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Abstract: This paper presents a novel class of self-organizing sensing agents that form a swarm and learn
the static spatial process of interest through noisy measurements from neighbors for various global goals.
The spatial phenomenon of interest is modeled by a Gaussian process. Each sensing agent maintains its
own prediction of the Gaussian process based on measurements from neighbors. A set of biologically
inspired navigation strategies are derived by exploiting the predictive posterior statistics. A unified way
to prescribe a global goal for the group of agents so that a high-level behavior builds on a set of low-
level simple behavior modules. As a result, collective mobility of agents emerges from a specified global
goal. The proposed cooperatively learning control consists of motion coordination based on the recursive
estimation of an unknown field of interest with measurement noise. The convergence properties of the
proposed coordination algorithm for different situations and global goals are investigated by a simulation
study.
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1. INTRODUCTION

In recent years, significant enhancements have been made in the
areas of sensor networks and mobile sensing agents. Emerg-
ing technologies have been reported on coordination of mo-
bile sensing agents (Cortes et al. (2004, 2005); Jadbabie et al.
(2003); Tanner et al. (2003); Olfati-Saber (2006); Ren and
Beard (2005, 2004); Choi et al. (2007); Martinez (2007); Cortes
(2007); Graham and Cortes (2007)). Mobile sensing agents
form an ad-hoc wireless communication network in which each
agent usually operates under a short communication range,
with limited memory and computational power. Mobile sensing
agents are often spatially distributed in an uncertain surveil-
lance environment. Among challenging problems of distributed
coordination of mobile sensing agents, gradient climbing over
an unknown field of interest has attracted much attention of
control engineers. This has numerous applications including
homeland security, toxic-chemical plume tracing and environ-
mental monitoring. For instance, the most common approach
to toxic-chemical plume tracing has been biologically inspired
chemotaxis (Adler (1966); Dhariwal et al. (2004)), in which a
mobile sensing agent is driven according to a local gradient of
the chemical plume concentration. The cooperative network of
agents that performs adaptive gradient climbing in a distributed

environment was presented in Őgren et al. (2004); Leonardo
and Robinson (2003). The centralized network can adapt its
configuration in response to the sensed environment in order
to optimize its gradient climb.

Many of the mobility of the mobile agents can be designed
for a certain field of interest. Recently distributed interpolation

⋆ This work was partially supported by Intramural Research Grants Program
(IRGP) from Michigan State University.

schemes for field estimation by mobile sensor networks are
developed by Martinez (2007). Gradient climbing swarming
sensing agents for tracing the maximum of a noisy field via ra-
dial basis function learning are proposed and their convergence
properties are analyzed by Choi et al. (2007). Our motivation is
to design the mobility of sensing agents for various tasks by in-
telligently dealing with uncertainty in the prediction of a spatial
phenomenon based on online measurements, and exploiting the
predictive posterior statistics.

In our approach, the physical phenomenon in the surveillance
region will be specified by a spatial Gaussian process. A Gaus-
sian process (or Kriging in geostatistics) has been widely used
as a nonlinear regression technique to estimate and predict
geostatistical data (Cressie (1986, 1991); Gibbs and MacKay;
MacKay (1998); Rasmussen and Williams (2006)). It is often
used to predict spatial processes in meteorology, ecological
systems, and environmental transport phenomena. A Gaussian
process with an infinite number of random variables in a com-
pact region R naturally generalizes a Gaussian distribution
with finite number of random variables. A Gaussian process
z(s) ∼ GP(µ(s),K(s, s′)), s, s′ ∈ R is specified by its mean
functionµ(·) and a symmetric positive definite covariance func-
tion K(·, ·). For Gaussian processes, the joint distribution of
random variables in the subset A ⊂ R is Gaussian. This prop-
erty enables us to predict physical values, such as temperature
and plume concentration, at any spatial point with predicted un-
certainty level. Recently near-optimal static sensor placements
with a mutual information criterion in Gaussian processes were
proposed by Guestrin et al. (2005). Distributed Kriged Kalman
filter for spatial estimation based on mobile sensor networks
are developed by Cortes (2007). Asymptotic optimality of mul-
ticenter Voronoi configurations for random field estimation is
reported by Graham and Cortes (2007).
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The contribution of this paper is to develop a novel class of
self-organizing multi-agent systems that sample measurements
in spatially distributed manner to perform a given task by ex-
ploiting predictive posterior statistics from the recursive esti-
mation of a physical process. The collective mobility of sensing
agents are designed for various performance criterions depend-
ing on the tasks for the sensing agents. Inspired by biological
behaviors such as “tracing food”, “predator avoidance”, and
“environment exploration”, a set of navigation strategies for
swarming agents is precisely prescribed based on the recur-
sively estimated Gaussian process. After identifying a set of
strategies, we present a unified way to describe a global goal
for agents. Hence a high-level behavior builds on a set of low-
level simple behavior modules. The convergence properties of
the proposed coordination algorithm for various situations and
global goals are investigated by a simulation study. In this way,
the distributed and scalable control law can be derived without
knowledge of the field of interest in the environment. This
is different from other coordination algorithms. The proposed
cooperatively learning control consists of motion coordination
based on the recursive estimation of parameters in a Gaussian
process. Our strategy of cooperative learning control can be
applied to a large class of coordination algorithms for mobile
agents to deal with the field of interest that requires to be
recursively estimated.

