Abstract: In this paper, stability conditions for distributed systems with general Integral Quadratic Constraints (IQC) on the interconnections are derived. These results take the form of coupled Linear Matrix Inequalities (LMIs), where the multipliers are shaped by the underlying IQCs. It is further shown how these results can be exploited to design distributed controllers in a way similar to the gain-scheduling controller design in Linear Parameter Varying (LPV) systems.

Keywords: Distributed Control, IQC, Controller Synthesis.

1. INTRODUCTION

Over the past few years, there has been renewed research interest in the distributed control of large scale systems; see for example, Langbort et al. [2004], Dullerud and D’Andrea [2004], Langbort et al. [2006], Ugrinovskii et al. [2000], Scorletti and Due [2001], Chen and Lall [2003]. Many of these systems are formed by interconnecting multiple homogeneous or heterogeneous subsystems. These systems typically exhibit overall complex dynamical behavior dictated by their distributed nature and the dynamical interactions between the subsystems.

In physically distributed systems, the observations are highly distributed and this has motivated the development of new research directions in control theory, namely control under communication constraints. In particular, researchers have considered control problems with non-ideal communication links such as limited bandwidth (Tatikonda [2000], Nair and Evans [2000]), delay, and packet dropout between sensors, actuator of these subsystems. See the special issues Antsaklis and Baillieul [2004], Antsaklis and Baillieul [2007]. Standard control design techniques for these systems often fail because of the high dimension of the system and the high communication and computation costs to implement centralized control algorithms. Decentralized control schemes have been deployed for large-scale applications in special cases. Some synthesis methods have also been proposed for decentralized controllers that guarantee performance, however, these decentralized controllers are generally conservative.

Recently, a distributed control theory for spatially-invariant distributed systems has been developed by Langbort et al. [2004]. It was shown that the controllers have ‘identical’ structure as the underlying subsystems. A Linear Matrix Inequality (LMI) based control synthesis algorithm for this class of interconnected systems was developed in D’Andrea and Dullerud [2003], Dullerud and D’Andrea [2004] using a multidimensional system theory. These results were further extended in Langbort et al. [2004], Langbort et al. [2006] and Di et al. [2006] to distributed system over an arbitrary graph under various connections. Specifically, the results take the form of a set of coupled linear matrix inequalities. The design variables for the LMIs are shaped by the interconnections.

The distributed control approach described above can also be derived using gain-scheduling techniques for Linear Parameter Varying (LPV) systems (Scorletti and Ghaoui [1998], Packard [1994]). This point of view will be taken in this paper. The distributed stability results follow from an application of the S-procedure developed in Yakubovich [1977], Megretski and Treil [1993], Yakubovich [1992] where the interconnections are parameterized as a family of IQCs. Furthermore, the stability conditions under perfect communication can be proved via the block S-procedure if a set of proper quadratic separators is chosen (Scherer [2001], Iwasaki and Shibata [2001]). As it is shown below, all the stability results can be interpreted from a graph separation point view (Moylan and Hill [1978], Packard [1994]) following a similar proof as in Scorletti and Ghaoui [1998]. While the sufficiency of the distributed stability results can be easily derived via a graph separation argument, the necessity part, which can be derived only for special interconnections, follows from the lossless \((D,G) \) scaling theorem for LPV uncertainties (Meinsma et al. [2000]). As mentioned in Langbort et al. [2004], these stability results can be explained in the general framework of dissipative theory (Willems [1972]). They are well connected to the integral quadratic constraints analysis methods since the interconnections are generally modeled by IQCs (Megretski and Rantzer [1997]). For stability, in the present paper, we explore this connection so that we can unify all these stability results and treat systems with more general interconnections in this framework. As for synthesis, based on a recently extended elimination lemma in Helmersson [1999], the synthesis inequalities turn out to be convex in all variables, including the scalings and controller parameters (Scherer [2001]). However, these techniques can...
only be applied under certain inertia hypothesis on the multipliers. We further point out that in Langbort et al. [2004] the synthesis condition for the ideal interconnection case \(n^K_{ij} = 3n_{ij} \) was derived with an inertia restriction on the scaling matrix. It can be shown that there exist distributed controllers to guarantee the global control performance without that inertial assumption and under milder restrictions on the dimension, namely \(n^K_{ij} = n_{ij} \) (Hui and Antsaklis [2007]).

