Development and Application of a Sliding Mode based Diagonal Recurrent Cerebellar Model Articulation Controller

Shan Liu* Yongji Wang**
Qi Xu*** Huijuan Fang****

Department of Control Science and Engineering, Key Laboratory of Image Processing and Intelligent Control, Huazhong University of Science and Technology, Wuhan, 430074 China
* (Tel: 86-27-87557284; e-mail: shan_liu_susan@hotmail.com).
** (e-mail: wangyjch@mail.hust.edu.cn)
*** (e-mail: xuqi@mail.hust.edu.cn)
**** (e-mail: huijuan.fang@gmail.com)

Abstract: This paper presents a sliding-mode-based diagonal recurrent cerebellar model articulation controller (SDRCMAC) for multiple-input-multiple-output (MIMO) uncertain nonlinear systems. Sliding mode technology is used to reduce the dimension of the control system. Two learning stages are adopted to train the SDRCMAC and to improve the stability of the control system. Lyapunov stability theorem and Barbalat’s lemma are adopted to guarantee the asymptotical stability of the system. Performance is illustrated on a two-link robotic control and motor control of the human arm in the sagittal plane.

1. INTRODUCTION

In control engineering application, control of multiple-input-multiple-output (MIMO) uncertain nonlinear systems is a challenging task. Neural networks have been suggested as a powerful building strategy (Huang, Huang & Chiou, 2003). Cerebellar model articulation controller (CMAC), a non-fully connected associative memory network, has good generalization capability and fast learning property (Albus, 1975). For acquiring the derivative information of input and output variable, a CMAC with differentiable Gaussian receptive field basis function has been developed (Chiang & Lin, 1996); and a recurrent CMAC has been presented to solve dynamic problems (Wai, Lin & Peng, 2004). Some applications of CMAC for complex dynamic systems have been presented (Miller et al., 1990; Peng & Lin, 2007; Lin, Chen & Chen, 2007; Yeh, 2007). However, though CMAC can accurately learn the inverse mapping of the plant, it is hard to maintain the stability when a CMAC is solely used in the control systems.

Sliding mode control (SMC) is an effective robust control approach for MIMO systems (Slotine & Li, 1991; Hung, Gao & Hung, 1993). However, the control chattering in the SMC may result in unforeseen instabilities. Some methods have been proposed to solve the problem (Man, Paplinski & Wu, 1994; Feng, Yu & Man, 2002).

It this study, a sliding-mode-based diagonal recurrent cerebellar model articulation controller (SDRCMAC) is proposed. The sliding mode technology is used to integrate the feedback information and reduce the dimension of the controller. A coarse-tuning stage is to enable the output behaviour of the SDRCMAC to approximate control surface of a SMC controller. A fine-tuning stage follows to improve the stability of the control system.

While the new SDRCMAC should be applicable to a range of MIMO uncertain nonlinear systems, our specific motivation is the biological movement control. Such research is useful in the study of how the brain controls the movements (Todorov, 2004). Yet, there is a lack of efficient methods to handle realistic biomechanical control problems. The characteristics of these problems are high dimension nonlinear dynamics, control constraints, complex performance criteria.

The organization of this paper is described as follows. Section 2 presents problem formulation. The sliding mode controller is described in Section 3. The SDRCMAC control system is constructed in Section 4. Simulation results are shown in Section 5. And, conclusions are drawn in Section 6.

2. PROBLEM FORMULATION

Consider an MIMO nonlinear uncertain system described by the following:

\[
\begin{align*}
\dot{x}_i &= x_j; \\
\dot{x}_j &= F(X,t) + B(X,t)u + d(t).
\end{align*}
\]

where \(u \in R^n \), and \(X = [x_1, x_2]^T \in R^{2n} \), \(x_1, x_2 \in R^n \) represent the control input, and the state vector, respectively. \(F(X,t) \in R^p \) and \(B(X,t) \in R^{pn} \) are bounded real continuous functions. \(d(t) \) represents the bounded disturbance and model uncertainty. Let the Euclidean norm \(\| d(t) \| \leq \kappa D < D \), \(\kappa \) is a positive decimal fraction, and \(D \) is a positive constant.
The object of the control system is to design a suitable control law such that the state vector X can track a specified reference trajectory $X_d = [x_{id}, x_{2d}]^T \in \mathbb{R}^{2n}$. The control law is defined as