This paper is organized as follows. In Section 2, we briefly
review the mobile sensing network model, notations related to a
graph, and artificial potentials to form a swarming behavior. A
recursive learning algorithm for estimating parameters and pre-
dicting a Gaussian process is presented in Section 3. Section 4
explains the biologically inspired navigation and a unified way
to prescribe the global goal for agents. In Section 5, the result-
ing cooperatively learning control is described. In Section 6,
we numerically test agents with different global performance
criterions with respect to several configurations and different
Gaussian processes.

2. PRELIMINARIES

In this section, we explain notations and concepts that will arise
throughout the paper.

2.1 Mobile Sensing Agent Network

First, we explain the mobile sensing network and sensor models
used in this paper. Let Ns be the number of sensing agents
distributed over the surveillance region R ⊂ R

2. Assume that
R is a compact set. The identity of each agent is indexed
by I := {1, 2, · · · , Ns}. Let qi(t) ∈ R be the location
of the i-th sensing agent at time t ∈ Z+ and let q :=
col(q1, q2, · · · , qNs

) ∈ R
2Ns be the configuration of the swarm

system. The discrete time, high-level dynamics of agent i is
modeled by

{

qi(t+ 1) = qi(t) + ǫpi(t),
pi(t+ 1) = pi(t) + ǫui(t)

, (1)

where qi, pi, ui ∈ R
2 are, respectively, the position, the ve-

locity, and the input of the mobile agent and ǫ is the iteration
step size (or sampling time). We assume that the measurement
y(qi(t), t) of sensor i includes the scalar value of the Gaussian
process z(qi(t), t) and sensor noise w(t), at its position qi(t)
and some measurement time t,

y(qi(t), t) := z(qi(t), t) + w(t). (2)

2.2 A Graph

The group behavior of mobile sensing agents and their com-
plicated interactions with neighbors are best treated by a graph

with edges. Let G(q) := (I, E(q)) be a communication graph
such that an edge (i, j) ∈ E(q) if and only if agent i can
communicate with agent j 6= i. We assume that each agent can
communicate with its neighboring agents within a limited trans-
mission range given by a radius of r. Therefore, (i, j) ∈ E(q)
if and only if ‖qi(t) − qj(t)‖ ≤ r. We define the neighborhood

of agent i with a configuration of q by N(i, q) := {j : (i, j) ∈
E(q), i ∈ I}. The adjacency matrixA := [aij ] of an undirected
graph G is a symmetric matrix such that aij = k3 > 0 if
vertex i and vertex j are neighbors and aij = 0 otherwise,
where k3 is a positive scalar. The scalar graph Laplacian L =
[lij ] ∈ R

Ns×Ns is a matrix defined as L := D(A) − A, where
D(A) is a diagonal matrix whose diagonal entries are row

sums of A, i.e., D(A) := diag(
∑Ns

j=1 aij). The 2-dimensional

graph Laplacian is defined as L̂ := L ⊗ I2, where ⊗ is the
Kronecker product. A quadratic disagreement function (Olfati-

Saber (2006)) can be obtained via the Laplacian L̂:

ΨG(p) := pT L̂p =
1

2

∑

(i,j)∈E(q)

aij‖pj − pi‖
2, (3)

where p := col(p1, p2, · · · , pNs
) ∈ R

2Ns .

