \(l_i \leftarrow \infty \)
2. for all \(S_i \) in \{\text{succ}(S_i) \cup S_i\} do
3. \(R_i \leftarrow \text{CalcResponseTime}(S_i) \)
4. \(\text{laxity} \leftarrow 1 - R_i/T_i \)
5. if \(\text{laxity} < l_i \) then
6. \(l_i \leftarrow \text{laxity}, S_k \leftarrow S_i \)
7. end if
8. end for

3. OPTIMIZATION PROCEDURE

The optimal solution mainly depends on the mapping of the synchronous sets to tasks and the priority assignment. (Natale and Pappalardo, 2008) proposed a two-stage optimization search procedure to reach the minimum type LH buffers.

The task mapping procedure will use the rate monotonic (RM) scheduling algorithm to map sets into blocks and
decide the priority for each task. Every time the RM procedure begins, the algorithm will receive all the sets with no incoming links. The RM scheduling algorithm requires that the set with the highest sampling rate should have the highest priority. If there is only one set with the highest sampling rate, it will get the highest rate; if there is more than one set with the same high sampling rate, laxity prediction method will be used to decide which set should have the highest priority. As Equation 4 indicates, laxity refers to the time remaining after completing the task. Therefore, the task set with the least laxity must have the highest priority. By applying RM algorithm and laxity prediction algorithm, the priorities of the task sets can be determined, and the schedulability of the task mapping can be checked.

The first stage is to apply RTW solution to evaluate the schedulability of the system by adding an RT block, and possibly a delay, on every link. All the synchronous sets with the same rate are mapped to the same task, and standard rate monotonic fixed-priority analysis is performed on the task sets. If this solution is not schedulable, there is no other fixed-priority assignment that can make the set schedulable, and the scheduling problem on that graph has no solution. If the solution is schedulable, its buffer cost becomes an upper bound for the cost of the optimal solution.

If RTW solution is schedulable, we can test the schedulability of No Type LH mapping solution, with no type LH transaction buffers in the graph. The minimum buffer cost should be the cost of buffers in the No Type LH mapping solution. If the task mapping under this solution is schedulable, there is no room for optimization because there is no type LH buffer to remove.

If the RTW solution is schedulable but the No Type LH mapping solution is not, the search stage begins. A branch-and-bound procedure starts from the RTW solution and the No Type LH mapping solution to search for an optimized mapping solution. The breadth-first search procedure is described in (Natale and Pappalardo, 2008).

3.1 Laxity Release Optimization

As we can see from the above analysis, the laxity of one functional block indicates the schedulability of the task associated with that functional block in the system. The lower the laxity is, the more time that task has in which to finish before its deadline. As the response time calculation of laxity indicates, if one block has a laxity less than zero, that task will not be able to finish before its deadline, thus the system is not schedulable. We call such a task a Dangerous Task if the laxity of that functional block meets the condition \(l_i < \text{laxityGuard} \), \(\text{laxityGuard} \in \mathbb{R} \) and \(\text{laxityGuard} \in (0, 1) \). \(\text{laxityGuard} \) is a user-defined real number acting as a threshold value. If the laxity of one block is in the dangerous zone, we can use the Laxity Release method to increase the laxity, thus improving the schedulability of the tasks. If the worst-case computing time is fixed as an experimental parameter for the tasks, only the frequency time can be adjusted.

3.2 Calculation of Laxity Release Bound

For \(l_{upper,i} = \min S_k (1 - \sum_{j \in \mathcal{P}(S_k)} C_i) \), changing \(T_k \) will directly change the laxity. For the lower bound of laxity \(l_{lower,i} = \min S_k (1 - \sum_{j \in \mathcal{P}(S_k)} \frac{m_j C_i}{T_k}) \), considering the ceiling function \(\lceil \frac{m_j}{T_k} \rceil \), there are two kinds of laxity release methods.

Tail Release

For all the \(S_i \in \mathcal{P}(S_k) \), if \(T_k < T_i \), laxity has no relation with \(T_i \). Increasing \(T_i \) for \(S_i \in \mathcal{P}(S_k) \) will not change the laxity, so the only way to release the laxity is to increase \(T_k \).