$$
\alpha = \mathbf{C}_i (\dot{x}_{id} - \dot{x}_i) + \mathbf{D}_{sat}(S) + \mathbf{C}_i \dot{S} + \mathbf{C}_i \mathbf{sat}(S).
$$

where \mathbf{C}_i and $\mathbf{D}_{sat}(S)$ are matrices, and $\mathbf{sat}(s)$ is a saturation function, which is defined as follows:

$$
\mathbf{sat}(s) = \begin{cases}
1 & s / \delta > 1; \\
\frac{s}{\delta} & -1 \leq s / \delta \leq 1; \\
-1 & s / \delta < -1.
\end{cases}
$$

Consider a Lyapunov function as

$$
V_i = \frac{1}{2} (S - \mathbf{sat}(S) \mathbf{d})^T (S - \mathbf{sat}(S) \mathbf{d}) = \frac{1}{2} \mathbf{S}_i^T \mathbf{S}_i.
$$

Differentiating (5) with respect to time, we have

$$
\dot{V}_i = \mathbf{S}_i^T \dot{S} = \mathbf{S}_i^T (\mathbf{C}_i (\dot{x}_{id} - \dot{x}_i) + \mathbf{D}_{sat}(S) - \mathbf{C}_i \mathbf{sat}(S))
\quad = \frac{1}{2} \mathbf{S}_i^T \mathbf{S}_i \dot{S} - \frac{1}{2} \mathbf{S}_i^T \mathbf{D}_{sat}(S) \mathbf{d}(t).
$$

In the case of $|S| / \delta > 1$, $S_i \mathbf{sat}(S) = |S_i|$, then $\dot{V}_i < 0$; in the case of $|S| / \delta \leq 1$, $S_i = 0$, $\dot{V}_i = 0$. It can be shown that the error $|E| < \delta$ as $t \to \infty$ for any initial error. Thus, the SMC law (3) can guarantee the stability of the system (1).

4. SDRCMAC CONTROLLER

In the SDRCMAC control system, there are two learning stage, the coarse-tuning learning stage and the fine-tuning learning stage.

4.1 SDRCMAC Architecture

The architecture of the SDRCMAC is shown in Fig. 1, in which T denotes the delay time. The network is composed of input space, association memory space with recurrent units, receptive field space, weight memory space and output space. The input of the SDRCMAC is the signed sliding mode vector S through (2). Firstly, $S \in \mathbb{R}^n$ is normalized, the input space is quantized into discrete regions (called elements), and the number of elements is Ne. Next, S is mapped into the association memory space through receptive basis functions, where the space consists of nN_a blocks, a complete block is formed by Nr elements, Na is the number of blocks relative to each input. Thirdly, the association memory matrix $A \in \mathbb{R}^{nN_a \times Nr}$ is mapped into the receptive field space through multidimensional receptive field functions. Lastly, the receptive field vector $Rs \in \mathbb{R}^{Ny}$ is projected onto weight matrix $W \in \mathbb{R}^{Ny \times Ne}$ to compute the output $Y \in \mathbb{R}^n$. The SDRCMAC consists of two primary functions that are performed in the association memory space and the receptive field space, respectively.

![Fig. 1. Architecture of a SDRCMAC](image)
where w_{ij} is the recurrent weight, $\alpha_p^j(k-T) \triangleq \alpha_p^j$ denotes the value of $\alpha_p^j(k)$ through time delay T. The recurrent weight matrix can be expressed as $W_r \in \mathbb{R}^{N_r \times N_r}$. Fig. 2 depicts the schematic diagram of a 2-dimension SDRCMAC.

2) Multidimensional receptive field function: Receptive fields are formed by blocks, named as b_1b_2 and d_1d_2 in Fig. 2. The multidimensional receptive field function is defined as

$$r_p = \prod_{j=1}^{k} \sum_{i=1}^{r_p} \alpha_p^j, \quad p = 0, 1, \ldots, \text{ceil} \left(\frac{N_r - h}{N_r} \right), \quad h = 1, 2, \ldots, N_r. \quad (9)$$

In this SDRCMAC scheme, no receptive field is formed by the combination of blocks in different layers, such as b_1 and d_2. Thus, the number of receptive fields is N_r. This kind of composition reduces the memory requirement, and makes nearby inputs can produce similar outputs, which provide local generalization to SDRCMAC.

