Review of Feedforward Approaches for Nano Precision Positioning in High Speed SPM Operation

Santosh Devasia

Abstract: This article reviews developments in feedforward control for Scanning Probe Microscopes (SPMs), which are key enabling tools in nanotechnologies. Feedforward control aids in precision positioning (at the nano scale) needed to achieve the current research goal of increasing SPM’s operating speed.

1. INTRODUCTION

Precision positioning is critical in Scanning Probe Microscopes (SPMs) such as scanning tunneling microscopes (STMs) and Atomic Force Microscopes (AFMs). This article reviews the control problems and approaches in current SPMs. While both feedback and feedforward are important in achieving precision positioning, this article focuses on feedforward control techniques; feedback control is the focus of two other keynote articles in this series of invited sessions. In a recent review on nano-precision positioning, this article discusses the integration of feedforward with sensor-based feedback, as well as the image-based approach to feedforward control that does not require additional sensors other than the standard SPM-probe sensor such as the AFM-probe-deflection sensor.

1.1 AFM Operation

Precision positioning is important in each of the large family of SPMs, which measure a variety of surface properties such as chemical, mechanical, electric and magnetic properties. In the following, the article emphasizes AFM operation; the control issues are similar in other SPMs. For example, during AFM imaging, a piezoscanner (based on piezoelectric actuators) changes the position of the AFM probe (tip of an AFM-cantilever) relative to the sample surface, as shown in Fig. 1. Other possible positioning schemes include the sample being moved rather than the AFM probe and the use of separate/multiple stages for different axes.

The force between the AFM probe and the sample surface is controlled using a feedback loop when scanning the sample surface, as follows. First, the applied tip-sample force is estimated by measuring the deflection \(z_d \) of the AFM probe. Second, the measured AFM-probe deflection is used in a feedback loop to apply an input \(U_z \) that adjusts the vertical position \(z \) of the piezoscanner and maintains the AFM-probe deflection \(z_d \) at the desired value \(z_d, ref \). An AFM image of the sample is obtained, for example, by plotting (a) the vertical position \(z_s \) of the AFM-probe's tip over the sample against (b) the lateral position \(x-y \).

1.2 Need for Precision Positioning Control

Broadly, two types of positioning are needed: (i) lateral positioning in the scan axes \(x-y \); and (ii) vertical positioning along the \(z \) axis.

Lateral \(x-y \) Positioning: Lateral precision is important when manipulating/modifying a specific location on the sample surface. For example, the probe needs to move along a specified scan trajectory \(x_{ref}, y_{ref} \) (see Fig. 1) where surface alteration is desired during nanofabrication. Lateral positioning errors lead to distortions of the achieved nano-scale features. It is noted that lateral precision is not as critical during routine imaging applications because the \(x-y \) position can be measured and used to plot the images — rather than using the reference trajectories \(x_{ref}, y_{ref} \) to plot the image, which was common practice before the use of sensors to measure the lateral \(x-y \) position.

Vertical \(z \) Positioning: Vertical positioning is critical during both imaging and modification. For example, during AFM imaging, the vertical position \(z \) affects the AFM-probe deflection \(z_d \) and, thereby, affects the tip-sample force, i.e., the force between the AFM-probe’s tip and the sample surface. Ideally, if the AFM probe's position \(z_s \) precisely follows the sample's topography (i.e., the sample profile along each scan line as shown in Fig. 2), then the AFM probe deflection (and the tip-sample force) can be zero. However, in practice a small tip-sample force is needed to maintain contact between the AFM probe and the sample in the presence of vibrational noise.

Fig. 1. AFM-probe positioning using a piezoscanner in the lateral scan \(x-y \) and vertical \(z \) axes.
Nevertheless, it is important to track the sample profile, because if the probe does not follow the sample profile, then the resulting excessive tip-sample force can cause large sample deformation in soft samples (sample surface is then substantially different from the AFM probe position z_s), as well as sample modification and possibly sample damage.

Fig. 2. Precision vertical positioning allows the AFM-probe to follow the sample profile along each scan line without excessive probe deflection, and thereby, to maintain a small tip-sample force.

When imaging relatively hard samples, damage is not a significant concern and therefore, higher scan frequencies are possible [9]; however, vertical positioning to track the sample profile is still important since excessive tip-sample force can damage the AFM probe. Thus, precision positioning in the vertical axis is needed to maintain a small AFM-probe deflection z_v and thereby, to maintain a small tip-sample force during AFM operation.

