Structural Properties of Linear Discrete-Time Fractional-Order Systems

Maamar Bettayeb * Said Djennoune ** Said Guermah ***
Malek Ghanes ****

* Department of Electrical & Computer Engineering, University of Sharjah, United Arab Emirates, (e-mail: maamar@sharjah.ac.ae)
** Laboratoire de Conduite et Contrôle des Systèmes de Production, University Moulood Mameri of Tizi-Ouzou, Algeria, (e-mail: s_djennoune@yahoo.fr)
*** Laboratoire de Conduite et Contrôle des Systèmes de Production, University Moulood Mameri of Tizi-Ouzou, Algeria, (e-mail: saidguermah@yahoo.fr)
**** Laboratoire Equipe Commande des Systèmes, Ecole Nationale Supérieure de l’Électronique et de ses Applications, 6 Avenue du Ponceau, 95014, Cergy-Pontoise Cedex, France (e-mail: Malek.Ghanes@ensea.fr)

Abstract: In this communication, some results on the analysis of the reachability and observability of linear discrete-time fractional order systems are given. Mathematical conditions for checking the controllability and the observability of such systems are developed. Furthermore, the concepts of the controllability realization index, the observability realization index and the structure realization index are introduced.

1. INTRODUCTION

The concept of non-integer derivative and integral is increasingly used to model the behavior of real systems in various fields of science and engineering (Debnath [2003]), (Magin [2006]). These systems exhibit hereditary properties and long memory transients, which can be represented more accurately by fractional-order models. Some fundamental developments of the fractional calculus theory are given in (Oldham and Spanier [1974]), (Samko et al [1993]), (Oustaloup [1995]), (Kilbas et al [2006]).

In the particular domain of control theory, several authors have been interested by this aspect since the sixties. The first contributions, (Manabe [1961]), (Oustaloup [1983]), (Axtell and Bise [1990]), gave the generalization of classical analysis methods for fractional-order systems (transfer function definition, frequency response, pole and zero analysis, ...).

The state-space representation of fractional-order systems has been introduced in (Matignon [1994]), (Hotzel [1998]), (Raynaud and A. Zergainoh [2000]), (Hotzel [1998]), (Dorčak [2000]), (Sabatier et al [2002]), (Vinagre et al [2002]). The state-space representation has been exploited in the analysis of system performances. In fact, the solution of the state-space equation has been derived by using the Mittag-Leffler function (Mittag-Leffler [1904]). The stability of the fractional-order system has been investigated (Matignon [1996a]). A condition based on the argument principle has been established to guarantee the asymptotic stability of the fractional-order system. Further, the controllability and the observability properties have been defined and some algebraic criteria of these two properties have been derived (Matignon and d’Andréa-Novel [1996b]), (Bettayeb and Djennoune [2006]).

Linear discrete-time fractional-order systems modeled by a state space representation have been introduced in (Dzieliński and Sierociuk [2006a]), (Dzieliński and Sierociuk [2006b]). Some fundamental developments of the fractional calculus theory are given in (Oldham and Spanier [1974]), (Samko et al [1993]), (Oustaloup [1995]), (Kilbas et al [2006]). These contributions are devoted respectively to a stability condition, to the design of an observer, Kalman filter design and finally to an adaptive feedback control for discrete fractional-order systems. In (Guermah et al [2008]), some new results concerning the controllability and observability properties of linear discrete-time fractional-order systems have been derived. The objective of this work is to give some extensions of our previous results (Guermah et al [2008]) on the analysis of structural properties of the linear discrete time fractional order systems. The concept of Controllability Realization Index (CRI) already introduced for linear discrete-time systems with time-delay in state (Pen et al [2003]) is extended here to fractional order systems. Furthermore, the dual concept of Observability Realization Index (ORI) and Structural Realization Index (SRI) are proposed here. These concepts are useful in the understanding of the fractional order systems.