The remainder of the paper is organized as follows. The interconnected system is introduced in Section 2, where each of the individual Linear Time Invariant (LTI) subsystems is represented in state space form, and operators are introduced to model the interconnections. The main result, the performance and stability analysis theorem for the global systems with a general IQC for the interconnections is presented in Section 3. As an application of this result, stability conditions for several interconnections are also derived. In Section 4, based on the stability results for the specific interconnections and the elimination lemma, we present results for the synthesis of distributed controller.

Notation The notation is standard. Real and negative reals are denoted by \(\mathbb{R}, \mathbb{R}_- \). A real matrix is denoted by \(M \in \mathbb{R}^{n \times m} \) where \(n \) and \(m \) are the numbers of positive, negative and zero eigenvalues of matrix \(M \). Operators are self-adjoint. A (positive semidefinite) matrix, and its transpose (complex conjugate transpose) are partitioned as \(\text{diag} \{ \cdot \} \) and \(\text{cat} \{ \cdot \} \), respectively. The transpose of matrix \(P \) is denoted as \(P^T \).

A block diagonal matrix with \(X_k, \ldots, X_l \) is denoted as \(\text{diag} \{ X_k, \ldots, X_l \} \) on the diagonal, likewise, if \(e_1, \ldots, e_L \) are elements of sets \(E_1, \ldots, E_L \), \(\text{cat} \{ e_{i_1}, \ldots, e_{i_L} \} \) will designate the elements \((e_{i_1}, \ldots, e_{i_L}) \) for all \(1 \leq k \leq l \leq L \). We will sometimes write \(\text{diag} \) and \(\text{cat} \) instead of \(\text{diag} \{ \cdot \} \) and \(\text{cat} \{ \cdot \} \), respectively.

The Euclidean norm of a vector \(x \in \mathbb{R}^n \) is denoted by \(\| x \| = (x^T x)^{1/2} \). The space of square integrable \(n \)-dimensional functions \(f : \mathbb{R} \to \mathbb{R}^n \) is denote by \(L_2^N \). This is abbreviated as \(L_2 \) when \(n \) is clear from context or not relevant. The inner product between two signals in \(L_2 \) is denoted by \(\langle \cdot, \cdot \rangle \). The Fourier transform of a \(L_2 \) function \(f \) is defined as \(\hat{f}(j\omega) \). The norm of an \(L_2 \) signal and the induced norm of an operator on \(L_2 \) is denoted by \(\| \cdot \| \), so for an operator \(F : L_2 \to L_2 \), \(\| F \| = \sup_{\| x \| \leq 1} \| Fx \| \). An operator \(A : L_2^N \to L_2^N \) is said to be contractive if \(\| A^N_{ij} x \| \leq \| x \| \) for all \(x \in L_2^N \). Lower case \(\delta \)’s always denote operators from \(L_1^N \) to \(L_2^N \). Then for \(u, v \in L_2^N \), the expression \(v = \delta u \) is defined to mean that \(u_k \) of \(u \) and \(v \) of \(v \) satisfy \(u_k = \delta v_k \). An operator \(\delta : L_2 \to L_2 \) is called self-adjoint if \(\langle u, \delta v \rangle = \langle \delta u, v \rangle \) for all \(u, v \in L_2 \). Note that all real-valued static Linear Time Varying (LTV) operators are self-adjoint.

