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Abstract: In the restructuring process of power systems, bidding strategies are the main routes for making 
more profit and therefore, there has been a wide research on them. In this paper, we consider a bidding 
model that is based on the residual demand (RD). Our approach concerns the identification of RD and 
learning how to bid according to it. When the agents bid in a market, some knowledge about the 
environment is obtained, which may be more influential than the obtained sheer profit. So, the agent 
should learn when and how to pay attention to the environment. The agent's expertise is measured in each 
part of the residual demand curve and, then its shortcomings are identified. Our agent makes a balance 
between the profit making and knowledge increasing processes. The designed agent’s mind consists of 
many subagents, each learning its own task and also cooperating with others simultaneously. In this regard, 
a credit assignment system is implemented among the agents and the cooperative learning trends are 
applied. Finally, through a few case studies our agent design method is verified. 

 

1. INTRODUCTION 

Bidding strategies are the main factors in determining an 
agent's profit. A fare amount of research works can be found 
in the literature on this subject, that some are reviewed in the 
following. There has been three main categories in these 
researches: optimization-based approaches, equilibrium-
based approaches and learning-based approaches. 

In the first category, all the market environment and other 
agents are modeled stochastically or deterministically and the 
optimal bidding strategy of the agent is determined 
accordingly. For instance, in (Conejo et al, 2002) the 
probability density function of the next day hourly market 
clearing price (MCP) is estimated and a self-scheduling profit 
maximization process is obtained.  In (Peng and Tomsovic, 
2003) a Cournot model is applied to the bidding strategy 
problem. The bidding process together with the congestion 
management is modeled as a three level optimization 
problem. The congestion effect is explicitly formulated in the 
profit function. In (Ni and Luh, 2002) the bidding risk and 
self-scheduling requirements are managed by an optimization 
algorithm. In (Gross and Finaly, 1996), an analytical 
approach for building the optimal bidding strategy in the 
electricity market was developed under the assumption of a 
perfectly competitive market. In (Ma et al, 2005), a 
probability distribution for market clearing price (MCP) and 
parameters of other competitor’s supply functions is 
obtained. Defining the profit as a function of MCP and other 
competitor’s parameters, it is then optimized randomly with 
network constraints. The contribution of this article is not 
only the optimization of the profit function but also to 
minimize estimation error by entering variance term of the 
estimated profit function into the target function. The 

calculations are done using GA numerical methods. In the 
similar method introduced in (Rodriguez and Anders, 2004) 
predicted error distribution is identified in addition to price 
prediction, setting bidding steps according to how to treat the 
risk. There are mainly two approaches, risk aversion and risk 
taking. Risk taking agent prefers more profit with low 
probability to low profit with high probability and risk averse 
vice versa. In result, the maximum profit is made by risk 
aversion algorithm but risk taking agent unintentionally 
makes more profit when residual demand is low.  

In the second category of researches, the rivals are not 
modeled into the environment but they are considered in 
determining game theoretic equilibrium of the market. In 
(Ferrero et al 1997) and (Park et al, 2001), game theory is 
applied to find the Nash equilibrium of the bidding game, 
corresponding to the optimal biddings of the participants.  

Finally in the third category of bidding strategies, learning 
algorithms are applied to the bidding strategy problem. Due 
to the complexity of electricity markets, learning agents have 
been claimed to be more effective. In (Richter Jr et al 1999) 
and (Richter Jr and Sheble, 1998), evolutionary and artificial 
intelligence techniques such as genetic algorithms, genetic 
programming and finite state automata are used to develop 
adaptive and evolutionary bidding strategies. The drawback 
of the method is that all agents are adapting their strategies at 
each GA generation which makes it difficult to identify if a 
particular strategy is an appropriate one. In (Song et al, 
2000), bidding strategy is represented as a multiple stage 
probabilistic decision-making problem and optimized by a 
Markov decision process. This model considers load and rival 
behavior uncertainty but ignores transmission constraints. In 
(Rahimi-Kian et al, 2005) a combination of fuzzy logic and 
learning is applied and the agent learns how to propose the 
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result of its fuzzy inference system considering the 
uncertainty in the quantity or price. 