The rest of this paper is organized as follows: In Section 2, we recall some fundamental definitions on fractional derivatives and fractional-order systems, modeled by continuous models. Then we expose the discrete-time model derived, as defined in (Dzieliński and Sierociuk [2005]) and we introduce extra notations that reveal a new form, making it possible to take into account the past behavior of the system and to analyze the structural properties. Section 3 addresses the controllability and observability properties. The previous results developed in (Guermah et al [2008]) are recalled here. In Section 4, the concept of the Controllability Realization Index introduced for discrete-time system with time delay in state is extended to the discrete-time fractional order systems. The same concept concerning the observability is proposed. In Section 5, we present some numerical results corresponding to different cases of checking the controllability and the observability conditions for such systems.
2. LINEAR DISCRETE-TIME FRACTIONAL-ORDER SYSTEMS

There are different definitions of the fractional derivative, (Oldham and Spanier [1974]), (Samko et al 1993), (Kilbas et al [2006]). The Grünwald-Letnikov definition is the discrete approximation of the fractional order derivative is used here. The Grünwald-Letnikov fractional order derivative of a given function \(f(t) \) is given by:

\[
\frac{D^\alpha f(t)}{dt^\alpha} = \lim_{h \to 0} \frac{\sum_{j=0}^{[\alpha]} (-1)^j \binom{\alpha}{j} f(t - jh)}{h^\alpha}
\]

where the real number \(\alpha \) denotes the order of the derivative, \(\alpha \) is the initial time and \(h \) is a sampling time. The difference operator \(\Delta \) is given by:

\[
\Delta f(t) = \sum_{j=0}^{[\alpha]} (-1)^j \binom{\alpha}{j} f(t - jh)
\]

The binomial term can be obtained by the relation:

\[
\binom{\alpha}{j} = \frac{\alpha \cdot (\alpha - 1) \cdots (\alpha - j + 1)}{j!}
\]

and \([\cdot]\) takes the integer part.

Now, let us consider the traditional discrete-time state-space model of integer order, i.e., when \(\alpha \) is equal to unity:

\[
\begin{align*}
x(k+1) &= Ax(k) + Bu(k); x(0) = x_0 \quad (4a) \\
y(k) &= Cx(k) + Du(k) \quad (4b)
\end{align*}
\]

Where \(u(k) \in \mathbb{R}^p \) and \(y(k) \in \mathbb{R}^q \) are respectively the input and the output vectors, \(x(k) = [x_1(k) \; x_2(k) \; \ldots \; x_n(k)] \in \mathbb{R}^n \) is the state vector. Its initial value is denoted \(x_0 = x(0) \) and can be set equal to zero without loss of generality. \((A, B, C, D)\) are the conventional state space matrices with appropriate dimensions.

The first-order difference for \(x(k+1) \) can be defined as:

\[
\Delta^1 x(k+1) = x(k+1) - x(k)
\]

Therefore, using Equation (4a) we deduce that:

\[
\Delta^1 x(k+1) = Ax(k) + Bu(k) - x(k) = Ax(k) + Bu(k)
\]

where \(A_d = A - I_n \) and \(I_n \) is the \(n \)-dimensional identity matrix. The generalization of this integer-order difference to a non integer-order (or fractional-order) difference has been addressed in (Dzielinski and Sierociuk [2005]) where the discrete fractional-order difference operator with the initial time taken equal to zero is defined as follows:

\[
\Delta^\alpha x(k) = \frac{1}{h^\alpha} \sum_{j=0}^{k} (-1)^j \binom{\alpha}{j} x(k-j)
\]

In the sequel, the sampling time \(h \) is taken equal to 1. These results conducted to conceive the linear discrete-time fractional-order state-space model, using the equations:

\[
\begin{align*}
\Delta^\alpha x(k+1) &= A_d x(k) + B u(k); x(0) = x_0 \quad (6)
\end{align*}
\]

In this model, the differentiation order \(\alpha \) is taken the same for all the state variables \(x_i(k), \; i = 1, \ldots, n \). This is referred to as commensurate order. Besides, from Equations (5) and (6) we have:

\[
x(k+1) = A_d x(k) - \sum_{j=0}^{k+1} (-1)^j \binom{\alpha}{j} x(k-j+1) + Bu(k)
\]

