Set membership estimation of fractional models in the frequency domain

F. Khemane, R. Malti, M. Thomassin, and T. Raïssi

IMS, UMR 5218 CNRS, Université Bordeaux 1, 351 cours de la Libération, F 33405 Talence cedex, France - e-mail: {firas.khemane, rachid.malti, magalie.thomassin, tarek.raissi}@laps.ims-bordeaux.fr

Abstract: The main objective of this paper is to estimate the whole set of feasible parameters of a fractional differentiation model, based on gain and phase frequency data. All parameters, including differentiation orders, are expressed as intervals and then estimated using a bounded error approach. A contraction method named forward-backward propagation is first applied to reduce the initial searching space. Then, a set inversion algorithm named SIVIA is applied on the reduced searching space to obtain the whole set of feasible parameters. One of the interesting points of this study is to show the separate contribution of gain and phase data on the final estimation.

Keywords: Fractional models; Bounded error; System identification; Frequency-domain data; Gain; Phase.

1. INTRODUCTION AND MATHEMATICAL BACKGROUND

Although fractional (non integer) integration and differentiation remained for a long time purely a mathematical concept, the last two decades have witnessed considerable development in the use of fractional operators in various fields. Fractional differentiation is now an important tool for the international scientific and industrial communities especially in modeling viscoelastic materials (Pritz (2003)) and some diffusive phenomena (thermal diffusion, electrochemical diffusion) or in financial systems (Chen (2008)). For example, in thermal diffusion in a semi-infinite homogeneous medium, Battaglia et al. (2001) have shown that the exact solution for the heat equation links the thermal flux to a half order derivative of the surface temperature on which the flux is applied. Diffusion phenomena were investigated in semi-infinite planar, spherical and cylindrical media by Oldham and Spanier (1972, 1973) who showed that the involved transfer functions use the Laplace variable with exponents multiples of 0.5. In electrochemical diffusion of charges in the electrode and the electrolyte, the most common physical model used in the literature is the Randles model (Rodrigues et al. (2000); Sabatier et al. (2006)) which uses Warburg impedance with an integrator of order 0.5. Frequency domain response of fractional models is characterized by the presence of any slope in Bode’s gain diagram and any phase lock in Bode’s phase diagram.

Frequency-domain system identification methods using fractional models was initiated by Mathieu et al. (1995); Le Lay (1998); as detailed in the tutorial paper Malti et al. (2006) which uses Warburg impedance with an integrator of order 0.5. Frequency domain response of fractional models is characterized by the presence of any slope in Bode’s gain diagram and any phase lock in Bode’s phase diagram.

Frequency-domain system identification methods using fractional models was initiated by Mathieu et al. (1995); Le Lay (1998); as detailed in the tutorial paper Malti et al. (2006) which uses Warburg impedance with an integrator of order 0.5. Frequency domain response of fractional models is characterized by the presence of any slope in Bode’s gain diagram and any phase lock in Bode’s phase diagram.

1.1 Fractional models

A fractional mathematical model is based on a fractional differential equation:

\[y(t) + a_1D^{\alpha_1}y(t) + \cdots + a_{m_A}D^{\alpha_{m_A}}y(t) = b_0D^{\beta_0}u(t) + b_1D^{\beta_1}u(t) + \cdots + b_{m_B}D^{\beta_{m_B}}u(t), \]

(1)

where \((a_i, b_j) \in \mathbb{R}^2\), differentiation orders \(\alpha_1 < \alpha_2 < \cdots < \alpha_{m_A}\), \(\beta_0 < \beta_1 < \cdots < \beta_{m_B}\) are allowed to be non-integer positive numbers. The concept of differentiation to an arbitrary order,

\[D^\nu \triangleq \left(\frac{d}{dt} \right)^\nu, \quad \forall \nu \in \mathbb{R}^*_+, \]

(2)

was defined in the 19th century by Riemann and Liouville. The \(\nu\) fractional derivative of \(x(t)\) is defined as being an integer derivative of order \([\nu]+1\) \(([\cdot]\) stands for the floor operator) of a non-integer integral of order \([\nu]+1-\nu\) (Samko et al. (1993)):

\[D^\nu x(t) = D^{[\nu]+1} \left(1^{[\nu]+1-\nu} x(t) \right) \triangleq \left(\frac{d}{dt} \right)^{[\nu]+1} \frac{1}{\Gamma([\nu]+1-\nu)} \int_0^t \frac{x(\tau)}{(t-\tau)^{\nu-[\nu]}} d\tau, \]

(3)
where \(t > 0, \forall \nu \in \mathbb{R}^*_+, \) and the Euler’s \(\Gamma \) function is defined for a complex number \(z \) with positive real part by:

\[
\Gamma(z) = \int_0^{\infty} t^{z-1}e^{-t}dt, \quad (4)
\]
which can be extended, by analytical continuity, to the rest of the complex plane.