Vertical positioning is also critical when modifying the surface. For example, nano-scale parts can be fabricated by using the AFM probe as an electrode to induce local-oxidation by applying a voltage between the AFM probe and the surface, e.g., [10]. The vertical position of the AFM probe with respect to the sample has a dominant effect on the applied current and the formation of the current-induced oxide [11]. Therefore, precision vertical positioning is important to avoid distortion in the size and shape of the nanofabricated parts.

1.3 Need for High-Speed SPM

High-speed SPM operation is desirable for, both, the imaging and manipulation of nanoscale phenomena.

High-Speed Imaging: SPM images will be substantially distorted if the surface property being investigated is changing rapidly in time (in comparison to SPM’s operating speed) because measurements at the initial pixel and at the final pixel of an image are acquired at different times as the SPM-probe is scanned over the sample. Therefore, there is a need to develop high-speed SPM to study, manipulate, and control of processes with fast dynamics. For example, increases in SPM’s operating speed will advance the discovery and understanding of dynamic phenomena by enabling: (a) the study of rapid melting and crystallization of polymers (e.g., [12]-[14]); (b) the investigation of fast phase transitions in ferroelectric materials (e.g., [15]) that influences domain formation, which in turn affects physical properties (e.g., piezo-electricity, electro-optical properties, and hysteresis); and (c) single-molecule vibrational and force spectroscopy to elucidate structural and electronic information (e.g., [16, 17]).

High-Speed Nanofabrication: The main advantage of SPM-based nanofabrication is that it achieves the smallest features [8]. Unfortunately, SPM-based nanofabrication suffers from throughput limitations present in all serial techniques — the tip must visit each point where something is to be done. Even with multiple probes [18, 19] such serial processes cannot compete with parallel techniques like current optical lithography, which can process an entire wafer (more precisely, one die) in one step. One solution to the low-throughput problem is to integrate the slower, top-down, SPM nanofabrication with faster, bottom-up, nanofabrication methods. For example, rather than adding all the required material in a direct write approach, STM-based chemical vapor deposition (CVD) might be used only for *seeding* or prenucleating the desired pattern, whereas the rest of the material can then be grown by selective CVD [20]. Similarly, patterned self-assembled monolayers can be fabricated with AFM-based dip-pen nanolithography, which can then be used for nucleation and growth of functional polymers [21, 22]. In this sense, the top-down SPM is only needed for generating the initial pattern, which then forms the basis for growing the nanostructure using highly-parallel, bottom-up techniques [23, 24]. High-speed SPM operation is desirable to increase the throughput of generating these initial seed patterns.

1.4 Precision Positioning is Critical to High-speed SPM

High-speed operation requires precision lateral positioning along the scan axes at higher frequencies, e.g., during nanofabrication. Moreover, as the scan frequency increases, the SPM-probe’s tip has to track the sample’s topography (i.e., sample profile in each scan line) faster for both imaging and manipulation. In either case, high-speed, precision positioning (lateral and/or vertical) is critical to high-speed operation. However, as the scan frequency is increased relative to the smallest, resonant-vibrational frequency of the piezoscanner, the vibrational modes of the piezoscanner are excited and the resulting vibrations cause positioning errors. Such positioning errors are different from those caused by vibrations transmitted to the SPM from external sources; external vibration problems can be relatively-easily addressed using vibration-isolation schemes, e.g., [25]. The positioning errors become significant at high scan frequencies; thereby, SPM-probe positioning errors limit the maximum SPM operating speed [26].

1.5 Approaches to Achieve High-Speed SPM

Two current approaches to achieve high-speed SPM operation are: (i) suppress vibration by flattening the frequency response; and (ii) increase the piezoscanner’s bandwidth by increasing its resonant-vibrational frequency as illustrated in Fig. 3.

Approach i — Feedback to Suppress Vibration: Feedback control has been an integral part of SPM development; for example, integral controllers are very effective in maintaining the desired probe-sample interaction, e.g., the desired level of tunneling current in STM or the tip-sample force in AFM. Integral controllers are particularly effective during low-speed operation; they can overcome both creep and hysteresis effects (in the piezoscanners) and lead
to precision positioning (since the vibrational dynamics is not dominant at low frequencies). In this sense, traditional proportional-integral-derivative (PID) feedback controllers or a double integral for tracking a ramp, are well suited for nanopositioning and are popular in SPM applications [26]. Recent works have aimed to robustify such existing integral controllers in SPMs [27]. Essentially, feedback increases the positioning bandwidth by flattening the frequency response of the closed-loop piezoscanner in the region that contains the desired position-trajectory’s frequency content.