The discrete-time fractional order system is represented by the following state space model:

\[
\begin{align*}
x(k+1) &= \sum_{j=0}^{k} A_j x(k-j) + Bu(k); x(0) = x_0 \quad (8a) \\
y(k) &= Cx(k) + Du(k) \quad (8b)
\end{align*}
\]

where \(A_0 = A_d - c_1 I_n \) and \(A_j = -c_j+1 I_n \) for \(j \geq 2 \) with \(c_j = (-1)j(\frac{\alpha}{j}) \), \(j = 1, 2, 3, \ldots \). This description can be extended to the case of non-commensurate fractional-order systems modeled in (Dzielinski and Sierociuk [2005]), (Dzielinski and Sierociuk [2006a]) by introducing the following vector difference operator:

\[
\Delta^T x(k+1) = A_d x(k) + Bu(k)
\]

\[
x(k+1) = \Delta^T x(k+1) + \sum_{j=1}^{k+1} A_j x(k-j+1)
\]

where:

\[
\Delta^T x(k+1) = \begin{bmatrix} \Delta^\alpha x_1(k+1) \\ \vdots \\ \Delta^\alpha x_n(k+1) \end{bmatrix}
\]

Then, in the case of non commensurate-order, the system is described by Equations (8a) and (8b) where the matrices \(A_j, j = 0, 1, 2, \ldots \) take the following expressions:

\[
A_0 = A_d - \text{diag}\{-\binom{\alpha}{1j}, i = 1, \ldots, n\}
\]

and

\[
A_j = \text{diag}\{-(-1)^j\binom{\alpha}{1j+1}, i = 1, \ldots, n\}
\]

for \(j = 1, 2, 3, \ldots \). The model described by (8) can be classified as a discrete-time system with time delay in state. Whereas, the models addressed in (Debeljkovic et al. [2002]), (Pen et al [2003]), consider a finite constant number of steps of time-delays. System (8) has a varying number of steps of time-delays, equal to \(k \), i.e., increasing along with time. Let us define matrices \(G_k \) such that:

\[
G_k = \begin{cases} I_n & \text{for } k = 0; \\ \sum_{j=0}^{k-1} A_j G_{k-1-j} & \text{for } k \geq 1 \end{cases}
\]

Theorem 1. (Guermah et al [2008]) The solution of Equation (8a) is given by:

\[
x(k) = G_k x_0 + \sum_{j=0}^{k-1} G_{k-1-j} Bu(j)
\]

We deduce that the corresponding transition matrix can be defined as:

\[
\Phi(k, j) = G_{k-j}, \quad \Phi(0, 0) = G_0 = I_n
\]

Obviously, this transition matrix does not enjoy the semi group property as for the integer order case. In fact:

\[
\Phi(k_2, k_0) \neq \Phi(k_2, k_1)\Phi(k_1, k_0); \; \forall \; k_2 > k_1 > k_0 \geq 0
\]

3. REACHABILITY AND OBSERVABILITY

In (Guermah et al [2008]), fundamental results concerning the reachability and observability of fractional-order systems modeled by Equations (8a) and (8b) are derived. In this section, we recall some of them. We begin by the reachability property.
Definition 1. The linear discrete-time fractional-order system modeled by Equations (8a) and (8b) is reachable if it is possible to find a control sequence such that an arbitrary state can be reached from the origin in finite time.

For the linear discrete-time fractional-order system modeled by Equations (8a) and (8b) we define:

1. The controllability matrix:
 \[C_k = \begin{bmatrix} G_0 B & G_1 B & G_2 B & \cdots & G_{k-1} B \end{bmatrix} \]
 (11)

2. The reachability Gramian:
 \[W_r(0, k) = \sum_{j=0}^{k-1} G_j B^T G_j^T \]
 (12)

It is easy to show that \(W_r(0, k) = C_k C_k^T \).

Theorem 2. (Guermah et al. [2008]) The linear discrete-time fractional-order system modeled by Equation (9) is reachable if and only if there exists a finite time \(K \) such that: \(\text{rank}(C_k) = n \) or, equivalently, \(\text{rank}(W_r(0, K)) = n \). Furthermore, an input sequence \(U_K = [u^T(K-1), u^T(K-2), \ldots, u^T(0)]^T \) that transfers \(x_0 = 0 \) at \(k = 0 \) to \(x_f \) at \(k = K \) is given by:

\[U_K = C_k^T W_r^{-1}(0, K)x_f \]
(13)

The same analysis is extended to the observability property.