The Laplace transform is a more concise algebraic tool generally used to represent fractional systems, (see Oldham and Spanier (1974)):

\[
\mathcal{L}\{D^\nu x(t)\} = s^\nu \mathcal{L}\{x(t)\}, \quad \text{if } x(t) = 0 \forall t \leq 0. \quad (5)
\]
This property allows to write the fractional differential equation (1), provided \(u(t) \) and \(y(t) \) are relaxed at \(t = 0 \), in a transfer function form:

\[
F(s) = \frac{\sum_{j=0}^{m_b} b_j s^{\beta_j}}{1 + \sum_{i=1}^{m_a} a_i s^{\alpha_i}}, \quad (6)
\]
The function \(s^\nu \), where \(s \) belongs to the set of complex numbers \(\mathbb{C} \), is multivalued as soon as \(\nu \) is not integer. A branch cut line is defined along the negative real axis \(\mathbb{R}^- \) and the function \(s^\nu \) becomes holomorphic in the complement of the branch cut line, i.e. in \(\mathbb{C} \setminus \mathbb{R}^- \). All arguments of \(s \) are then restricted to \([-\pi, \pi[\).

A modal form transfer function can then be obtained, by carrying out a partial fraction expansion of (6) on the \(s^\nu \) variable, provided (6) is strictly proper and commensurable \(^1\) of order \(\nu \):

\[
F(s) = \sum_{k=1}^{N} \sum_{q=1}^{v_k} \frac{A_{k,q}}{(s^{\nu} + B_k)}, \quad (7)
\]
where \((-B_k), k = 1, \ldots, N\) are known as the \(s^{\nu}\)-poles of integer multiplicity \(v_k \).

Stability of any fractional commensurable transfer function such as (6) is proved by Matignon (1998) and is presented for any \(\nu \in]0, 2[\) in the following theorem.

Theorem 1. A commensurable \(\nu \)-order transfer function

\[
F(s) = S(s^{\nu}) = \frac{T(s^{\nu})}{R(s^{\nu})},
\]
where \(T \) and \(R \) are two coprime polynomials, is stable if \(0 < \nu < 2 \) and \(\forall p \in \mathbb{C} \) such as \(R(p) = 0, |\arg(p)| > \nu/2 \).

The stability region suggested by this theorem tends to the whole \(s \)-plane when \(\nu \) tends to 0, corresponds to the Routh-Hurwitz stability when \(\nu = 1 \), and tends to the negative real axis when \(\nu \) tends to 2.

1.2 Problem formulation

The fractional model considered in this paper is the building block of the modal form (7):

\[
G(s) = \frac{K}{s^{\nu} + b}, \quad (8)
\]
where the non integer differentiation order, \(\nu \), is restricted to the interval \([0, 2]\) and the pole in \(s^{\nu} \), \(-b\), is restricted to the negative real axis in order to guarantee model’s stability, as specified by theorem 1, and the realness of the time-domain response of \(G(s) \). A complex \(b \) would generate a complex impulse response.

\(^1\) All differentiation orders are exactly divisible by the same number \((\nu)\) an integral number of times (The American Heritage ® (2000)).
Hence, the problem at stake is the following. Having a set of N bounded uncertain frequency-domain gain and phase data, respectively

$$[G_{dB}(\omega_i)] = [G_{dB}(\omega_i), G_{dB}(\omega_i)],$$

$$[\varphi(\omega_i)] = [\varphi(\omega_i), \varphi(\omega_i)],$$

where $i = 1, \ldots, N$, find the set of all feasible parameters of the fractional model (8).

A parameter vector $\theta = (K, b, \nu)^T$ is called feasible if the model evaluated with θ is consistent with the measurements and with the error bounds. The parameter estimation problem is considered as a constraint satisfaction problem (\mathcal{CSP}) which is solved using interval analysis, initially introduced by Moore (1966). An interval $[x] = [\underline{x}, \bar{x}]$ is a closed, bounded, and connected set of real numbers. The set of all intervals is denoted by \mathbb{I}. Real operations are extended to intervals as follows. Given $[x] \in \mathbb{I}$ and $[y] \in \mathbb{I}$:

$$[x] + [y] = [x + y, \bar{x} + \bar{y}],$$

$$[x] - [y] = [x - \bar{y}, \bar{x} - y],$$

$$[x] \times [y] = [\min(xy, \underline{x}\underline{y}, \bar{x}\bar{y}, x\bar{y}, \underline{x}\bar{y}), \max(xy, \underline{x}\underline{y}, \bar{x}\bar{y}, x\bar{y}, \underline{x}\bar{y})],$$

$$[x]/[y] = \begin{cases} [x] \times \left[\frac{1}{y}, \frac{1}{y}, y \right], & \text{if } 0 \notin [y] \smallskip \\ [1, -\infty, \infty], & \text{if } 0 \in [y]. \end{cases}$$