2.3 A Swarming Behavior

In order for agents to sample measurements of a scalar field
at spatially distributed locations simultaneously, a group of
mobile agents will be coordinated by a flocking algorithm
(Olfati-Saber (2006); Tanner et al. (2003); Choi et al. (2007)).
We use attractive and repulsive smooth potentials similar to
those used in Tanner et al. (2003); Olfati-Saber (2006); Choi
et al. (2007) to generate a swarming behavior. To enforce a
group of agents to satisfy a set of algebraic constraints ‖qi −
qj‖ = d for all j ∈ N (i, q), we introduce a collective potential

U1(q) :=
∑

i

∑

j 6=i

Uij(‖qi − qj‖
2) =

∑

i

∑

j 6=i

Uij(rij), (4)

where rij := ‖qi − qj‖2. Uij in (4) is defined by

Uij(rij) :=
1

2

(

log(α+ rij) +
α+ d2

α+ rij

)

, if rij < d2
0, (5)

otherwise (i.e., rij ≥ d2
0), it is defined according to the gradient

of the potential, which will be described shortly. Here α, d ∈
R+ and d < d0. The gradient of the potential w.r.t. qi for agent i
is given by

∇U1(qi) :=
∂U1(q)

∂q̃i

∣

∣

∣

q̃i=qi

=
∑

j 6=i

∂Uij(r)

∂r

∣

∣

∣

r=rij

(qi − qj)

=







∑

j 6=i

(rij−d2)(qi−qj)
(α+rij)2

if rij < d2
0

∑

j 6=i ρ
(√

rij−d0

|d1−d0|

)

‖d2

0
−d2‖

(α+d2

0
)2

(qi − qj) otherwise,

(6)

where ρ : R+ → [0, 1] is the bump function

ρ(z) :=







1, z ∈ [0, h);
1
2

[

1 + cos
(

π
(z−h)
(1−h)

)]

, z ∈ [h, 1];

0, otherwise,

that smoothly varies from 1 to 0 as the scalar input increases.
In equations (4), (5), and (6), α was introduced to prevent
the reaction force from diverging at rij = ‖qi − qj‖2 = 0.
This potential yields a reaction force that is attracting when
the agents are too far and repelling when a pair of two agents
are too close. It has an equilibrium point at a distance of d.
We also introduce a potential U2 to model the environment.
U2 enforces each agent to stay inside the closed and connected
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surveillance region R and prevents collisions with obstacles in
R. We construct U2 such that it is radially unbounded in q, i.e.,

U2(q) → ∞ as ‖q‖ → ∞. (7)

Define the total artificial potential by

U(q) := k1U1(q) + k2U2(q), (8)

where k1 > 0 and k2 > 0 are weighting factors.

3. LEARNING AGENTS FOR GAUSSIAN PROCESSES

In this section, we introduce a recursive learning algorithm
for each mobile sensing agent to estimate the Gaussian pro-
cess with a nonzero mean z(s, t) := µ(s) + ς(s, t) ∼
GP(µ(s),K(s, t; s′, t′)) where s(t), s′(t′) ∈ R and t, t′ ∈ Z+.
Sensors sample noisy measurements of the process z(s, t), s ∈
R,

y(s, t) = z(s, t) + w(t), (9)

where the sensor noise is Gaussian white noise w ∼ N (0, σ2
w).

The mean field µ(·) is a linear function of an unknown param-
eter vector θ:

µ(ν) :=

m
∑

j=1

φj(ν)θj = φT (ν)θ, (10)

where φT (ν) and θ are respectively by

φT (ν) := [ φ1(ν) φ2(ν) · · · φm(ν) ] ,

θ := [ θ1 θ2 · · · θm ]
T
.