2. PROBLEM FORMULATION

2.1 Problem Formulation

The global system consists of an assembly of \(L \) subsystems \(G_i, i = 1, \ldots, L \), connected arbitrarily. Each subsystem \(G_i \) is described by the following state-space equation:

\[
\begin{bmatrix}
\dot{x}_i(t) \\
v_i(t) \\
z_i(t)
\end{bmatrix} =
\begin{bmatrix}
A_{Ti} & A_{Ti} & B_{Ti}^d \\
A_{St} & A_{Si} & B_{Si}^d \\
C_{Tj} & C_{Sj} & D_{ij}
\end{bmatrix}
\begin{bmatrix}
x_i(t) \\
v_i(t) \\
z_i(t)
\end{bmatrix} +
\begin{bmatrix}
d_i(t)
\end{bmatrix}
\]

(2.1)

where \(x_i(t) \in \mathbb{R}^{m_i}, d_i(t) \in \mathbb{R}^p, z_i(t) \in \mathbb{R}^q, v_i(t), w_i(t) \in \mathbb{R}^{n_i} \) for all \(t \geq 0 \). In (2.1), \(d_i \) is the disturbance and \(z_i \) is the performance associated with \(G_i \), while \(v_i \) and \(w_i \) are the overall interconnection signals used by \(G_i \). For each given \(i \), \(v_i \) and \(w_i \) are further partitioned into \(v_{ij}, w_{ij} \) respectively, i.e., the \(n_{ij} \)-dimensional signal that is shared by \(G_i \) and \(G_j \). We model the interconnection via an operator \(\Delta_{ij} \), such that,

\[v_{ij} = \Delta_{ij} w_{ij}, \quad \forall i,j, 1 \leq i,j \leq L \] (2.3)

For example, a simple case would be \(v_{ij} = v_{ij} \) which is called ideal/perfect interconnection. However, we generally model the interconnection signal subspace as \(\mathcal{W}(\Delta_{ij}) \), such that

\[\mathcal{W}(\Delta_{ij}) = \left\{ v_{ij} \in \mathbb{R}_{2d}^{n_{ij}} : v_{ij} = \Delta_{ij} w_{ij} \right\} \] (2.4)

We denote \(v = \text{cat}(v_i) \), where each \(v_i \) can be further partitioned as \(v_i = \text{cat}(v_{ij}, v_{ij}) \). Note that the dimension of \(v_{ij} \) and \(v_{ij} \) are \(n_{ij}, n_i \) and \(N \) where \(n_i = \sum_{j=1}^{L} n_{ij}, N = \sum_{i=1}^{L} n_i \). The global system signals, \(x = \text{cat}(x_i, w = \text{cat}(w_i, z = \text{cat}(z_i, d = \text{cat}(d_i) \) are similarly defined.

Based on the representations of \(G_i \) in (2.1), the state space representation of the global system can be described as

\[
\begin{bmatrix}
\dot{x}(t) \\
v(t) \\
z(t)
\end{bmatrix} =
\begin{bmatrix}
A_{TT} & B_{TS} & B_{Td} \\
A_{ST} & A_{SS} & B_{Sd} \\
C_{T} & C_{S} & D_{d}
\end{bmatrix}
\begin{bmatrix}
x(t) \\
v(t) \\
z(t)
\end{bmatrix} +
\begin{bmatrix}
d(t)
\end{bmatrix}
\]

(2.5)

\[v(t) = \Delta w(t) \] (2.6)

where \(\Delta \) is a (causal) operator from \(L_2^N \) to \(L_2^N \) generated via \(\Delta_{ij} \),

\[\Delta = \text{diag} \Delta_{ij} \] (2.7)

and the permutation matrix \(P_r \) is chosen such that

\[w = \text{cat}(v_{ij}, w_{ij}) = P_r w = P_r \text{cat}(v_{ij}, w_{ij}) \] (2.8)

\[A_{TT} = \text{diag}(A_{TT}) \]. All other matrices in (2.5) are similarly defined. The signals \(w(t) \) and \(v(t) \) are \(\mathbb{R}^N \)-valued signals. The signal space for \(v \), \(v \) can be described as

\[\mathcal{W}(\Delta) = \left\{ v_{ij} \in \mathbb{R}^{2d_{ij}} : v_{ij} \right\} \in \mathbb{R}^{2d_{ij}}, v_{ij} = \Delta_{ij} w_{ij} \} \] (2.9)

From (2.5), we obtain the transfer function

\[G = \begin{bmatrix} G_{11} & G_{12} \\ G_{21} & G_{22} \end{bmatrix} \] (2.10)

which has been partitioned to conform with the vector \(v, d \). In this paper, the interconnected system is called well-posed and stable if the system (2.5) is internally stable regardless of the uncertainty of the interconnection

\[\Delta_{ij} \] defined by 2.9.
Definition 2.1. The interconnected system consisting of subsystems (2.5) and the interconnection constraints (2.9) is said to be well-posed and stable if the map \((I - \Delta PC_{11})\) has a bounded inverse on \(L_2\), for any \(\Delta\) in a prescribed uncertainty set.