2. FORWARD-BACKWARD CONTRACTOR

The \mathcal{CSP} to be solved is given by:

$$\mathcal{CSP} : \left\{ \begin{array}{l}
G_{dB}(\omega_i) \leq G_{dB}(\omega_i, \theta) \leq G_{dB}(\omega_i), \\
\varphi(\omega_i) \leq \varphi(\omega_i, \theta) \leq \varphi(\omega_i),
\end{array} \right. i = 1, \ldots, N,$$

where $G_{dB}(\omega_i)$, $\varphi(\omega_i)$, and $\varphi(\omega_i)$ are defined in (13) and (14). Notations $G_{dB}(\omega_i, \theta)$ and $\varphi(\omega_i, \theta)$ are used instead of $G_{dB}(\omega_i)$ and $\varphi(\omega_i)$ to show that (11) and (12) depend on the parameter vector $\theta = (K, b, \nu)^T$. The lower bound of b and the interval of ν are chosen so as to satisfy the stability conditions of theorem 1.

The solution set S of the \mathcal{CSP} (19) can be rewritten as:

$$S = \{ \theta \in \Theta | f(\omega_i, \theta) \in [y(\omega_i)], i = 1, \ldots, N \},$$

where $f = G_{dB}$ or $f = \varphi$ and $[y(\omega_i)] = [G_{dB}(\omega_i)]$ or $[y(\omega_i)] = [\varphi(\omega_i)]$. The characterization of the whole set S can be formulated as a set inversion problem:

$$S = f^{-1}([y]) \cap \Theta,$$

and can be solved by guaranteed methods.

The \mathcal{CSP} (19) is solved by a contractor C, which is an operator which permits to reduce the domain $[\Theta]$ without any bisection. Hence, contracting the box $[\Theta]$ means replacing it by a smaller box $[\Theta]^*$ such that the solution set S remains unchanged, i.e. $S \subseteq [\Theta]^* \subseteq [\Theta]$ (Jaulin et al. (2001)). There exists different types of contractors depending on whether the system to be solved is linear or not.

In our study, a non linear type contractor named forward-backward contractor $C_{1,1}$ is used to reduce the initial searching space. The basic idea when implementing this contractor is to decompose a principal constraint into primitive constraints. Each primitive constraint involves elementary operators and functions such as $\{+, -, \times, /, \exp, \log \ldots\}$. The next example illustrates how a given constraint is used to contract a domain.

Example Consider the constraint:

$$\begin{cases}
f(x) = x_3 - x_2 x_1 = 0, \\
x_1 \in [2, 10], \ x_2 \in [1, 10], \ x_3 \in [1, 5],
\end{cases}$$

The constraint (22) can be rewritten as:

$$x_3 = x_2 x_1.$$
The frequency response of \(G(s) \) is obtained by replacing \(s \) by \(j\omega \):
\[
G(j\omega) = \frac{3}{2 + (j\omega)^{0.5}}. \tag{25}
\]
Thus, the gain in dB is:
\[
G_{\text{dB}}(\omega) = 20 \log \left| \frac{3}{2 + (j\omega)^{0.5}} \right|, \tag{26}
\]
and the phase in degrees is:
\[
\varphi(\omega) = \arg \left(\frac{3}{2 + (j\omega)^{0.5}} \right). \tag{27}
\]
Frequency-domain data are generated by taking 50 log-equidistant frequencies in the range \([10^{-4}, 10^4]\) and computing \(G_{\text{dB}}(\omega) \) and \(\varphi(\omega) \) according to (26) and (27), which are then corrupted by a frequency domain additive noise:
\[
G^*_{\text{dB}}(\omega) = G_{\text{dB}}(\omega) + b_{\text{dB}}(\omega), \tag{28}
\]
\[
\varphi^*(\omega) = \varphi(\omega) + b_{\varphi}(\omega), \tag{29}
\]
where the noises \(b_{\text{dB}}(\omega) \) and \(b_{\varphi}(\omega) \) are generated in the same way:
\[
b_{(\text{dB},\varphi)}(\omega) = \begin{cases} 1.5 \rho_{(\text{dB},\varphi)}, & \text{in low freq.,} \\ 1.5 \rho_{(\text{dB},\varphi)} \times \log(\omega), & \text{in high freq.,} \end{cases} \tag{30}
\]
with \(\rho_{(\text{dB},\varphi)} \) a random variable uniformly distributed between \(-1\) and 1. A higher amplitude noise is added in high frequencies, because time-domain additive noise is generally higher in high frequencies.