The output of the SDRCMAC is expressed as $Y = W \cdot R_s$, where the lth element in Y is $y_l = \sum_{k=1}^{N_r} w_{ik} r_k$. In the two-dimension case (Fig. 2), the output is the sum of receptive fields b_1b_2, d_1d_2 and e_1e_2 when the input is $(0.17, 0.67)$.

![Fig. 2. Two-dimension SDRCMAC with $N_r = 3$ and $N_e = 4$.](image)

4.2 Coarse-tuning Stage

The purpose of this stage is to enable the output behaviour of the SDRCMAC to approximate the control surface of the SMC controller. The control system is shown in Fig. 3(a). The control law $u(t)$ is the sum of the SDRCMAC output $u_c(t)$ and the SMC output $u_s(t)$. $u(t)$ is used as the target output, the error function is defined as

$$E_i(k) = \frac{1}{2} (u_c(k) - u(k))^T (u_c(k) - u(k)) = \frac{1}{2} \sum_{j=1}^{N_e} u_w^j (k)^2. \quad (10)$$

Initially, the SDRCMAC weight matrices are set as zero matrices. And then, according to the gradient descent method, these weight matrices are updated at each time step by the following learning rules

$$\begin{align*}
\frac{\partial r_p}{\partial \lambda_i} & = 2 \left(\prod_{k=1}^{r_p} \sum_{j=1}^{r_p} \alpha_p^j \right) \frac{1}{\sigma^2} \left(s_p - \lambda_i \right) \sum_{k=1}^{r_p} \sum_{j=1}^{r_p} \alpha_p^j \frac{1}{\sigma^2} \left(s_p - \lambda_i \right)^2; \\
\frac{\partial r_p}{\partial \sigma_i} & = -2 \left(\prod_{k=1}^{r_p} \sum_{j=1}^{r_p} \alpha_p^j \right) \frac{1}{\sigma^2} \left(s_p - \lambda_i \right) \sum_{k=1}^{r_p} \sum_{j=1}^{r_p} \alpha_p^j \frac{1}{\sigma^2} \left(s_p - \lambda_i \right); \\
\frac{\partial r_p}{\partial w_{ij}} & = -2 \left(\prod_{k=1}^{r_p} \sum_{j=1}^{r_p} \alpha_p^j \right) \frac{1}{\sigma^2} \left(s_p - \lambda_i \right) \sum_{k=1}^{r_p} \sum_{j=1}^{r_p} \alpha_p^j \frac{1}{\sigma^2} \left(s_p - \lambda_i \right).
\end{align*} \quad (12)$$

where $\eta_{11}, \eta_{12}, \eta_{13}$, and η_{14} are positive constants, the subscript h can be derived from the subscript j, and

$$\begin{align*}
\frac{\partial \lambda_i}{\partial r_p} & = - \eta_{11} \frac{\partial E_i}{\partial \lambda_i} = \eta_{11} \sum_{j=1}^{N_r} (u_w^j) \frac{\partial r_p}{\partial \lambda_i}; \\
\frac{\partial \sigma_i}{\partial r_p} & = - \eta_{12} \frac{\partial E_i}{\partial \sigma_i} = \eta_{12} \sum_{j=1}^{N_r} (u_w^j) \frac{\partial r_p}{\partial \sigma_i}; \\
\frac{\partial \lambda_i}{\partial w_{ij}} & = - \eta_{13} \frac{\partial E_i}{\partial w_{ij}} = \eta_{13} \sum_{j=1}^{N_r} (u_w^j) \frac{\partial r_p}{\partial w_{ij}}. \\
\end{align*} \quad (11)$$

The gradient descent method can guarantee the convergence of the parameters λ_i, σ_i, and w_{ij}, and the output of the receptive field basis functions are limited in $[0,1]$. Therefore, the stability of the control system will not be destroyed due to the adaptive learning rules shown in (11).