φj(ν) are smooth Gaussian kernels given by

φj(s) :=
1

Z
exp

(

−‖s− νc
j‖

2

σ2
µ

)

, (11)

where σµ is the width of the Gaussian basis and Z is a normal-

izing constant. νc
j for j ∈ {1, · · · ,m} are uniformly distributed

in the surveillance region R. The zero mean Gaussian process
ς(s, t) is given by ς(s, t) ∼ GP(0,K(s, t; s′, t′)) with a covari-
ance matrix K(si, ti; sj, tj) := κ(si, sj)δ(ti,tj), where δ(·,·) is

the Kronecker delta and

κ(si, sj) :=
1

Zκ

exp

(

−‖si − sj‖2

σ2
κ

)

. (12)

This type of covariance functions with time and space indices
can be found in Cressie and Wikle (2002); Cortes (2007). We
also specify a prior over θ by: θ ∼ N (θ0,Σθ(0)). Suppose
that at iteration time t ∈ T := {0, 1, 2, · · · }, agent i can collect

observations Y (t) := [y(s1(t), t), · · · , y(sn(t), t)]T taken at
the n sites {s1(t), · · · , sn(t)} by itself and its n− 1 number of
neighbors, then we have:

Y (t) = Φ(t)θ + v(t) ∈ R
n, (13)

where Φ(t) := [φ(s1(t)), · · · , φ(sn(t))]T , rankΦ(t) = n 1 and
v(t) ∼ N (0,Σv(t)). We assume that agent i can compute the
covariance function by

Σv(t) := [κ(si, sj)] + diag(σ2
w1, · · · , σ

2
wn) ∈ R

n×n, (14)

where σ2
wj are bounded and are due to the sum of sensor noise

and communication noise between agent i and neighboring
agents.

The standard unbiased minimum mean square error (MMSE)
estimation (Kay (1993)) can be derived in a recursive fashion.

Starting from θ̂(0) = θ0 and Σθ̃(0) := Σθ(0), we have:

1 There exists a measure zero s ∈ Rn that makes rankΦ(t) < n.

Kf (t) = Σθ̃(t− 1)ΦT (t)
[

Φ(t)Σθ̃(t− 1)ΦT (t) + Σv(t)
]−1

,

θ̂(t) = θ̂(t− 1) +Kf (t)
[

Y (t) − Φ(t)θ̂(t− 1)
]

,

Σθ̃(t) = [Im −Kf (t)Φ(t)] Σθ̃(t− 1),
(15)

where θ̃(t) := θ̂(t) − θ and Σθ̃(t) := E

[

θ̃(t)θ̃T (t)
]

denote

the estimation error vector and the error covariance matrix
respectively. Im, 0m ∈ R

n×n are the identity and zero matrices
respectively. For a fixed θ, we have the following :

Σz(t) := Cov(z(s, t), z(s, t)|θ) = κ(s, s),

ΣY (t) := Cov(Y (t), Y (t)|θ) = Σv(t),

ΣY z(t) = ΣT
zY (t) := Cov(Y (t), z(s, t)|θ) = ψ(s),

(16)

where Cov(x, y) := E(x − Ex)(y − Ey)T and ψ(s) :=

[κ(si, s)] ∈ R
n. We also have θ|Y≤t ∼ N (θ̂(t),Σθ̃(t)),

where Y≤t := {Y (t), · · · , Y (1)}. The posterior predictive
distribution of z(s, t) conditioned on Y≤t can be obtained by
marginalizing p(z(s, t)|θ, Y≤t) over p(θ|Y≤t):

z(s, t|t) := z(s, t) |Y≤t ∼ N
(

ẑ(s, t|t), σ2(s, t|t)
)

, (17)

where ẑ(s, t|t) := E{z(s, t|t)} is:

ẑ(s, t|t) := φT (s)θ̂(t) + ΣzY (t)Σ−1
Y (t)

(

Y (t) − Φ(t)θ̂(t)
)

,

= φT (s)θ̂(t) + ψT (s)Σ−1
v (t)

(

Y (t) − Φ(t)θ̂(t)
)

,

and σ2(s, t|t) is given by

σ2(s, t|t) := Σz(t) − ΣzY (t)Σ−1
Y (t)ΣT

zY (t)

+ (φT (s) − ΣzY Σ−1
Y Φ(t))Σθ̃(t)(φ

T (s) − ΣzY Σ−1
Y Φ(t))T

= κ(s, s) − ψT (s)Σ−1
v (t)ψ(s)

+ [φT (s) − ψT (s)Σ−1
v Φ(t)]Σθ̃(t)[φ

T (s) − ψT (s)Σ−1
v Φ(t)]T .