- **Case 1**: If \(T_k \) is doubled to \(T_k' = 2T_k \) and still meets the condition \(T_k' < T_i \) for every \(S_i \in \mathcal{P}(S_k) \), then \(\sum_{j \in \mathcal{P}(S_k)} \frac{C_i}{T_k} > \sum_{j \in \mathcal{P}(S_k)} \frac{C_i}{T_k'} \), and the laxity of \(S_i \) is released.

 More generally, if \(T_k' = mT_k \), \(m \in \{2^n \} \) and still \(T_k' < T_i \) for every \(S_i \in \mathcal{P}(S_k) \), then \(\sum_{j \in \mathcal{P}(S_k)} \frac{C_i}{T_k} > \sum_{j \in \mathcal{P}(S_k)} \frac{C_i}{T_k'} \), and the laxity of \(S_i \) is released.

- **Case 2**: If \(T_k = mT_k \geq T_i \) for every \(S_i \in \mathcal{P}(S_k) \), \(m \in \{2^n \} \). Notice that \(T_k < T_i \) for all the \(S_i \in \mathcal{P}(S_k) \), in the FD situation, the only possibility is that \(T_i = m'T_k \), \(m' \in \{2^n \} \), \(m' < m \) for every \(T_i \in \mathcal{P}(S_k) \).

Internal Release

If \(T_k \geq T_i \) for all the \(S_i \in \mathcal{P}(S_k) \), then \(l_{lower,i} = \min S_k (1 - \sum_{j \in \mathcal{P}(S_k)} \frac{C_i}{T_k}) \). We can see that laxity will be released if we use the Tail Release method to increase \(T_k \). In addition to Tail Release, there is another
Algorithm 2 Tail Release Algorithm for Laxity Release

Input:
Set \(S_i \) for release, laxity safe guard value \(\text{laxityGuard} \)

Output:
\(l_i \), the laxity of \(S_i \) after laxity release

1. \(\text{laxity}, S_k \leftarrow \text{LaxityPrediction}(S_i) \)
2. while \(\text{laxity} < \text{laxityGuard} \) do
3. \(T_k \leftarrow 2T_k \)
4. \(\text{UpdateGraph}(S_k) \)
5. \(\text{laxity}, S_k \leftarrow \text{LaxityPrediction}(S_i) \)
6. end while

way to adjust the laxity. For any \(S_p \in \text{pre}(S_k) \), \(T_p \leq T_k \), increase \(T_p \) to \(T'_p = mT_p \) and see how the laxity changes.

- Case 1: \(T'_p = mT_p \leq T_k \), \(m \in \{2^0\} \), then \(f_{FD,i} = \min_k \left(1 - \sum_{s \in \text{pre}(s_k)} \frac{C_l}{T_k} + \frac{C_k}{T_p} - \frac{C_p}{mT_p} \right) > f_{FD,i}, \) and the laxity is released.
- Case 2: \(T'_p > mT_p > T_k \), \(m \in \{2^0\} \), then \(f_{FD,i} = \min_k \left(1 - \sum_{s \in \text{pre}(s_k)} \frac{T_k + T_p}{T_k} C_l - \frac{T_k + T_p}{T_k} C_p \right) = \min_k \left(1 - \sum_{s \in \text{pre}(s_k)} \frac{T_k + T_p}{T_k} C_k \right) > f_{FD,i}, \) and the laxity is released.

This method is called Internal Release. For task set \(S_k \), we define the tense \(\text{Tense}_k \leftarrow \frac{C_k}{T_k} \). Internal Release is performed by finding the most tight working task set \(S_p \) and increasing \(T_p \) to release the laxity. If there is more than one task set with the same tense, select the task set \(S_p \) with the greatest worst-case computing time and increase \(T_p \) to release the laxity. The internal release algorithm is shown as Algorithms 3 and 4.