The main challenge in feedback design is performance improvement while maintaining the stability of the overall system in the presence of parameter uncertainty and unmodeled high-frequency dynamics. Therefore, advanced control techniques have been applied to improve the precision and bandwidth of piezoscanners; see Ref. [5] for a review of such precision positioning approaches. In particular, starting with the early work in Ref. [28], modern feedback control techniques, e.g. [29]-[31], have enabled an increase in the operating speed of SPMs.

Feedforward vs. Other High-Speed Approaches: The use of feedforward to reduce vibrational effects, and thereby to increase the operating speed of SPMs was first demonstrated in Ref. [36]. It is noted that the use of feedforward inputs can improve the positioning performance when compared with the use of feedback alone, even in the presence of plant uncertainties. The size of acceptable uncertainties, to guarantee that performance can only get better by adding feedforward to feedback, has been quantified in [37]. Similarly, feedforward can improve the performance of high-bandwidth piezoscanners because vibrations cause positioning errors even in high-bandwidth piezoscanners. Thus, feedforward can be used in conjunction with other methods, such as feedback and design of the positioning system to increase the resonant-vibrational frequencies, to further increasing SPM’s operating speed.

2. FEEDFORWARD APPROACH

2.1 Inversion-based Feedforward

The use of feedforward control to increase SPM’s operating speed was demonstrated in [36], where the input voltage \(V \) applied to the piezoscanner was related to the output position \(P \) using Fourier transforms as

\[
P(j\omega) = G(j\omega)V(j\omega)
\]

Inverting the Vibrational Dynamics: The central idea of the inversion approach is to find the input voltage \(V_{inv} \) that when applied to the piezoscanner results in a desired position \(P = P_d \). In particular, for a desired output position \(P_d \), the piezoscanner input \(V_{inv} \) can be found by inverting the vibrational dynamics \(G \) using the approach by Bayo in [38]

\[
V_{inv}(j\omega) = G^{-1}(j\omega)P_d(j\omega).
\]

The time domain inverse input \(V_{inv} \) is then obtained using the inverse Fourier transform. If the piezoscanner dynamics is stable (i.e., \(G \) is stable), then the SPM probe can be positioned at the desired location \(P_d \) by applying this inverse input \(V_{inv} \) to the piezo-scanner.

Remark 1. Typical inverse inputs are unbounded for non-minimum phase systems, e.g., when the zeros of \(G \) (which become the poles of \(G^{-1} \)) are on the right half of the complex plane. The computation of the inverse, using the Fourier transform and its inverse Fourier transform, results in bounded inputs \(V_{inv} \) even if the system \(G \) is nonminimum phase [38]. Therefore, this approach is referred to as the stable inversion approach.
Optimal Inverse: The optimal inverse developed in [40], an extension of the inverse (Eq. 2), allows for tradeoffs between the input size and the precision-positioning requirement at different frequencies. In particular, the optimal inverse input is found by minimizing the following cost function:

\[J(u) = \int_{-\infty}^{\infty} \{V^*(j\omega)R(j\omega)V(j\omega) + E_P(j\omega)Q(j\omega)E_P(j\omega)\} \, d\omega, \]

where * denotes the complex conjugate transpose and \(E_P = P - P_d \) is the positioning error. The terms \(R(j\omega) \) and \(Q(j\omega) \) are real-valued, frequency-dependent weightings that penalize the size of the input \(V \) and the positioning error \(E_P \).

Remark 2. The optimal inverse input \(V_{opt} \) enables precise positioning \((P(j\omega) = P_d(j\omega)) \) at a frequency \(\omega \) by choosing a nonzero positioning-error weight \(Q(j\omega) > 0 \) and zero input weight \(R(j\omega) = 0 \). The other extreme in the choice of weights is when the input weight is nonzero \(R(j\omega) > 0 \) and the positioning-error weight is zero \(Q(j\omega) = 0 \). Then the cost function is minimal for not using any input at all, i.e., \(V(j\omega) = 0 \) at that particular frequency.