In (Rahimiyan and Mashhadi, 2007) two models are 
compared, one based on production optimization as a 
function of estimated MCP, and the other based on a Q-
Learning which learns optimized production according to the 
past MCPs. It is concluded that the learning agent's behavior 
is more acceptable.  

Although some methods estimate MCPs or rivals' behaviors, 
many researches focus on estimating residual demand (RD). 
RD is the effective demand observed by an agent, which can 
be calculated by subtracting opponents' bids from the market 
demand in economics. Knowing RD, it is shown in (Candiles 
et al, 2002) that an iterative algorithm leads to optimal 
bidding policy of a generating company. In (Mateo et al, 
2000) genetic algorithm (GA) is applied to find the optimal 
strategy where each gene corresponds to one step of bidding. 
The fitness function is defined as the expected profit due to 
the other competitor’s behavior, where a linearized 
probabilistic residual demand function is used to model other 
agents’ uncertain behavior. 

There have been some econometric approaches towards 
identification of residual demand function. In (Baker and 
Bresnahan, 1988), it is shown that residual demand function 
seen by an agent can be represented by following equation: 

P*=RD (Q*, Y, C, C; A, B, Ω) where RD is the residual 
demand function, P* and Q* are price and quantity of the 
agent, Y is exogenous demand variables, C is the union of all 
specific factor vector of industry-wide factor price, C is the 
vector of prices of all agents that are not in the industry-wide 
factor prices but may depend on some specification of the 
agents, A represents all demand parameters of all agents such 
as own-price demand elasticity as well as cross-price 
elasticity, B is all cost parameters and Ω is the union of all 
the behavior vector variable determining ∂Qi/∂Qj. The 
parameters A, B, Ω should be estimated on economic data 

but because of the limitation of accessibility to these data, 
their joint impact on the slope of residual demand curve is 
estimated in their work.  

Although (Baker and Bresnahan, 1988) has simplified the 
identification process of residual demand function, it doesn’t 
suit electricity markets according to their complexity, time 
varying properties and more limited access to market’s data. 

In this research, a combination of optimization and learning 
methods based on an estimation of RD is employed to find 
the optimal bidding strategy. In section two, the design of 
agent’s mind will be explained. In section three, simulation 
environment is described and finally some concluding 
remarks are expressed. 

2. AGENT DESIGN 

As our agent has separate tasks which make up its bidding 
behaviors, we designed the brain of our agent as a society of 
autonomous agents working cooperatively in order to 
enhance the bidding outcomes. The structure of the agent’s 
mind is shown in the Fig. 1. The rewards and punishments 
received from the environment (the obtained profits) are 
distributed among them based on their duties, conditions and 
actions. In the figure below, the blue lines stand for regular 
data transfer, the red lines for reward/punishments 
assignment of the inner agents and the gray dash dot lines for 
the global policy information flow. 

In the agent’s mind, there are several agents learning 
together. Following, each sub-agent inside the agent's brain 
and its implementation algorithm will be explained. 

2.1 Identification section: 
In this section, the residual demand function is identified by a 
locally linear neuro-fuzzy (LLNF) model. According to 
residual demand function’s shape in real electricity markets 
(e.g. Wolak, 2002), we considered the following equations as 
the model of equations (1). 

 
Fig.1 shows the structure of the designed agent’s mind: In the agent mind there exists several agents learning together. 
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  (1) 

where price (p) is calculated according to production quantity 
(q). M is the maximum generation capacity. Parameters ai 
and bi are determined using Least Square methods based on 
the data history of the agent {pi, qi, ti}, i.e. observing the 
price pi while producing qi at the time ti. For better 
identification, greater weights are applied to the most recent 
data using a forget factor of γ=0.95. 

2.2 Attention control section 
Fatemi and Ahmadabadi (Fatemi and Ahmadabadi, 2007) 
proposed a general method for attention control in concept 
learning. In the first phase of their research, attentions are 
modeled as actions and attention control is learned with 
reinforcement learning. They conclude that their agent learns 
how to control its attention in order to recognize concepts. 
Although in our case, we are not looking for concepts in the 
market, we use their learning method of attention control. 