Algorithm 3 Internal Release Algorithm for Laxity Release

Input:
Set \(S_i \) for release, laxity safe guard value \(\text{laxityGuard} \)

Output:
\(l_i \), the laxity of \(S_i \) after laxity release

1. \(\text{laxity}, S_k \leftarrow \text{LaxityPrediction}(S_i) \)
2. \(\text{pre}_{S_k} \leftarrow \{ S_j \mid \pi_j \geq S_k \} \)
3. while \(\text{laxity} < \text{laxityGuard} \) do
4. \(S_p \leftarrow \text{FindMaxComputingTimeSet}(ext{pre}_{S_k}) \)
5. \(T_p \leftarrow 2T_p \)
6. \(\text{UpdateGraph}(S_k) \)
7. \(\text{laxity}, S_k \leftarrow \text{LaxityPrediction}(S_i) \)
8. end while

If there \(\exists S_l \in \text{pre}_{S_k} \) so that \(T_k \geq T_l \), and \(\exists S_l' \in \text{pre}_{S_k} \) so that \(T_k < T'_l \), both the tail release and the internal release methods can be used to release the laxity.

3.3 Response Time of Laxity Release

In the response time calculation of laxity \(l_{\text{resp},i} = \min_k \left(1 - \frac{R_k}{T_k} \right) \), \(S_k \in \text{succ} \{ S_l \cup S_l' \} \). If \(R_k \leq T_k \), task set \(S_k \) can finish computing before its deadline. For \(R_k = \sum_{S_l \in \text{pre}(S_k)} \frac{R_k}{T_k} |C_l| + |C_k| \), the tail release method can always be applied for laxity release. We will now show how internal release can be applied to \(l_{\text{resp},i} \).

Algorithm 4 Find Most Tight Working Set

Input:
Set \(\text{pre}_S \{ S_k \} \) for search

Output:
\(S_p \) as the least period time set in \(\text{pre}_S \{ S_k \} \)

1. \(\text{min} = \infty \), collection \(SP = \emptyset \)
2. for all \(S_i \) in \(\text{pre}_S \{ S_k \} \) do
3. \(SP \leftarrow \text{FindMostTightWorkingSet}(\text{pre}_S \{ S_k \}) \)
4. end for
5. if \(\text{Count}(SP) = 1 \) then
6. \(\text{return} \ SP \)
7. else
8. \(\text{collection} \ SC = \emptyset \)
9. \(SC \leftarrow \text{FindMaxComputingTimeSet}(SP) \)
10. \(S_p \leftarrow \text{RandomPick}(SC) \)
11. \(\text{return} \ S_p \)
12. end if

Fig. 1. R-T-C relation graph
(a) \(R_2-T_1-C_1 \) relation graph
(b) \(R_2-T_1 \) relation graph

Fig. 2. Laxity Release Example

For block \(S_1 \) with \(T_1, C_1 \) and its successor \(S_2 \) with \(T_2, C_2 \), \(R_2 = \left[\frac{T_2}{C_2} \right] C_1 + C_2 \). \(C_2 \) is a constant number and the numerical value relationship between \(R_2, T_2, C_2 \) is shown in Fig. 1(a). Response time is defined as the minimum nonnegative number that fulfills the equation. As shown in Fig. 1(b), for different \(C_1 \) and \(C_2 \), \(R_2 \) tends to decrease as \(T_1 \) increases. This result can be extended to the general condition \(R_k = \sum_{S_l \in \text{pre}(S_k)} \left[\frac{T_k}{C_l} \right] C_l + |C_k| \). In general, the increase of \(T_1 \) will lead to the decrease of \(S_k \). Thus, internal release can be applied to the response time calculation of laxity.

The Laxity Release Procedure is defined as follows: in the priority assignment procedure, compute the laxity of every candidate task. If task \(S_k \) has a \(l_k \) so that \(l_k < \text{laxityGuard} \), search in the tasks with priority greater than \(S_k \) with the maximum tense and increase the frequency time of that task. Repeat this procedure until every candidate task \(S_k \) fulfills \(l_k \geq \text{laxityGuard} \), and assign priority using a root mean squares (RMS) calculation.