4.3 Fine-tuning Stage

The objective of this stage is to improve the system stability. The control system is shown in Fig. 3(b). Learning rules are derived from the gradient of SS with respect to parameters in the SDRCMAC.

$$\begin{align*}
\frac{\partial SS}{\partial w_{ij}} & = - \eta_{21} \frac{\partial SS}{\partial w_{ij}} = \eta_{21} \sum_{j=1}^{N_r} (s, b_j) v_j; \\
\frac{\partial SS}{\partial \lambda_i} & = - \eta_{22} \frac{\partial SS}{\partial \lambda_i} = \eta_{22} \sum_{j=1}^{N_r} (s, b_j) w_{ij} \frac{\partial \lambda_i}{\partial \lambda_i}; \\
\frac{\partial SS}{\partial \sigma_i} & = - \eta_{23} \frac{\partial SS}{\partial \sigma_i} = \eta_{23} \sum_{j=1}^{N_r} (s, b_j) w_{ij} \frac{\partial \sigma_i}{\partial \sigma_i}; \\
\frac{\partial SS}{\partial w_{ij}} & = - \eta_{24} \frac{\partial SS}{\partial w_{ij}} = \eta_{24} \sum_{j=1}^{N_r} (s, b_j) w_{ij} \frac{\partial \sigma_i}{\partial w_{ij}}.
\end{align*} \quad (13)$$

where $\eta_{21}, \eta_{22}, \eta_{23}$, and η_{24} are positive constants. The adaptive rules (13) can be expressed in vector form as
\[\dot{W} = \eta_{2r}B^T SRr; \quad \dot{\lambda} = \eta_{2r} tr(S^T BW)r_{\lambda}; \quad \Sigma = \eta_{2r} tr(S^T BW)r_{\Sigma}; \quad W_r = \eta_{2r} tr(S^T BW)r_{w}\] (14)

where \(tr(\cdot)\) is defined as \(tr(S^T S) = \sum_i s_i^2\), \(r_{\lambda} = \{\partial_r/\partial \lambda\}_{\text{acsr}},\) \(r_{\Sigma} = \{\partial_r/\partial \Sigma\}_{\text{acsr}},\) and \(r_{w} = \{\partial_r/\partial w\}_{\text{acsr}}\). The parameters update equations are given by

\[W(k+1) = W_{\text{coarse-tuning}}(k) + \dot{W}\]
\[\lambda(k+1) = \Lambda_{\text{coarse-tuning}}(k) + \dot{\lambda}\]
\[\Sigma(k+1) = \Sigma_{\text{coarse-tuning}}(k) + \dot{\Sigma}\]
\[W_r(k+1) = W_{\text{coarse-tuning}}(k) + \dot{W}_r.\] (15)

where \(W_{\text{coarse-tuning}}, \Lambda_{\text{coarse-tuning}}, \Sigma_{\text{coarse-tuning}},\) and \(W_{\text{coarse-tuning}}\) are the final SDRCMAC parameters at the coarse-tuning stage; the behaviour of the sliding mode controller is implicit in these parameters. Since the learning error will not accumulated in the fine-tuning stage, the instability caused by the continued learning after the tracking error has been reduced can be solved by (15).

4.4 Stability Analysis

Lyapunov analysis is employed to investigate the stability of the SDRCMAC control system. In the coarse-tuning stage, the SMC law (3) can guarantee the stability of the control system according to the stability analysis in Section 3. In the following, the stability of the control system in the fine-tuning stage will be proved.

For the stability analysis, we assume the optimal parameter matrices \(\overline{W}, \lambda, \Sigma,\) and \(\overline{W}_r\) of the SDRCMAC exists, which makes the SDRCMAC output to approximate the SMC law (3) with an error smaller than \(\xi, \xi\) is a positive number.

\[\max(\overline{u}(S, \overline{W}\overline{W}, \lambda, \Sigma, \overline{W}_r) - u_3) < \xi.\] (16)

where \(\overline{u}(S, \overline{W}, \lambda, \Sigma, \overline{W}_r) \equiv \overline{W}_r\), Then, \(u_3 = \overline{W}_r + \Xi\), where \(\Xi \in R^n\). The SDRCMAC output can be written as \(w(S, \overline{W}, \lambda, \Sigma, \overline{W}_r) \equiv \overline{W}_r\). According to (1), (3) and (16), the following equation can be derived