Definition 2. The linear discrete-time fractional-order system modeled by Equations (8a) and (8b) is observable at time \(k = 0 \) if and only if there exists some \(K > 0 \) such that the state \(x_0 \) at time \(k = 0 \) can be uniquely determined from the knowledge of \(u_k, y_k, k \in [0, K] \).

For the linear discrete-time fractional-order system modeled by Equations (8a) and (8b) we define:

1. The observability matrix:
 \[O_k = \begin{bmatrix} C G_0 & C G_1 & C G_2 & \cdots & C G_{k-1} \end{bmatrix} \]
 (14)

2. The observability Gramian:
 \[W_o(0, k) = \sum_{j=0}^{k-1} G_j^T C G_j \]
 (15)

It is easy to show that \(W_o(0, k) = C_k^T O_k \).

Theorem 3. (Guermah et al. [2008]) The linear discrete-time fractional-order system modeled by Equations (8a) and (8b) is observable if and only if there exists a finite time \(K \) such that: \(\text{rank}(O_K) = n \) or, equivalently, \(\text{rank}(W_o(0, K)) = n \). Furthermore, the initial state \(x_0 \) at \(k = 0 \) is given by:

\[x_0 = W_o^{-1}(0, K)O_k^T Y_K - M_K U_K \]
(16)

with

\[U_K = [u^T(0), u^T(1), \ldots, u^T(K-1)]^T \]

\[Y_K = [y^T(0), y^T(1), \ldots, y^T(K-1)]^T \]

and

\[M_K = \begin{bmatrix} C G_0 B & 0 & \cdots & 0 & 0 \\
C G_1 B & C G_0 B & \cdots & 0 & 0 \\
C G_2 B & C G_1 B & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
C G_{k-2} B & C G_{k-3} B & \cdots & C G_0 B & 0 \end{bmatrix} \]
(17)

Remark 1. In the case of an integer order, it is well known that the rank of the controllability matrix \(C_k \) and the rank of the observability matrix \(O_k \) cannot increase for \(k \geq n \). This in virtue of the Cayley-Hamilton theorem. In contrast, in the case of the linear discrete-time non-commensurate fractional-order system (8), the rank of \(C_k \) and \(O_k \) can increase for values of \(k \geq n \). In other words, a final state \(x_f \) which can not be reached in \(n \) steps can be reached in a number of steps greater than \(n \). Furthermore, \(n \) samples of input/output data may be not sufficient to detect an initial state \(x_0 \). This initial state may be observable from a number of input/output samples greater than \(n \). This is due to the nature of the elements \(G_k \) which build the controllability matrix \(C_k \) and the observability matrix \(O_k \) and which exhibit the particularity of being time-varying, in the sense that they are composed of a number of terms \(A_j \) that grows with \(k \).

Remark 2. In the particular case of commensurate fractional-order systems, the matrices \(G_k \) defined by Equation (9) are polynomials in \(A_0 \), that is:

\[G_k = A_0^k + \beta_1 A_0^{k-1} + \beta_2 A_0^{k-2} + \cdots + \beta_k A_0 \]

where the real coefficients \(\beta_k \) are calculated from the coefficients \(c_j \). In particular, we have:

\[G_n = A_0^n + \beta_1 A_0^{n-1} + \beta_2 A_0^{n-2} + \cdots + \beta_n A_0 \]

From the Cayley-Hamilton theorem, \(A_0^n \) is a linear combination of \(A_0^{n-1}, A_0^{n-2}, \ldots, A_0 \). We deduce that \(G_{k+n} \), for all \(k \geq 0 \) are linearly dependent on \(G_{n-1}, G_{n-2}, \ldots, I_n \). This implies the linear discrete-time fractional-order system modeled by Equations (8a) and (8b) in the commensurate case is reachable if and only if \(\text{rank}(C_n) = n \) and is observable if and only if \(\text{rank}(O_n) = n \). The controllability and the observability criteria of commensurate fractional-order systems are then similar to those of the integer-order case.

4. REACHABILITY AND OBSERVABILITY REALIZATION INDICES

In [Pen et al. [2003]], the concept of controllability (or reachability) index is introduced. This concept is used for determining the controllability of discrete-time linear systems with time-delay in state. We extend these concepts to fractional order systems.