Finally, we say that a system (2.5) is contractive if it is stable and \(|z| < |d|\) for all \(d \in L_2\) and all interconnection uncertainty modelled by \(\Delta ij\) in 2.9.

3. STABILITY ANALYSIS VIA IQC

The main idea here is to first use integral quadratic constraints to model the interconnection operator \(\Delta ij\). The performance under the integral quadratic constraints (IQC) for the internal signal \(v, w\) can then be cast as an unconstrained quadratic optimization problem via the S-procedure (Megretski and Rantzer [1997]). For the LTI system, the stability results admit an LMI formulation. For this purpose, we need the following definitions of IQC and of a dissipative operator.

Definition 3.1. A class of signal \(W, W \subset \{ w : w \in L_2^2 \}\) is said to satisfy the IQC defined by \(\Pi(\omega)\) if \(\sigma(w, \Pi(\omega)) \geq 0, \forall w \in W, \sigma\) is of the form

\[
\sigma(w, \Pi(\omega)) = \int_{-\infty}^{\infty} \hat{w}(j\omega)^* \Pi(\omega) \hat{w}(j\omega) d\omega
\]

\(\hat{w}(j\omega)\) is the Fourier transform of \(w\), and \(\Pi(j\omega) = \Pi^*(j\omega)\) is a matrix function referred to as the multiplier of \(\sigma\) and assumed to be bounded on the imaginary axis. In the sequel, we will refer to condition \(\sigma(w, \Pi(\omega)) \geq 0\) (3.11) as an IQC with multiplier \(\Pi(\omega)\).

Definition 3.2. Let \(H : L_2 \rightarrow L_2^e\) be an operator. \(H\) is \((X, Y, Z)\)-dissipative if there exist real matrices \(X, Y, Z\) such that

\[
\Phi = \begin{bmatrix}
X & Y & Z
\end{bmatrix}
\]

is a full rank matrix and with \(p(t) = H(q(t)), p, q \in L_2^e\)

\[
\int_{0}^{\infty} \begin{bmatrix}
0 & 1 & t
\end{bmatrix} \begin{bmatrix}
X & Y & Z
\end{bmatrix} \begin{bmatrix}
p(t) \\
q(t)
\end{bmatrix} dt \geq 0
\]

Note that, condition (3.12) can be easily represented in the frequency domain as an IQC of the form (3.11). If \(H\) is stable and time-invariant, \(\Pi(\omega)\) is restricted to be a constant matrix. We often call (3.12) an IQC in the time-domain form.

Many important interconnections used in stability analysis can be characterized by IQC’s with proper multiplier \(\Pi(\omega)\). A collection of commonly used IQC’s has been summarized in Megretski and Rantzer [1997]. Based on results on \((D, G)\)-scaling, the following linear time varying (LTV) operators of fixed block and scalar operators can be equivalently represented by IQC’s with proper constant multiplier (Iwasaki and Hara [1998]).

Lemma 3.1.