The last term is due to using the MMSE estimate θ̂(t) as
compared to applying a simple kriging or a prediction of the
Gaussian process for a known θ. This formulation is a popular
way to embed a finite number of deterministic kernels to rep-
resent a mean trend (See Wikle and Cressie (1999); Blight and
Ott (1975); Cressie and Wikle (2002); Rasmussen and Williams
(2006); Cortes (2007)). This algorithm combines parametric
and nonparametric estimations, which is robust w.r.t. possible
mismatches in the selected radial basis functions that param-
eterize the mean trend. In the following section, navigation
strategies based on the spatial prediction and the estimated
uncertainty in (17) are presented.

4. NAVIGATION STRATEGIES

The collective mobility of the group of sensing agents shall
be designed according to an appropriate performance criterion
based on current estimation of the Gaussian process in (17).
To rapidly trace a plume source, swarming sensing agents can
climb the gradient of the estimated plume field (see Choi et al.
(2007)). For estimation of Gaussian processes, sensors can be
placed at the highest entropy location of the Gaussian process,
which will give us the maximal information gain after sensing
at the location (see Cressie (1991)). For instance, swarming
mobile agents can sample more measurements at places where
the estimation error variance is large. Guestrin et al. (2005)
proposed to place static sensors sequentially according to the
mutual information criteria for Gaussian processes.

4.1 Biologically Inspired Navigation

Depending on the tasks for the sensing agents, the collective
mobility of sensing agents is designed to maximize the spec-
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Table 1. A list of common goals and their perfor-
mance related smooth objective functions.

Goals Smooth objective functions

Avoidance (Negative prediction) β0 = −ẑ(s, t|t)
Tracing (Prediction) β1 = ẑ(s, t|t)

Exploration (Variance) β2 = σ2(s, t|t)
Exploration (Entropy) β3 = H(z(s, t|t))

ified performance criterion. We propose a set of useful, bio-
logically inspired navigation modes (tracing, avoidance, and
exploration): (i) for tracing, the agents can climb the gradient
of the estimated field:
d

dt
qi(t) = ∇s(ẑ(s, t|t))

∣

∣

s=qi(t)

= φ′
T
(qi(t))θ̂(t)

+ ψ′T (qi(t))Σ
−1
v (t)(Y (t) − Φ(t)θ̂(t)) : Tracing;

(18)

where φ′T (qi) := ∇sφ(s)|s=qi
, ψ′T (qi) := ∇sψ(s)|s=qi

∈
R

2×m, (ii) for avoidance, we also have:

d

dt
qi(t) = −∇s(ẑ(s, t|t))

∣

∣

s=qi(t)
: Avoidance; (19)

(iii) for exploration, the agents can climb the gradient of the
estimated variance
d

dt
qi(t) = ∇s(σ

2(s, t|t))
∣

∣

s=qi(t)

= −2ψ′T (qi)Σ
−1
v (t)ψ(qi) + 2[φ′

T
(qi) − ψ′T (qi)Σ

−1
v Φ(t)]

Σθ̃(t)[φ
T (qi) − ψT (qi)Σ

−1
v Φ(t)]T :

Exploration (variance);
(20)

or differential entropy of the Gaussian process:

d

dt
qi(t) = ∇sH(z(s, t|t))

∣

∣

s=qi(t)

= ∇s

(

1

2
ln(2πeσ2(s, t|t))

)
∣

∣

∣

∣

s=qi(t)

=
∇s(σ

2(s, t|t))
∣

∣

s=qi(t)

2σ2(qi(t), t|t)
: Exploration (entropy).

(21)

By using (20) and (21), we expect the variance and the en-
tropy of the Gaussian process in the surveillance region R to
decrease.

Notice that prediction in (17) and gradients in (18), (19), (20)
and (21) are smooth functions of a location s, which ensures the
existence of extreme values over a compact set. Complicated
protocols can be designed, for instance, when an agent obtains
an estimate within a specified error tolerance, it can make
a decision to locate the maximum of the estimated field of
interest (Choi et al. (2008)). In Table 1, a list of common goals
and their performance related smooth objective functions are
summarized.