With a close cooperation with the identification section, 
attention control section determines which parts of residual 
demand curve need attention. Our criterion for determining 
these parts is the scarcity of recent visits. Therefore Effective 
Number of Visits (ENV) is calculated by accumulating the 
forgetting factors around a specific point using a moving 
window of width 20. Using the history data {pi, qi, ti}, ENV 
of a specific q at the time t is calculated via equation 2: 

∑
+−∈

−=
]10,10[

),(
qqq

tt

i

itqENV γ   (2) 

where γ is the forget factor (0.95). Finally at each time, t, the 
q which minimizes ENV(q,t) is selected as the block’s 
output. Hence the question “where to look in the 
environment” is answered. Learning “when to look” is done 
in decision making section. 

2.3 Expertise evaluation section 
This section determines how expert the agent is in different 
parts of the residual demand function. Ahmadabadi and 
Asadpour (Ahmadabadi and Asadpour, 2002) proposed some 
indexes for determining of the Area Of Expertise (AOE). The 
basic use of AOE is in cooperative learning where an agent 
wants to select the most expert agent in specific states to 
learn from. They proposed “when rewards and punishments 
are approximately equal, use of Abs and Nrm indexes for 
determining AOE provide better results.” We used Abs 
index, the sum of absolute values of rewards and 
punishments, in this research as it seems to be more efficient. 
Implementing this idea, a moving average window is applied 

on absolute values of estimation errors at each time. The 
errors are weighted according to the forget factor and as the 
little sum of absolute errors may be due to a lack of data, the 
moving average is normalized by number of points available 
in each region. To summarize, Expertness in the demand 
function around production level (q) at the time (t) can be 
calculated as equation 3: 
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where ei is the measured error at the time ti when qi , pi were 
observed. It shall be noted that ei is calculated based on the 
model made at the time ti-1 not at the time t. 

According to the fact that expertness is a relative concept, the 
absolute values of Expertness(q,t) are not useful. Therefore 
they are converted a 3-valued Expertness Level (EL). At each 
time, we sort the values of expertness and assign the first 
(20+b)% EL of 1, the next (30+2b)% EL of 0 and the rest 
will be given EL of -1, where b is the bias learned by this 
section. (Learning the bias is explained in Credit Assignment 
section.) 

2.3 Optimization section 
In this section, a numerical optimization method searches for 
the optimum (profit maximizing) production quantity(q) 
according to the estimated residual demand function provided 
by equation 1.The profit maximization can be formulated as: 
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where п is the profit, p is calculated using equation 1, C(q) is 
the cost function of the agent and Maxq is its maximum 
generation capacity. 

2.4 Decision making section 
This section determines the amount of planned production; 
this amount can be either the amount suggested by the 
optimizer section (Qo) or by the attention control section 
(Qa). The decision making depends on the expertise level 
(EL) in the residual demand function around Qo and Qa. The 
learning process of decision making is explained in the Credit 
Assignment section. 

2.5 Step making 
As the biding to the market should be proposed in an 
ascending step format, in this section making bidding steps 
for achieving the optimum production amount should be 
learned. Before each bidding, the goal production quantity 
(q*) is determined by decision making section and the 
estimated price (p*) according to q*, can be calculated from 
equation 1. Three step-making methods are considered. The 
best choice among these three shall be learned by this section.  
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In the first step-making method, we intend to intersect the 
residual demand by our bid steps vertically at the point (q*, 
p*). So quantities bellow q* are bided with the price of 
marginal cost and quantities more than that are bided with the 
market price cap. In the second method the residual demand 
function is aimed to be intersected horizontally. So quantities 
bellow 0.9q* are bided with the price of marginal cost, 
quantities more than 1.1q* are bided with the market price 
cap and the quantities between 0.9q* and 1.1q* are bided at 
the price of p*. Finally in the third method, we tend to 
intersect the residual demand curve diagonally. Therefore we 
bid quantities less than 0.9q* at the price of 0.9p* and 
quantities more than 1.1q* at the price of 1.1p*. The space 
between these two points is filled with equivalently 
distributed small steps. 