\[\dot{S} = -\frac{1}{2}(D_{\text{sat}}(S) + C_{\text{sat}}(S) + d(t)) + B(u_3 - u)\]
\[= -\frac{1}{2}(D_{\text{sat}}(S) + C_{\text{sat}}(S) + d(t)) + B(\overline{W}_r + \Xi - \overline{W}_r)\] (17)

where \(\overline{W} = \overline{W} - \overline{W}\) and \(\overline{W}_r = \overline{W}_r - \overline{W}_r\). Taylor linearization technique is employed to transform the nonlinear function into a partially linear form

\[\overline{W}_r = \left[\frac{\partial \overline{W}_r}{\partial \overline{W}} \right]_{\lambda_{\text{desired}}} \lambda + \left[\frac{\partial \overline{W}_r}{\partial \Lambda}\right]_{\lambda_{\text{desired}}} \overline{W}_r + H\]

\[\Lambda_{\text{desired}} = \Lambda - \lambda, \quad \Sigma_{\text{desired}} = \Sigma - \overline{\Sigma}.\]

Choose the Lyapunov function as

\[V_2 = S^T S + \frac{1}{\eta_2} tr(\overline{W}_r \overline{W}_r) + \frac{1}{\eta_2} tr(\overline{W}_r \overline{W}_r) + \frac{1}{\eta_2} tr(\overline{W}_r \overline{W}_r) + \frac{1}{\eta_2} tr(\overline{W}_r \overline{W}_r).\] (19)

Differentiating (19) with respect to time and using (15), (17) and (18) yields

\[\dot{V}_2 = S^T S + \frac{1}{\eta_2} tr(\overline{W}_r \overline{W}_r) + \frac{1}{\eta_2} tr(\overline{W}_r \overline{W}_r) + \frac{1}{\eta_2} tr(\overline{W}_r \overline{W}_r) + \frac{1}{\eta_2} tr(\overline{W}_r \overline{W}_r) + \frac{1}{\eta_2} tr(\overline{W}_r \overline{W}_r).\]

\[= -\frac{1}{\eta_2} tr(\overline{W}_r) + \frac{1}{\eta_2} tr(\overline{W}_r).\]

\[= -\frac{1}{\eta_2} tr(\overline{W}_r) + \frac{1}{\eta_2} tr(\overline{W}_r).\]

\[\lambda_{\text{desired}} = \Lambda - \lambda, \quad \Sigma_{\text{desired}} = \Sigma - \overline{\Sigma}.\]

\[\Lambda_{\text{desired}} = \Lambda - \lambda, \quad \Sigma_{\text{desired}} = \Sigma - \overline{\Sigma}.\]

where the approximation error term \(\Delta = \overline{W}H + \overline{W}_r + \Xi\) is assumed to be bounded by \(\|\Delta\| \leq \kappa\|\xi\| < \xi < \|\Xi\|\). Then, (20) becomes

\[\dot{V}_2 \leq -S^T C_{\text{sat}}(S) + \|S\|\|B\Delta\| - S^T D_{\text{sat}}(S) + \|S\|\|d(t)\|\] (21)

In the case of \(|S/\delta| > 1, V_2 \leq -\|S\|\|C\|\|B\Delta\| - \|S\|\|D\|\|d(t)\| < 0\); in the case of \(|S/\delta| < 1, V_2 \leq -\|S\|\|\kappa\|\|B\Delta\| - \|S\|\|\kappa\|\|D\|\|d(t)\| \leq 0\).

Since \(V_2\) is negative semidefinite that is \(V_2 < V_0(t)\), it implies
that variables S, \tilde{W}, Λ, Σ, and $\tilde{W}r$ in V_2 are bounded. Let function

$$L = S(x) + S(xD - \|2\|)$$

and integrate L with respect to time, it can be shown that $\int_0^T L dt \leq V_2(0)$. Because $V_2(0)$ is bounded and V_2 is non-increasing and bounded, the following result can be shown $\lim_{t \to \infty} \int_0^T L dt < \infty$. In addition, since \dot{L} is bounded by Barbalat’s lemma, it can be shown that $\lim_{t \to \infty} L = 0$. That is, $\dot{S} \to 0$ as $t \to \infty$. As a result, the control system is asymptotically stable.