- Suppose \(\delta : L_2^0 \rightarrow L_2^0\), if the LTV operator \(\hat{\delta}\) is self-adjoint and contractive, then for any \(D \in \mathbb{R}^{m \times n}, D \geq 0\) and \(G = -G^T\), \(\delta I_n\) is \((-D, G, D)\)-dissipative.
- Suppose \(\delta : L_2^0 \rightarrow L_2^0\), if the LTV operator is contractive, then for any \(D \in \mathbb{R}^{m \times n}, D \geq 0, \delta I_n\) is \((-D, 0, D)\)-dissipative.

\[\Pi(\omega) = \begin{bmatrix}
\Pi_{11} & \Pi_{12} & \Pi_{13}\\
\Pi_{21} & \Pi_{22} & \Pi_{23}\\
\Pi_{31} & \Pi_{32} & \Pi_{33}
\end{bmatrix}\]

\(\Phi = \begin{bmatrix}
X & Y & Z
\end{bmatrix}\)

\[\begin{bmatrix}
M^T & 0 & 0 \\
0 & M & 0
\end{bmatrix}\]

Note here, we are only use the sufficient part of the S-procedure to derive the above sufficient performance conditions. From the lossless \((D, G)\) scaling theorem for linear time invariant (LTI) systems with LPV uncertainties, we know that for the contractive operators \((\hat{\delta}, \delta, \delta)\) considered in lemma 3.1, the above results are both necessary and sufficient (Meinsma et al. [2000]) with proper multipliers \(X, Y, Z\), and they are referred to as \((D, G)\)-scalings for such LTV operators. Generally speaking, the sufficient part of Proposition 1 can be easily proved via a separation of graph argument. The inner matrix in equation (3.15) can be interpreted as a hyperplane that separates the graph of the linear time invariant system and the operators that model the time-varying interconnections.
The necessary part follows the idea proposed in Shamma [1994] for the full block uncertainty LTV ∆ to construct a causal destabilizer when strict separation of the two graph is violated; the scalar case δ, δ̄ has been proved in Megretks and Treil [1993], Meinsma et al. [2000] respectively. For the contractive operator list in lemma 3.1, the above proposition is a LMI reformulation of the necessary and sufficient conditions presented in Meinsma et al. [2000] via an application of the KYP lemma to the LTI system (2.5) with scaling matrices X, Y, Z.

IQC for the interconnections We introduce the following IQC to model the global interconnection, v = ∆Pw. For each i = 1, . . . , L, let us introduce the quadratic form on \(\mathbb{R}^{n_i} \times \mathbb{R}^{n_i} \), such that

\[
P_{ij}(v_{ij}, w_{ij}) = \begin{bmatrix} v_{ij} \\ w_{ij} \end{bmatrix}^T X_{ij} \begin{bmatrix} v_{ij} \\ w_{ij} \end{bmatrix}
\]

(3.16)

The scaling matrix X_{ij} is further partitioned into four \(n_i \times n_j \) blocks as

\[
X_{ij} = \begin{bmatrix} X_{ij}^{11} & X_{ij}^{12} \\ X_{ij}^{12} & X_{ij}^{22} \end{bmatrix}
\]

(3.17)

We are now able to state our first analysis conditions. The proof of Theorem 2 follows from Proposition 1 by utilizing the diagonal structure of the global system (2.5).

Theorem 2. The interconnected system (2.5), (2.6) is well-posed, stable and contractive if there exist symmetric matrices, \(X_T^1 \in \mathbb{R}_S^{n_1 \times n_1} \), and \(X_T^i \in \mathbb{R}_S^{2n_i \times 2n_i} \), \(X_T^i > 0 \) such that

\[
M_i^T P_i M_i < 0
\]

(3.18)

for all i = 1, . . . , L, where

\[
P_i = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & A_{ij}^T & A_{ij} & P_{ij}^T \\ 0 & A_{ij} & A_{ij} & P_{ij} \\ C_{ij}^T & C_{ij} & P_{ij} & T_{ij} \end{bmatrix}
\]

(3.19)

\[
P_{ij}^{11} = \text{diag}(\delta_{ij}, \delta_{ij}, \ldots, \delta_{ij}) X_{ij}^{11}
\]

(3.20)

\[
P_{ij}^{22} = \text{diag}(\delta_{ij}, \delta_{ij}, \ldots, \delta_{ij}) X_{ij}^{22}
\]

(3.21)

\[
P_{ij}^{12} = \text{diag}(\delta_{ij}, \delta_{ij}, \ldots, \delta_{ij}) X_{ij}^{12}
\]