The optimal inverse input \(V_{opt} \) that minimizes the cost function (in Eq. 3) can be found as [40]

\[V_{opt}(j\omega) = \left[G^*(j\omega)(R(j\omega) + G^*(j\omega)Q(j\omega)G(j\omega)) \right] P_d(j\omega) \]

and the time-domain signal for the feedforward input \(V_{ff}(t) \) is then obtained through an inverse Fourier transform of \(V_{opt}(j\omega) \).

Remark 3. The optimal inverse can be used to find feedforward inputs for actuator redundant systems such as multiple-stage positioners [41].

Application to SPM: The optimal inverse was applied to an STM in [36]. Fig. 4 shows the STM image of a highly oriented pyrolytic graphite (HOPG) surface. The uniform lattice pattern of the HOPG sample is distorted significantly due to vibration-caused positioning errors in the scan trajectory. In contrast, even with a relatively-low (fourth-order) model, the distortions can be reduced by using the optimal-inversion-based feedforward input and the image captures the expected lattice pattern. Thus, Ref. [36] demonstrated that positioning errors can be reduced with the optimal inverse and that the feedforward approach can increase SPM’s operating speed.

2.2 Integration with Feedback

Feedforward controllers (which are model based) cannot correct for tracking errors due to plant uncertainties [42]. Therefore, it is necessary to use feedback in conjunction with feedforward to reduce uncertainty-caused errors in the inverse input as shown in Fig. 5. Such an integrated controller was used for piezo-based positioning, e.g., [43], and demonstrated for SPM control in Ref. [44]. Note that feedback is not the sole workhorse for positioning. Ideally, the feedforward input \(V_{ff} \) accomplishes precision positioning \(P = P_d \), and the feedback input \(V_{fb} \) would be zero. Therefore, feedback design can focus on accounting for the effects of modeling errors and external perturbations.

Fig. 5. Augmenting feedback with feedforward.

Remark 4. The addition of feedforward can improve the positioning performance when compared with the use of feedback alone, even in the presence of plant uncertainties. The size of acceptable uncertainties to enable performance improvement with the addition of feedforward has been quantified in [37].

An alternate approach is to use feedback to reduce the uncertainty in the closed-loop system \(G_{CC} \) as shown in Fig. 6. The closed-loop system \(G_{CC} \) is used to compute the feedforward input. Thus, the use of feedback can reduce the error in computing the feedforward input. Such an approach to precision positioning was demonstrated for SPM control in Refs. [45]. A simplified computational scheme for finding the feedforward input for such closed-loop piezoscanner dynamics was developed and demonstrated for SPM control in [46].

Fig. 6. Inversion-based feedforward of closed-loop system \(G_{CC} \). The feedback controller reduces the system nonlinearity and uncertainty; the feedforward is the inverse \(G_{CC}^{-1} \) of the linearized closed loop system.

2.3 Handling Nonlinearity

Integration with feedback also facilitates reduction of other effects such as creep and hysteresis. For example, in addition to vibration compensation, creep and hysteresis in the piezoscanner can be also removed by using feedforward techniques as demonstrated in Refs. [47, 48]. The challenge with such feedforward for compensating hysteresis is the modeling complexity. An alternative approach is to reduce the hysteresis effects using feedback — notch filters are used to increase the gain margin of the system and allow the use of higher-gain feedback needed to improve precision [49, 50] as shown in Fig. 7. These notch-filters
can be considered as a pseudo-inverse which flattens the frequency response, and thus, increases the gain margin; the notch filters are part of the feedback controller. Experimental results show that this notch-filter approach can lead to a marked increase in the gain margin, and can be used to design feedback controllers that significantly improve the closed loop performance in piezoelectric actuators — even at high frequencies [50]. Therefore, the inversion approach can be applied to the linearized closed-loop system to increase the SPM’s operating speed as shown in Ref. [45].

Fig. 7. Use of notch filters in feedback design. This approach can be integrated with either of the feedforward schemes in Figs. 5 or 6.

Alternatively (or additionally), charge control can be used to linearize the nonlinear hysteresis effects before applying the inversion-based approach [51]. For higher-precision SPM applications, the positioning errors due to hysteresis can be reduced further by using an iterative approach as demonstrated in Ref. [52, 53] to increase AFM’s operating speed.

2.4 Where to Apply Feedforward?

Figs. 5 and 6 represent two approaches to apply the feedforward. The latter approach, in Fig. 6, reduces the uncertainty in the model used to compute the feedforward. However, the feedforward design is coupled with the feedback design and the achievable positioning bandwidth then depends on the bandwidth of the particular feedback controller. In contrast, the feedforward shown in Fig. 5 does not share the low-gain margin problem of the feedback controller; the computation of the inverse input is decoupled from the feedback design. The drawback is the inability to reduce the modeling uncertainty; this can be alleviated with an iterative correction scheme that is discussed below.