4.2 The Parameterization of a Global Goal

The optimal balance between exploitation and exploration is
commonly observed in biological searchers (Grünbaum (1998);
Vergassola et al. (2007)) as well as in learning theory. The
balance can be achieved as the convex combination of different
objective functions. For instance, a global objective function
can be parameterized in the following way:

Ji(Λ(t); s, t) :=

∑3
k=1 λik(t)βik(s, t)
∑3

k=1 λik(t)
, for all i ∈ I, (22)

where βi1(s, t) := ẑi(s, t|t), βi2(s, t) := σ2
i (s, t|t) and

βi3(s, t) := 0.1H(zi(s, t|t)) are specifically chosen for the
later simulation study. The global objective function is a func-
tion of each agent’s navigation strategy Λ(t) := [λik(t)] ∈

R
|I|×3
+ that sets the individual weights on all possible objective

functions (typical ones are shown in Table 1).

5. COOPERATIVELY LEARNING CONTROL

Each of the mobile agents receives measurements from neigh-
bors, then updates its estimation of the Gaussian process in R
via the recursive algorithm presented in (15) and an update in
(17). Subsequently, based on the update of a gradient of an
objective function in (22), the control for its coordination will
be decided. The update of Gaussian process of agent i at its
position qi(t) is given by:

Kfi(t) =Σ
θ̃i

(t − 1)ΦT
i (t)

[

Φi(t)Σθ̃i
(t − 1)ΦT

i (t) + Σvi(t)
]

−1

,

θ̂i(t) =θ̂i(t − 1) + Kfi(t)
[

Yi(t) − Φi(t)θ̂i(t − 1)
]

,

Σ
θ̃i

(t) =
[

Im − Kfi(t)Φi(t)
]

Σ
θ̃i

(t − 1),

(23)

where Yi(t) is the collection of collaboratively measured data
at iteration time t. Based on the gradient of the performance
function ∇Ji(·; ·, ·) in (22) updated by (23), a distributed con-
trol for agent i is decided by

ui(t) :=

{

−∇U(qi(t)) − kdipi(t)

+
∑

j∈N(i,q(t))

aij(q(t))(pj(t) − pi(t)) + k4∇Ji(Λ(t); qi(t), t)

}

,

(24)

where k4 ∈ R+ is a gain for the gradient of a global objective
function and kdi ∈ R+ is a gain for the velocity feedback. The
first term in (24) is the gradient of (8) which attracts agents
while avoiding collisions among them. Also it restricts the
movements of agents inside R. Appropriate artificial potentials
can be added to U(qi) for agents to avoid obstacles in R.
The third term in (24) is an effort for agent i to match its
velocity with those of neighbors. This term is also called a
“velocity consensus” and serves as a damping force among
agents. Incorporating the closed-loop discrete time model in (1)
along with the proposed control in (24) gives

qi(t+ 1) = qi(t) + ǫpi(t)

pi(t+ 1) = pi(t) + ǫ
{

−∇U(qi(t)) − kdipi(t)

−∇ΨG(pi(t)) + k4∇Ji(Λ(t); qi(t), t)
}

,

(25)

where the iteration step or the sampling time ǫ is sufficiently
small so that the trajectories of states may be approximated
by the associated ODE (see more details in Kushner and Yin
(1997)). If we consider pi in (25) as an input to the single
integrator dynamics, we can use the projection algorithm to
ensure that the states remain inside a compact set.

6. SIMULATION RESULTS

To demonstrate our learning agents, we applied the control
(24) to a stationary Gaussian process under various global
goals generated by (22). The estimate of the unknown density
was updated once per iteration. Nine agents were launched
with the equilibrium distance d = 0.8. For the simulation
study, we used σκ = 0.8 and Zκ = 2 for the width and
the normalization constant of the covariance function in (14).
The recursive estimation in (23) starts with θ0 = 0. Hereafter
plots contain updated parameters of agent 1 only along with
trajectories of all agents.
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Fig. 1. The plot of σ2(s, t|t) updated by agent 1 (blue-lowest,
red-highest). Variance driven exploration with the sensor
noise σw = 0.5.