(3.22)

\[
P_{ij}^{21} = \text{diag}(\delta_{ij}, \delta_{ij}, \ldots, \delta_{ij}) X_{ij}^{21}
\]

(3.23)

and

\[
\sigma(P_X) = \int_0^\infty \begin{bmatrix} v \\ w \end{bmatrix}^T P_X \begin{bmatrix} v \\ w \end{bmatrix} dt = \sum_{1 \leq i, j \leq L} \int_0^\infty \begin{bmatrix} v_{ij} \\ w_{ij} \end{bmatrix}^T \begin{bmatrix} X_{ij}^{11} & X_{ij}^{12} \\ X_{ij}^{12} & X_{ij}^{22} \end{bmatrix} \begin{bmatrix} v_{ij} \\ w_{ij} \end{bmatrix} dt \geq 0
\]

(3.24)

As applications of Theorem 2, it is of interest to use the above stability results to model different interconnections.
sufficient part of the propositions that follow below. The necessary part follows from the lossless-(D, G)-scaling theorem for LTV uncertainties; the details are omitted here.

Proposition 4. The interconnected system (2.5), (2.6) is well-posed, stable and contractive for all \(\Delta_{ij} = I_n, \delta_i \leq 1 \) if and only if there exist symmetric matrices, \(X_T^i \in \mathbb{R}^{m_i \times m_i} \) and \(d_{ij} \in \mathbb{R} \) for all \(i, j = 1, \ldots, L \), such that \(X_T^i > 0, d_{ij} > 0, X_{ij}^{11} = d_{ij} I_{n_{ij}} \) and LMI (3.18) are satisfied for all \(i = 1, \ldots, L \) with \(P_{11}^i = \text{diag}(X_{ij}^{11}), P_{12}^i = \text{diag}(-X_{ji}^{11}) \) and \(P_{12}^i = 0 \).

Following similar argument, we have the following Proposition 5 below. The sufficient part can be similarly proved with proper chosen multipliers \(X_{ij} \), while the necessary part follows from the lossless-(D, G)-scaling theorem for these LTV interconnection operators (Meinsma et al. [2000]).

Proposition 5. The interconnected system (2.5), (2.6) is well-posed, stable and contractive for all LTV uncertainty \(\Delta_{ij} \), \(\| \Delta_{ij} \| \leq 1 \), if and only if there exist symmetric matrices, \(X_T^i \in \mathbb{R}^{m_i \times m_i} \) and \(X_{ij}^{11} \in \mathbb{R}^{n_{ij} \times n_{ij}} \) for all \(i, j = 1, \ldots, L \), \(d_{ij} > 0 \), \(X_{ij}^{11} = d_{ij} I_{n_{ij}} \) and the LMIs (3.18) are satisfied for all \(i = 1, \ldots, L \) with \(P_{11}^i = \text{diag}(X_{ij}^{11}), P_{12}^i = \text{diag}(-X_{ji}^{11}) \) and \(P_{12}^i = 0 \).

The necessity part of the following proposition has been proved in Langbort et al. [2004] as an extension of the standard S-procedure, and the sufficient part can be similarly derived via Theorem 2.

Proposition 6. The interconnected system (2.5), (2.6) is well-posed, stable and contractive for all LTV unitary operator \(\delta_i, 1 \leq j \leq i \leq L \) with \(\Delta_{ij} = I_{n_{ij}}, \delta_{ij} \) and \(\delta_{ji} = \delta_{ij}^{-1} \) for \(i \geq j \) if and only if there exist symmetric matrices, \(X_T^i \in \mathbb{R}^{m_i \times m_i} \) and \(X_{ij}^{11} \in \mathbb{R}^{n_{ij} \times n_{ij}} \) for all \(i, j = 1, \ldots, L \), and matrices \(X_{ij}^{12} \in \mathbb{R}^{n_{ij} \times n_{ij}} \) for all \(i \geq j \) with \(X_T^i > 0 \) and the LMIs (3.18) hold true for all \(i = 1, \ldots, L \).

Before we apply the stability analysis results to controller synthesis, the following remark is in order.