Here, we take the system in Fig. 2 as an example. Functional block 1 has a period time of \(T_1 = 2 \) and worst-case execution time \(C_1 = 0.4 \). For block 2 and 3, \(T_2 = 3, T_3 = 4, C_2 = 0.8, \) and \(C_3 = 1.2 \). The utilization factor is \(U = 0.4/2 + 0.8/3 + 1.2/4 = 0.767 \). By using the laxity...
prediction algorithm, we can find out the laxity of the three blocks, where \(l_1 = 0.8, l_2 = 0.6, \) and \(l_3 = 0.3 \). Then, functional block 3 needs to be optimized because \(1 - l_3 > U \). We searched in blocks with higher priority than block 3, and we found block 1 with the minimum frequency time. \(T_1 = 1 \) will increase to \(T_1 = 2 \). Thus, \(l_1 = 0.9, l_2 = 0.65, \) and \(l_3 = 0.833 \). We can see that after laxity release optimization, no laxity is less than the total utilization of the system, which means the schedulability of the system is improved.

4. EXPERIMENTAL EXAMPLES

<table>
<thead>
<tr>
<th>Utilization</th>
<th>0.5</th>
<th>0.55</th>
<th>0.6</th>
<th>0.65</th>
<th>0.7</th>
<th>0.75</th>
<th>0.8</th>
<th>0.85</th>
</tr>
</thead>
<tbody>
<tr>
<td>(l_{upper}) but</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>14</td>
<td>14</td>
<td>28</td>
<td>36</td>
<td>64</td>
</tr>
<tr>
<td>(l_{resp}) but</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>10</td>
<td>12</td>
<td>20</td>
<td>26</td>
<td>46</td>
</tr>
<tr>
<td>release but</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>10</td>
<td>12</td>
<td>20</td>
<td>26</td>
<td>40</td>
</tr>
</tbody>
</table>

Table 2. Experimental Results for \(\text{util}=0.85 \)

To evaluate the algorithms performance, we will compare the buffer cost by using different laxity prediction algorithms and the laxity release algorithm. The experimental results were performed by generating random graphs with characterized rules. As the RT buffer only exists between functional blocks with different rates, we only generate random synchronous set graphs, which means every two vertexes directly connected by one edge have two different rates. Each graph has 2 source blocks with 15 synchronous sets each. The utilization factor ranges from 0.5 to 0.85. The possible sampling rates of the graphs are the base rate \(\times 2 \), the base rate \(\times 3 \), and the base rate \(\times 5 \). Each graph set contains 12 randomly generated graphs, and the buffer optimization procedure is performed on the graphs. The type LH RT-transaction buffer cost is fixed at 2.

The parameter \(\text{laxityGuard} \) is a threshold value and can be adjusted to meet different practical needs. As laxity and system utilization factors both characterize the schedulability of the system from different points of view, we set \(\text{laxityGuard} = 1 - U \) in the experiments, with \(U = \sum_i \frac{p_i}{T_i} \), indicating the system utilization.

Table 1 shows the results of adding all the buffer costs in each graph set for different utilisations. The original laxity upper bound \(l_{upper,i} \) from Equation 1, the response time calculation \(l_{resp,i} \) algorithms, and the laxity release algorithm were used. We can see that for low CPU utilisations, all three methods generate a very low buffer cost. As the utilization grows, buffer cost grows significantly, and the algorithms proposed in this paper can generate a better result, i.e., lower buffer cost, than \(l_{upper,i} \). When the utilization reaches 0.8 and system laxity is relatively low, the laxity release methods come into effect. Table 2 shows the detailed results of the 12 test cases in the graph set with \(utilization = 0.85 \). The \(l_{resp,i} \) algorithm generates a better result than \(l_{upper,i} \), and the laxity release method can result in an even lower buffer cost.

5. CONCLUSIONS

This paper analyzed the laxity prediction and release problem in the buffer optimization procedure of Simulink multitasking models. Our research demonstrates the possibility of improving the performance of laxity prediction in order to reduce the system cost of Simulink multitask implementation. Experiments were carried out with our approach of laxity prediction based on response time, and the results showed that the performance of priority assignment is improved and buffer cost is reduced. Also, we discussed the laxity release problem in the priority assignment procedure for high utilization systems. Experiments show how the laxity prediction algorithm can find dangerous tasks and release the laxity to improve the system schedulability and reduce the system buffer cost.

REFERENCES