2.5 Improving Feedforward — Iterative Approaches:

Since the positioning application is repetitive (e.g., during periodic scanning of the SPM probe), iterative methods can be used to improve the positioning performance. Therefore, iterative and adaptive control methods are well suited for SPM applications [5]. For example, uncertainty in the inversion process can be reduced using: adaptive inversion of the system model (for both schemes, Fig. 5 and Fig. 6), see e.g., [54], or learning the correct inverse input that yields perfect output tracking, i.e., iterative inversion of the system model, e.g., [55]. The application of such iterative feedforward methods to SPM control was demonstrated in [56]-[58].

3. CURRENT RESEARCH EFFORTS

Two current research efforts in (i) imaging of large soft samples and (ii) image-based control are described below.

3.1 Imaging Large Soft Samples in Liquid

Imaging of cellular features requires SPM imaging with scan dimensions in the range of 20 – 100µm [59]. For example, the imaging of cell protrusions such as lamellipodia can require scan sizes in the order of 20µm (see, e.g., Refs. [60, 61]). However, current AFM systems with such large range tend to have imaging time in the minutes. Therefore, current systems are too slow to investigate nano-scale variations in shape and volume of cellular processes with relatively-large features.

Range vs. Speed: High-bandwidth piezoscanners allow increased scan frequencies; however, they also tend to have small scan sizes, i.e., the maximum area that can be imaged is small (e.g., Refs. [9, 32, 34, 62]). For example, the high-speed (80ms per frame) AFM imaging in Ref. [34] had a relatively small scan-area 0.24µm x 0.24µm. An advantage of imaging small samples which facilitates positioning is that the sample profile variation is small and therefore, the vertical changes in SPM-probe position is small. Moreover, during small-area scans the vibrations (due to small lateral motions of the piezoscanner) are also small.

For soft samples, the tradeoff between imaging speed and imaging size is particularly relevant because of the need to maintain small tip-sample forces. While the acceptable tip-sample force depends on the imaging conditions and sample properties, the general trend is a reduction in the imaging speed with an increase in scan size [63]-[68] — as shown in Fig. 8.

Fig. 8. The tradeoff between scan range and scan frequency (imaging speed) for soft samples in liquid medium [63]-[68].

Recent efforts aim to resolve this conflict, between range and speed, by redesigning the positioner used to move the SPM probe [69, 70]. These redesigns should increase the operating speed of SPMs when imaging large soft samples. It is noted that feedforward methods can improve the performance of such redesigned SPM-probe positioners as well.

Need Feedforward for vertical control: Feedforward for vertical control differs from feedforward for lateral control because the desired vertical position over the sample surface in the vertical direction is unknown before the sample is scanned. In contrast the lateral position is known in advance. The future position is needed to compute
the Fourier transform $P_d(j\omega)$, e.g. in Eq. 4. Therefore, a
time domain implementation of the inverses was developed
in Ref. [71] for the exact inverse and applied to lateral
control for an STM in Ref. [72] using the optimal inverse.
However, even in the time domain implementation, some
pre-specified amount of preview information of the desired
position is needed for precision positioning. Again, preview
information of the vertical position is not available in the
vertical direction unless the image is scanned in the first
place.

Iterative Approach: The iterative control law uses the
measured error e_k in the SPM-probe position during one
iteration step k to update the current input from one
iteration step k to another $k + 1$, i.e., from input $V_{ff,k}$
to input $V_{ff,k+1}$, as

$$V_{ff,k+1}(\omega) = V_{ff,k}(\omega) + \rho(\omega)G^{-1}(\omega) [E_k(\omega)].$$

This approach was implemented to STM control using a
time-domain implementation of the inversion-based feed-
forward approach in Ref. [72]. The convergence of such
iterative control laws has been studied in [55, 57].

Remark 5. The exact inverse G^{-1} can be replaced with
the optimal inverse in Eq. 5.