Remark 3.1. Theorem 2 unifies stability results for different interconnections which can be modeled as integral quadratic constraints. This theorem renders the performance specification based on the interconnected implicit uncertain systems to an explicit expression through S-procedure with multipliers \(X_{ij} \), which are shaped by the structure and properties of the interconnection operator \(\Delta_{ij} \). Generally speaking, Theorem 2 reflects the simple idea of topological separation of the graph generated via the LTI plant and the LTV uncertainty. Although sufficient stability conditions can be easily derived in this framework, the necessity part is challenging; it has been shown only in special cases (Langbort et al. [2004], Megretski and Treil [1993], Meinsma et al. [2000] and Shamma [1994]).

4. SYNTHESIS VIA THE ELIMINATION LEMMA

The synthesis part of this paper follows the same line of the derivation presented in Langbort et al. [2004], which is based on the extended elimination lemma (Helmersson [1999]). We want to point out that for the synthesis condition in Theorem 2, we need \(\eta_{ij}^K = 3n_{ij} \); this is enough since the inertia constraints are automatically satisfied if the associated LMIs are feasible and the multipliers are nonsingular. Note that in Langbort et al. [2004], the stricter requirement on the controllers dimension, namely \(n_{ij}^K = 3n_{ij} \), is used.

Now let us consider each of subsystem \(G_i \) with control input \(u_i \) and a measured output \(y_i \), in addition to the signals given in (2.1), such that

\[
\begin{align*}
[\dot{x}_1(t), \dot{x}_2(t), \dot{u}_1(t), \dot{u}_2(t)] & = A_{T}^i [x_1(t), x_2(t), u_1(t), u_2(t)], \\
[\dot{y}_1(t), \dot{y}_2(t)] & = C_{T}^i [x_1(t), x_2(t), u_1(t), u_2(t)] \\
\end{align*}
\]

for all \(t \geq 0 \) and \(i = 1, \ldots, L \), here \(\Delta_{ij} \) is an operator used to model the interconnection. In the rest of this paper, without loss of generality, we assume that \(D^y = 0 \) for all \(i \). Similarly to the controllers considered in the LPV literature, we are seeking controllers with similar structure as the plant: another interconnected system \(K \) with subsystems \(K_i, i = 1, \ldots, L \) given by

\[
\begin{align*}
[\dot{x}_1^K(t), \dot{x}_2^K(t), \dot{u}_1^K(t), \dot{u}_2^K(t)] & = A_{T}^K [x_1^K(t), x_2^K(t), u_1^K(t), u_2^K(t)], \\
[\dot{y}_1^K(t), \dot{y}_2^K(t)] & = C_{T}^K [x_1^K(t), x_2^K(t), u_1^K(t), u_2^K(t)] \\
\end{align*}
\]

such that the closed loop system is well-posed, stable and contractive. In addition, we require \(n_{ij}^K = 0 \) whenever \(n_{ij} = 0 \), which means if there is no interaction between \(G_i \) and \(G_j \), the controllers \(K_i \) and \(K_j \) will not communicate with each other either.

Here superscripts \(K, C \) are introduced to denote the controller signals and closed-loop signals respectively. The state variable for the subsystem \(x_i^C \) has dimension \(m_i^C = m_i + m_i^K \),

\[
x_i^C = \begin{bmatrix} x_i^K \end{bmatrix}.
\]

The interconnection signal \(w_{ij}^K, v_{ij}^K \) has dimension \(n_{ij}^C = n_{ij} + n_{ij}^K \),

\[
\begin{align*}
w_{ij}^C & = \begin{bmatrix} w_{ij}^K \end{bmatrix}, \\
v_{ij}^C & = \begin{bmatrix} v_{ij}^K \end{bmatrix}
\end{align*}
\]

We further require

\[
w_{ij}^C \leq \Delta_{ij} v_{ij}^C
\]

since the controller \(K \) and the plant \(G \) share the same interconnection operator \(\Delta_{ij} \) between each subsystem.

We are now ready to apply the analysis result to the close-loop systems.