Definition 3. (Reachability Realization Index, RRI) For System (8), if there exists a positive integer \(K_r \) such that for any initial state \(x(0) = x_0 \), and any final state \(x_f \), there exists an input sequence \([u(K_r - 1), u(K_r - 2), \ldots, u(0)] \) such that \(x(K_r) = x_f \), then we call \(K_r \) the Reachability Realization Index (RRI) for System (8).

If System (8) is reachable, \(K_r \) is not unique since if \(\text{rank}(C_{K_r}) = n \) then \(\text{rank}(C_k) = n \) for all \(k \geq K_r \). The

15264
smallest K_o is called the Minimal Observability Realization Index and is denoted by MinORI.

Definition 5. (Structure Realization Index, SRI)

The Structure Realization Index (SRI) is the integer r defined as $r = \max(K_r, K_o)$. The Minimal Structure Realization Index (MinSRI) is the integer r_{min} defined as $r_{\text{min}} = \max(\text{MinRRI}, \text{MinORI})$.

In the case of integer order systems with p inputs and q outputs described by its transfer function matrix $\mathcal{H}(z) \in \mathbb{C}^{q 	imes p}$, the n-dimensional realization (A, B, C, D) where $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times p}$, $C \in \mathbb{R}^{q \times n}$ and $D \in \mathbb{R}^{q \times p}$ is minimal if it is controllable and observable. Let the expansion of $\mathcal{H}(z)$ in Laurent series be

$$\mathcal{H}(z) = H_0 + H_1 z^{-1} + H_2 z^{-2} + \ldots$$

where the terms H_i, $i = 0, 1, 2, \ldots$ are the Markov parameters determined by the formulas:

$$H_0 = \lim_{z \to \infty} \mathcal{H}(z)$$
$$H_1 = \lim_{z \to \infty} z(\mathcal{H}(z) - H_0)$$
$$H_2 = \lim_{z \to \infty} z^2(\mathcal{H}(z) - H_0 - H_1 z^{-1})$$

and so forth.

It is well known (Antsaklis and Michel [1997]) that (A, B, C, D) is a realization of $\mathcal{H}(z)$ if and only if

$$H_0 = D$$
$$H_i = CA^{i-1}B; \; i \geq 1$$

This realization of dimension n is minimal if the rank of the Hankel matrix

$$M_{\mathcal{H}}(n, n) = \begin{bmatrix}
H_1 & H_2 & \ldots & H_n \\
H_2 & H_3 & \ldots & H_{n+1} \\
\vdots & \vdots & \ddots & \vdots \\
H_n & H_{n+1} & \ldots & H_{2n-1}
\end{bmatrix}
$$

is equal to n. Let us return now to the case of the fractional-order system (8) which exhibits an infinite structure since the state space representation is composed by infinite number of state matrices namely A_j, $j \geq 0$ reflecting the long memory characteristic. The corresponding transfer function matrix $\mathcal{H}(z)$ is called infinite dimensional transfer function matrix. It is easy to show that the pulse response matrix of (8) due to a pulse input applied at time $j = 0$ is given by

$$\mathbf{H}(0) = D$$

and

$$\mathbf{H}(k) = CG_{k-1}B; \; k \geq 1$$

Then the transfer function matrix $\mathcal{H}(z)$ of (8) possesses the following expansion:

$$\mathcal{H}(z) = H_0 + H_1 z^{-1} + \ldots + H_k z^{-k} + \ldots$$

with

$$H_0 = D$$
$$H_k = CG_{k-1}B; \; k \geq 1$$

We shall call a finite dimensional structure state space representation if the number of the state matrices is finite. This representation is given by

$$x(k + 1) = \sum_{j=0}^{k} A_j x(k - j) + Bu(k); k \leq N$$

and

$$y(k) = Cx(k) + Du(k)$$

N represents the structure dimension. This representation considers only a finite (short) memory.