Problem of Large Forces During First Iteration: The problem
is to avoid large tip-sample forces, e.g., during the very first step in the iteration process. At the start of the
iteration, the sample profile is unknown; therefore, it is
difficult to use the inversion method to achieve the AFM-
probe positioning over the sample profile. This can lead to
large tip-sample forces and sample damage at the very first
iteration. One approach, to avoid such sample damage, is
to use a slow scan to identify the sample profile at the start
the iteration process and then use the inversion procedure
to find the feedforward input. The problem is that this slow
scan can take a very long time to begin with and moreover,
the sample profile could change during this initial and the
images can be distorted by drift effects during slower scans.

Zoom-out/Zoom-in Approach to Reduce Forces: Information
from the previous scan line to improve the positioning
in the current scan line was developed in Ref. [73]. The
main idea is that the current scan profile is close to the
previous scan profile and therefore, the positioning can be
improved by using the input (for the previous scan line)
as a feedforward input in the current scan line. This idea is
extended in the zoom-out/zoom-in iterative approach,
which has three phases as shown in 9: (i) starting with a
small scan area, expand gradually; (ii) fixing the scan size
at the desired value, image the sample; and (iii) reduce the
scan size to a small value.

At the start, the scan size is small. Therefore, the sample-
profile variations are small; the resulting positioning errors
and the tip-sample forces are also small! The rate at
which the scan size is changed during the expansion and
reduction phases are adjusted to ensure that the variations
in the tip-sample force are small. The approach was used
to image relatively large soft samples in liquid medium in
Refs. [74, 75].

3.2 Image-based Control

Image-based becomes important in subnanometer-scale
positioning needed when imaging surfaces at the atomic
scale with a Scanning Tunneling Microscope (STM), e.g.,
when imaging a few carbon atoms in graphite, where
the spacing of the atoms is approximately 0.2nm. One
of the difficulties in STM control is that external sensors
cannot directly measure the position of an STM-probe’s
atomically sharp tip. Instead they measure the position of a
different point on the STM scanner and then infer the po-

tion of the STM-probe’s tip. Moreover, the resolution of
conventional sensors is not sufficient for feedback control of
the STM when subnanometer resolution is needed at high
speeds (at room temperature) because sensor noise tends
to increase with the scan frequency and temperature. This
lack of high-resolution measurement capabilities makes the
use of feedback control to compensate for dynamic effects
in STMs challenging.

To resolve problems with using external sensors, an image-
based approach (see Fig. 10) was developed that exploits
the extant imaging capability of the STM in [76]. This
approach, which uses image-distortions to compensate for
dynamic effects, extends previously developed methods
that have used STM-images to correct for positioning
errors at relatively low operating speeds [77]. The main
idea is to quantify the error in positioning the STM-
probe’s tip over the sample surface by using STM images
of standard calibration samples. As the calibration sample
surface is fixed, distortions in the image (due to dynamics
effects) can be used to quantify the positioning errors and
correct the input to the STM. In general samples (rather
than calibration samples), topography-feature recognition

can be used to correct dynamic effects (e.g., to correct
drift effects [78]). Thus, the ability to quantify and correct
dynamic effects is only limited by the resolution of the
built-in, tunneling-current sensor (of the STM) and not by
limitations of external position sensors. Also, because an
image-based approach exploits the extant imaging capa-
bility of the STM, its use enables an increased operating
speed without requiring additional hardware, and there-
fore, without substantially increasing equipment cost.

An advantage of the image-based approach is that it can be
automated using image-distortion-based error estimation
algorithms such as those developed in the visual-
servoing field, see, for example, [79]. Such automation
will make it easy for the end user to not only calibrate,
but also recalibrate the STM to account for variations in
the scanner dynamics caused by time-varying effects
(e.g., aging-related effects) and operating conditions (e.g.,
temperature). Automation will also allow the image-based
approach to be applied to highly parallel micro-fabricated
STM systems that are being developed for nanotechnolo-
gies. Such miniaturized arrays have higher bandwidth [33]
and increased throughput [18], but their operational speed is still limited by dynamic effects. Thus, higher-speed operation of such miniaturized parallel systems can also be enabled by exploiting the image-based approach.

ACKNOWLEDGEMENTS

This article reviews the results obtained by a number of co-workers including D. Croft, H. Perez, Q. Zou, K. K. Leung, S. Tien, and G. Clayton as mentioned also in the references. The research was funded through NSF grants CMS 0196214, CMS 0336221 and DUE 0632913 as well as NIH grant GM068103.

REFERENCES

[56] G. Schitter, R. W. Stark, and A. Stemmer. Fast contact-mode atomic force microscopy on biological specimen by model-based control. ULTRAMI-