2.6 Credit assignment 
This section distributes the attained reward/punishment 
among the subagents. The identification section, independent 
of all made decision, is punished by its estimation error in 
price according to the resulted production of the market. In 
other words, identification section updates its estimates of ais 
and bis in equation 1 according to the new observations. 

Similarly, the expertise evaluation section receives the 
absolute errors of identification section (ei) and changes its 
output according to equation 3. It also receives a fixed 
amount of punishment/reward in the cases that it determines 
the agent as an expert one while it isn’t expert or vice versa in 
order to amend its bias. The reward/punishment is determined 
based on table 1. To learn this bias (b), a Q-Learning has 
been implemented which has five states for different values 
of b: {0, 5, 10, 15, and 20} and three actions which are 
{increasing, decreasing or making no change in b}. The Q 
values are updated by traditional method: 

rewardasQasQ ×+−×← αα )1(),(),(   (5) 

where reward is determined by table 1 and α is considered 0.1 
in our implementation. 

The reward signal for the decision making part is the 
difference of the previous stage profit (п) and the average 
profit of the previous 10 stages (Aveп). The correct choice 
between the inputs is learned via a Q-learning where the 
states are a combination of the history of the actions and the 
expertness level (EL) in the area of inputs: 

Table1: Expertness Evaluation section’s reward 
determination 

Reward (+) 

Punishment (-) 

Expertness Level (EL) 

1 0 -1 

R
el

at
iv

e 
Er

ro
r <10 1 0 -1 

>10 & <30 0 1 0 

>30 -1 0 1 

)}2(),1(,,{
)()1(*),(),(

21 inputELinputELaas
AveasQasQ

tt −−=
Π−Π+−← αα   (6) 

α is considered 0.1 in our implementation and input1 and 
input2 are outputs of optimization block and attention control 
block respectively. 

The step-making part would be punished according to 
absolute difference between production amount (qproduced) and 
decision making ordered amount (qordered). This section 
employs Q-Learning too, but has only one state. The actions 
are the three choices for step-making. Hence the update 
method would be: 

{ }3,2,1,)1(*)()( ∈−×+−← aqqaQaQ orderedproducedαα   (7) 

α is considered 0.1 again. 

2.7 Gaming strategy section 
In this section the main policy of the bidding would be 
determined. According to current researches in multi agent 
reinforcement learning (Shoham et al, 2003), acting passively 
in a game does not always assure good result. In electricity 
market words, an agent must not always believe in itself as a 
price taker. Therefore after reaching a relative stability the 
agent should change its strategy according to its influence on 
the market (its effect on its residual demand curve). The 
effects of these strategies are shown in figure1 using gray 
dash dot lines. 

Although this part is left as the future works of this research, 
it should be noted that for the first 100 rounds of the market, 
the strategy is to explore its environment in the simulation. 
Some further explanations are provided in the second 
simulation. 

3. SIMULATION AND RESULTS 

In order to verify our approach, an agent with the mentioned 
descriptions is made and its performance is simulated in a 
multi agent environment. There are some other agents as the 
rivals in this environment and their descriptions are 
summarized in table 2. For simplicity no network constraint 
were considered in our simulation. For all players, the cost 
function is C(q)=0.05q2+10q+100, the generation capacity is 
400 and market’s price cap is 100. The market is a uniform 
price one. 

In the first experiment, our designed agent competes against 
SWR agent. The market demand in each round is between 
450 and 500 randomly. The results illustrated in fig. 2 are 
surprising. As it can be observed, our agent’s profit is less 
than SWR’s; but the point is that SWR is bidding for a fixed 
amount of production which is not necessarily the optimum 
one. Our agent's strategy is to bid for little production so that 
market price reaches its cap and our agents profit is 
maximized. However when the market price reaches its cap, 
SWR is capturing the majority of the market production and 
therefore gains more profit than ours. Comparison between 
our agent and other mentioned agents’ profits against SWR 
would indicate the performance of our strategy.  
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Table2: Different agents of the multi agent environment 
Agent Name Category Description 

SWR (Satisfied 
Without Risk) 

Non-
Learning 

This agent would bid in order to cover its costs for sure.  It divides its capacity into n (in 
our case n=4) sections and in each section it bids 10% over its marginal cost.  