Proposition 7. The closed-loop system is well-posed, stable and contractive if there exist symmetric matrices \((X_T^i)^C \in \mathbb{R}^{m_i^C \times m_i^C} \) and \(X_{ij}^{11} \in \mathbb{R}^{n_{ij}^C \times n_{ij}^C} \) for all \(i, j = 1, \ldots, L \), and \((X_{ij}^{12})^C \in \mathbb{R}^{n_{ij}^C \times n_{ij}^C} \) for all \(i \geq j \), with \((X_{ij}^{12})^C \) skew symmetric, such that \((X_T^i)^C > 0 \) and \((M_i^C)^T P_i^C M_i^C < 0 \)

with
(4.31)
\[M_i^C = \begin{bmatrix}
I & 0 & 0 \\
(A_i TJ)^C & (A_i TS)^C & (B_i T)^C \\
0 & I & 0 \\
(C_i T)^C & (C_i S)^C & (D_i)^C
\end{bmatrix} \]

(4.32)
\[P_i^C = \begin{bmatrix}
0 & (X_i)^C & 0 & 0 & 0 \\
0 & 0 & (Z_i)^C & (Z_i)^C & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -I
\end{bmatrix} \]

for all \(i = 1, \ldots, L \) and

\[(Z_i)^C = \text{diag}_1(X_i)^C, \quad (Z_i)^C = \text{diag}_1(Y_i)^C, \quad (Z_i)^C = \text{diag}_1(Z_i)^C \]

The following synthesis result can be derived if we use the elimination lemma Helmersson [1999] to eliminate controller parameters from the above closed-loop performance conditions.

Proposition 8. There exist distributed controllers with state representation (4.26) with \(n_i = n_i \) and interconnection \(\Delta_{ij} = I \) such that the closed-loop system conditions (4.30) are satisfied if and only if there exist symmetric matrices \((X_i)^G, (Y_i)^G \in \mathbb{R}_{S_i}^{m_i \times m_i} \) and \((Y_i)^L, (Y_i)^M \in \mathbb{R}_{S_i}^{m_i \times n_i} \) for all \(i, j = 1, \ldots, L \), and matrices \((X_i)^G, (Y_i)^G \in \mathbb{R}_{S_i}^{m_i \times n_i} \) for \(i \neq j \), with \((X_i)^G, (Y_i)^G \) skew-symmetric such that \((X_i)^G > 0, (Y_i)^G > 0 \) and (4.36), (4.37), (4.38) are satisfied, where \(\Psi^i, \Phi^i, M_i, N_i \) are defined as (4.33), (4.34), (3.19), (4.35), respectively.

\begin{align}
\Psi^i &= \ker \left[C_{T_i}^*, C_{S_i}^*, D_{y_i}^* \right] \\
\Phi^i &= \ker \left[(B_{T_i}^*)^T, (B_{S_i}^*)^T, (D_{a_i}^*)^T \right]
\end{align}

and

\[(Z_i) = \text{diag}_1(X_i) \]

\[(Z_i) = -\text{diag}_1(Y_i) \]

\[(Z_i) = \text{diag}_1(Z_i) \]

\[(Z_i) = -\text{diag}_1(Z_i) \]

\[(Z_i) = \text{diag}_1(Z_i) \]

We have derived stability conditions for distributed systems with various IQC constraints on the interconnections. Technically, the stability results follow from an application of the S-procedure and can be proved via a graph separation argument. Our stability theorem

5. CONCLUSION

In this paper, we derived stability conditions for distributed systems with various IQC constraints on the interconnections. Technically, the stability results follow from an application of the S-procedure and can be proved via a graph separation argument. Our stability theorem

579
(Theorem 2) expresses the global performance with implicit uncertainty interconnections in terms of a set of explicit conditions with design multipliers parameterized by the uncertainty. Specifically, our results generalize the stability results presented in Langbort et al. [2004]. They are applicable to systems with more general interconnections. The approach used to derive our results relies on the S-procedure and the connections to the gain-scheduling techniques in linear parameter varying systems. These connections have been made explicit.

REFERENCES