Fig. 2. The plot ofH(z(s, t|t)). Entropy driven exploration with
the sensor noise σw = 0.5.

6.1 Exploration

Group exploration or surveillance can be performed by having
large weights on either βi2(·, ·) or βi3(·, ·) in (22). We have
used the gradient that achieves the maximum norm of the
gradient for objective functions evaluated around the location
of each agent. Fig. 1 shows σ2(s, t|t) of agent 1 with the
sensor noise σw = 0.5 after some iterations. In this case,
the group navigation strategy is chosen as the variance driven

exploration described by Λ(t) = [0 1 0] ⊗ 1|I| ∈ R
|I|×3,

where 1n := [ 1 · · · 1 ]
T ∈ R

n×1. In the same way, the
entropy driven exploration strategy (Λ(t) = [0 0 1] ⊗ 1|I|) is

shown with H(z(s, t|t)) in Fig. 2. As shown in Figs. 1 and
2, agents with the exploratory group behavior tend to visit
unexplored regions. Variants of such exploratory strategies can
be straightforwardly developed in a distributed and scalable
fashion since each agent can easily find the location of maximal
entropy or variance in the surveillance region R (see Choi
et al. (2008)). Different path planning strategies can be used
for reducing the uncertainty in the prediction of the Gaussian
process.

6.2 Tradeoff between exploitation and exploration

To see the existence of optimal balance between exploitation
and exploration, we consider a problem of searching for the
maximum of the spatial Gaussian process in (9). We study
the following three situations: (A) If the sensor noise level is
small and the initial positions of agents are close enough to
estimate the gradients of fields, agents utilizing only the tracing
strategy (Λ(t) = [1 0 0] ⊗ 1|I|) quickly find the maximum of
the field successfully as shown in Fig. 3. The colored, dotted-

Fig. 3. The plot of ẑ(s, t|t). Exploitation (tracing) under a small
sensor noise level σw = 0.01. The error field between
ẑ(s, t|t) and z(s, t) is plotted by colored contours.

Fig. 4. The plot of ẑ(s, t|t). Failed exploitation (tracing) under
a larger sensor noise level σw = 0.5. The error field is
plotted by colored contours.

lines in Fig. 3-(a) represent the error between the estimated
field and that of the true field. (B) If the sensor noise level
is large and the initial positions are relatively far away from
the maximum point, agents with the same tracing strategy only
(Λ(t) = [1 0 0] ⊗ 1|I|) can not find the maximum even after
1000 iterations as shown in Fig. 4. This is because that values
of gradients at locations far from the maximum are very small
and the estimates of such gradients are noisy. (C) Under the
same harsh configuration as above, agents utilize a strategy
that combines tracing and exploration modes (Λ(t) = [1 0 2]⊗
1|I|). These agents start exploring the surveillance region and

find the maximum after about 700 iterations as depicted in
Fig. 5. In this case, the RMS error values over the finite
number of spatially and uniformly sampled estimates w.r.t
iterations is plotted in Fig. 6. The observation we made clearly
indicates that there exists optimal balance among biologically
inspired navigation modes. Therefore, learning capability of
such balance Λ(t) for a given situation is important, which can
be dealt by another adaptation mechanism.

7. CONCLUSIONS

This paper presented a novel class of self-organizing au-
tonomous sensing agents that form a swarm and learn through
noisy cooperative measurements from neighbors for various
global goals. The learning mechanism is based on a spatial
Gaussian process. A set of biologically inspired navigation
strategies are devised by exploiting the predictive posterior
statistics. A unified way to prescribe a global goal for the group
of agents so that a high-level behavior builds on a set of low-
level simple behavior modules. As a result, collective mobility
of agents emerges from the specified global goal. The proposed
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Fig. 5. The plot of ẑ(s, t|t). Mixed exploitation (tracing) and
entropy driven exploration under a larger sensor noise
level σw = 0.5 The error field is plotted by colored
contours.
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Fig. 6. The plot of RMS error v.s. iterations.

cooperatively learning control consists of motion coordination
based on the recursive estimation of an unknown field of in-
terest with measurement noise. Our strategy of the cooperative
learning control can be applied to a large class of coordination
algorithms for mobile agents in a situation where the field of
interest is not known a priori and is to be estimated.
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