Definition 6. A state space representation with finite dimensional structure $(A_0, A_1, A_2, \ldots, A_N, B, C, D)$ where $A_j \in \mathbb{R}^{n \times n}$, $j = 0, 1, 2, \ldots, N$, $B \in \mathbb{R}^{n \times p}$, $C \in \mathbb{R}^{q \times n}$ and $D \in \mathbb{R}^{q \times p}$ is a finite dimensional structure realization of a given infinite dimensional transfer function matrix $\mathcal{H}(z) \in \mathbb{C}^{q \times p}$ if the terms of the Laurent series of $\mathcal{H}(z)$ satisfies the following relations

$$H_0 = D$$
$$H_k = CG_{k-1}B; \; k = 1, 2, \ldots, N$$

and if for any given output vector with desired fixed value y_f, there exists an initial condition x_0 of $x(k)$ and an input sequence $u(n-1), u(n-2), \ldots, u(0)$ which produce this output in a finite time interval $[0, N]$. This finite dimensional structure realization is minimal if it is reachable and observable.

From the above, we can state the following result.

Theorem 4. Consider the fractional system (8) with the infinite dimensional structure $[(A_j; j \geq 0), B, C, D]$. Assume that (8) is both reachable and observable and let r_{min} be its Minimal Structure Realization Index, then the finite dimensional state space representation $[(A_0, A_1, \ldots, A_N), B, C, D]$ given by Equations (21a), (21b) and (21c) where $N = r_{\text{min}} - 2$ is a finite dimensional minimal structure realization of (8).

5. Numerical Example

Let us consider the following discrete-time non-commensurate fractional-order of dimension $n = 4$, with:

$$\alpha_1 = 0.2 \; ; \alpha_2 = 0.3 \; \alpha_3 = 0.6 \; \alpha_4 = 0.7$$

and

$$A_d = \begin{bmatrix}
-0.2 & 0 & 0 & 0 \\
0 & -0.3 & 0 & 0 \\
0 & 0 & -0.6 & 0 \\
0 & 0 & 0 & -0.7
\end{bmatrix} ; B = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}$$

$$C = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix} ; D = 0$$

For the controllability analysis, we have achieved the determination of $\text{rank}(C_k)$ over a set of $N = 20$ samples. We have found that $\text{rank}(C_k) = 4$ at $K = 5$. We chose the final state equal to:

$$x_f = [1 \; -0.5 \; 3 \; 0.3]$$

The input sequence that permitted to transfer the state from the origin $x_0 = [0 \; 0 \; 0 \; 0]$ to x_f according to Equation (13) is:

$$U_k = [1 \; -0.5 \; 3 \; 0.3]$$

The objective has been reached with a sequence of input data greater than the system order, which comes up to be a particularity of discrete non-commensurate fractional-order systems. This is not verified in the case of discrete commensurate fractional-order systems for which the full rank, n, if it can be reached, cannot be reached beyond a number of steps $K = n$. For the observability analysis, we have achieved the determination of $\text{rank}(Q_k)$ over a set of $N = 20$ samples. We have found that $\text{rank}(Q_k) = 4$ at $K = 5$. We chose the following input and output sequences over 5 steps:

$$\begin{align*}
\bar{U}_K &= [1 \; 0.5 \; 3 \; 0.3] \\
\bar{Y}_K &= [1 \; 0.5 \; 3 \; 0.3]
\end{align*}$$
According to Equation (16), the initial state \(x_0 \) is detected:
\[
x_0 = [1 \hspace{1cm} -0.5 \hspace{1cm} 3 \hspace{1cm} 0.3]
\]
From the above, it follows that the reachability realization index and the observability index are \(RRI = K = 5 \) and \(ORI = K = 5 \), respectively. Hence, the minimal structure realization index is \(\tau_{\text{min}} = K = 5 \). Then the finite dimensional structure representation \((A_j, A_1, A_2, A_3, B, C, D)\) is a minimal structure realization of the fractional order system. In fact, we can reach any final state position from the origin and we can detect any initial state from a given output/input data by considering only this minimal structure realization instead of the infinite dimensional structure \((A_j; j \geq 0, B, C, D)\).

6. CONCLUSION

In this paper some new results concerning the analysis of reachability and observability of discrete-time fractional order system are given. The concepts of reachability, observability and structure realization indices are introduced. The preliminary results developed here can be useful for further investigation concerning control and filtering of fractional order discrete-time systems.

REFERENCES