![SDRCMAC control system](image)

Fig. 3. SDRCMAC control system

5. SIMULATION RESULTS

In this section, the proposed SDRCMAC is applied to control two control problems. The control objective is to let the system state X track the reference trajectory X_j. The SDRCMAC used in these systems is characterized as follows: $Ne = 4$; $Nr = 3$; $Na = 6$. The receptive fields are selected to cover the input space $\{[-1,1],[-1,1]\}$ along each input dimension. Therefore, the initial values of the parameters for the receptive field basis functions in the coarse-tuning stage are $[\lambda_1, \lambda_2, \lambda_3, \lambda_4, \lambda_5, \lambda_6] = [-1.25, -0.75, -0.25, 0.25, 0.75, 1.25]$, and $\sigma_g = 0.75$. The weight W and Wr in coarse-tuning stage are initialized from zero matrices, and the initial parameters in the fine-tuning stage are chosen as the final parameters in the coarse-tuning stage.

5.2 A Model of the Human Arm

The model of the two-link six-muscle human arm in the sagittal plane is rather complex, we lack the space to describe it in detail, see (Liu, Wang & Zhu, 2007). The initial state are $\theta_1 = 0.00$ deg, $\dot{\theta}_1 = 0.00$ deg/sec, and the reference trajectories are set as $\theta_r(t) = [60 \sin t \ 60 - 60 \cos t]$ deg. In order to study the robustness of the proposed controller, assume some pulse signals as external disturbance are added into the human arm, the pulse amplitude is 1, period is $3.5 s$, and the width is 15% of the period. The control parameters are chosen as $\delta = 0.35$, $C_i = \text{diag}(10,10)$, $\kappa = 0.2$, $D = 7$, $\eta_{i_1} = \eta_{i_2} = \eta_{i_3} = \eta_{i_4} = \eta_{i_5} = \eta_{i_6} = 0.33$, where $i = 1, 2$. These parameters are chosen through trial and error to achieve satisfactory performance. For comparison, the fuzzy CMAC (FCMAC) (Sun & Wang, 2006), the SMC and the SDRCMAC are used in the simulation. Fig. 4(a) and (b) show the angle tracking responses of these three methods. The results of the SDRCMAC and the SMC scheme are all satisfactory, and slightly better than that of the FCMAC. Fig. 4(c) and (d) show the angle velocity tracking responses of the SMC and the SDRCMAC to more compare these two methods. These figures illustrate that the SDRCMAC controller can more smoothly track the reference trajectory.

![Trajectory tracking response of the robotic arm](image)

Fig. 4. Trajectory tracking response of the robotic arm

5.3 A Two-link Robotic Arm

The dynamic equations for a two-link robotic arm are from (Sun & Wang, 2006). The initial state are $\theta_1 = 0.00$ deg, $\dot{\theta}_1 = 0.00$ deg/sec, and the reference trajectories are set as $\theta_r(t) = [60 + 10 \sin t \ 60 + 30 \sin t]$ deg. In order to study the...
velocity tracking responses of the EDRNN and the SDRCMAC. The results illuminate that the robustness of the proposed SDRCMAC is better than the EDRNN scheme when the disturbances exist in the human arm. And the training time of the SDRCMAC is extremely less than the EDRNN.

![Graphs showing trajectory tracking responses](image)

Fig. 5. Trajectory tracking responses of the human arm

6. CONCLUSIONS

In this paper, a SDRCMAC with two learning stages has been proposed to control MIMO uncertain nonlinear systems. Through the coarse-tuning stage, the output behaviour of the SDRCMAC can approximate the control surface of the SMC controller. At the fine-tuning stage, the adaptive laws are derived from the stable convergence feature of the SMC. According to Lyapunov stability theorem and Barbalat’s lemma, the asymptotical stability of the SDRCMAC is guaranteed. Finally, the SDRCMAC is applied to implement trajectory tracking control of a two-link robotic arm and the human arm in the sagittal plane. The simulation results demonstrate that the smoothness of the SDRCMAC is better than the SMC; compared with the EDRNN, the robustness is better and the consumed time is less.

ACKNOWLEDGMENTS

This work is supported by grants from the National Nature Science Foundation of China, No 60674105, the Ph.D. Programs Foundation of Ministry of Education of China, No 20050487013, and the Nature Science Foundation of Hubei Province of China, No 2007ABA027.

REFERENCES