SLR  (Satisfied Low 
Risk) 

Non-
Learning 

This agent is similar to the previous agent but it randomly bids something more than 
10% over its marginal cost. 

OPL (Overcharging 
Percentage Learning) Learning This agent is similar to the SLR agents, but it also tries to learn overcharging percentage 

with a simple Q-learning. 

PL (Price Learning) Learning 

This agent adaptively estimates average market price (P*) and finds its optimal 
production (Q*) in this price using a simple profit maximization. Then it proposes 
market price cap for the amounts higher than Q* they bid and its marginal cost for the 
lower quantities. In this way it would produce its managed power (Q*) in the market. 

 

Simulations show that our agents, PL, OPL and SLR in 
competition with SWR obtain about 3700, 1700, 2000 and 
1500 units of profit respectively. It’s also deduced that in a 
uniform price market, bidding low prices in order to capture 
the production is a good strategy as other agents would 
probably bid in a way that market clearing price becomes 
high. 

In the second experiment our agent is competing OPL and 
demand level is lower than each producer’s capacity. In this 
condition the residual demand curve would shift towards the 
vertical axis and the price would never reach to its market 
price cap. In this experiment our agent changed its bidding 
algorithm according to the information of the first experiment 
and after 100 rounds of bidding; from rounds 101 to 500 
lowered its bids to encourage its competitor to bid higher. 
During these rounds our agent's production increased because 
of lower proposed prices, but since its competitor is not 
intelligent enough to increase the market price considerably; 
our agent’s profit is not acceptable although it is higher than 
its opponent. 

During the rounds 500 to 1000 our agent bids in a way that 
the market clearing price is increased. Although the 
competitor benefits more from this price shift, our agent’s 
profit is also increased. Again it is seen that having more 

 
Fig2: Competition between the designed agent and SWL, 

Top to bottom: Profit, production, market price diagram 

profit than the rival is not the goal, the goal is to maximize 
our profit regardless of others. In this experiment a task of 
gaming strategy design section exists in the rounds 100 to 
500. 

In the last experiment, all agents are put in a random demand 
environment. Although having the most profit is not the 
criteria of our agent’s performance, it can be seen that our 
agent profit is the highest among other competitors. (Fig. 4) 

4. CONCLUSION 

In this paper a mind structure for a bidding agent in 
electricity markets was designed. The agent’s brain consisted 
of cooperative sub-agents that learned together for better 
competency of the main agent. Each subagent had a specific 
task and a credit assignment unit was designed in order to 
distribute the rewards/punishment among the learning 
subagents. The agent's expected profit maximization together 
with identification of the key market factors (such as the 
residual demand) and its expertise (by learning in the market) 
could help it perform better than others in the market. This 
combination of different criteria for performance evaluation 
of an agent in the market environment was the main 
contribution of this paper compared to the single criterion 
evaluation in other research works. 

 
Fig. 3: Competition between our agent and OPL. Top to 

bottom: Profit, production, market price diagram 
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Fig.4: Competition among all agents. Top to bottom: Profit, 

production, market price diagram Data 1: SWL (blue), 
data2: OPL (green), data3: SLR (red), data 4: PL (Cyan), 
data5: our designed agent (Magenta) 

 

By analyzing the simulation results, firstly we observed that 
in the competition of two agents, the one who attains more 
profit than the other does not necessarily have better 
strategies. Our best strategy against a specific agent is the one 
that maximizes our profit regardless of the fact that our profit 
is more or less than the competitor's profit. Secondly, we 
deduced that the successfulness of changing the gaming 
strategies depends strongly on the opponent's intelligence. 
Competing with an intelligent rival is usually more beneficial 
in electricity markets. 

A multi-agent environment was simulated for evaluating the 
designed agent's performance. The simulation results showed 
a promising performance of our agent compared to other 
agents with different designs. 
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