For each gain and phase datum, uncertainties are added as intervals of amplitude a bit higher than the worst case noise generated by (30), so that these data can lead to feasible parameters sets with a non-empty inner enclosure:
\[
[G^*_{\text{dB}}(\omega)] = G^*_{\text{dB}}(\omega) + \begin{cases} 2 \times [-1, 1], & \text{in low freq.,} \\ 2 \times [-\log(\omega), \log(\omega)], & \text{in high freq.} \end{cases} \tag{31}
\]
\[
[\varphi^*(\omega)] = \varphi^*(\omega) + \begin{cases} 2 \times [-1, 1], & \text{in low freq.,} \\ 2 \times [-\log(\omega), \log(\omega)], & \text{in high freq.} \end{cases} \tag{32}
\]
Fig. 2 shows the frequency uncertain but bounded response obtained according to the previous hypotheses.

\[
\begin{aligned}
\text{Gain} & \quad [10^{-10}, 10^4] \\
\text{Phase} & \quad [-180, 180]
\end{aligned}
\]

Fig. 2. Uncertain gain and phase data

4.1 Gain and phase contractors

The CSP to be solved here is given by (19). The initial searching box is set to:
\[
([K], [b], [\nu]) = ([−20, 20], [0.1, 10], [0.2, 1.9]). \tag{33}
\]
Let’s start by checking how gain and phase data contract separately the initial searching box. The forward-backward contractor \(C_{\|} \), explained in [2], is first applied on gain data for every frequency \(\omega \), by decomposing (11) into elementary operations. The main drawback of this operation is the multiple occurrences of the parameters to be estimated, which induce pessimism due to the dependence effect. The following contracted box is obtained:
\[
([K], [b], [\nu]) = ([−12.67, 12.67], [0.1, 10], [0.2, 1]). \tag{34}
\]
Since the gain (13) does not depend on the sign of \(K \) in (8), positive and negative \(K \)’s are contracted in the same way. Parameter \(b \) was not contracted (Fig. 3).

In the same way, the contractor \(C_{\|} \) is applied on phase data (12) taken separately. The following contracted box is obtained:
\[
([K], [b], [\nu]) = ([0, 20], [0.1, 5.81], [0.2, 1.6]). \tag{35}
\]
Since the phase (14) depends only on the sign of \(K \) in (8), the initial searching domain of \([K]\), i.e. \([-20, 20]\), is contracted to \([0, 20]\) (Fig. 3).

Following the same method, \(C_{\|} \) contractor is applied on phase and gain data simultaneously which yields a smaller contracted box (Fig. 3).
\[
([K], [b], [\nu]) = ([0, 12.67], [0.1, 4.48], [0.2, 1]). \tag{36}
\]

Fig. 3. Initial and contracted boxes by gain and phase contractors.

4.2 Applying SIVIA on gain data

To check the separate contributions of phase and gain data in the final model, SIVIA algorithm is first of all applied on gain data separately and is hence initialized by using the gain contracted box (34). The obtained inner and outer approximations of \(\theta = ([K], [b], [\nu]) \) are plotted in Fig. 4. Two disconnected solution sets are obtained. They are symmetrical with respect to \(K = 0 \), because the gain (11) does not depend on the sign of \(K \) in (8). The inner solution sets of \(\theta \) are enclosed in:
\[
\begin{cases}
\{(2.07, 4.43), [1.26, 3.17], [0.34, 0.64]\} & \text{for } K > 0, \\
\{(-4, 43, -2.07), [1.26, 3.17], [0.34, 0.64]\} & \text{for } K < 0.
\end{cases} \tag{37}
\]
Fig. 4. Inner (dark) and outer (light) solutions obtained for η = 0.01. Number of bisections 343,503.

The gain and the phase diagrams of all feasible models obtained here are plotted in Fig. 5. One can notice that guaranteed-models’ gain diagrams are all included in the gain uncertainty intervals. However, some models phase diagrams, and especially those generated by negative K’s, are outside phase uncertainty intervals. This is a normal fact since only gain data are used as constraints of the set inversion problem.

4.3 Applying SIVIA on phase data

SIVIA algorithm is now applied on phase data separately and is hence initialized by using the phase contracted box (35). Remember that only the sign of K acts on the phase. Hence, phase information can help finding the sign of K and the feasible parameters [b] and [v]. On the other side, the phase contracted box (35) has already showed that the gain is positive. The obtained inner and outer approximations of [b] and [v] are hence plotted in 2D in Fig. 6. The inner solution sets of θ are enclosed in:

([K], [b], [v]) = ([0, 12.34], [1.75, 2.15], [0.47, 0.52]).

The gain and the phase diagrams of all feasible models obtained here are plotted in Fig. 7. One can notice that guaranteed-models phase diagrams are all included in the phase uncertainty intervals. However, some models gain diagrams are outside gain uncertainty intervals. This is a normal fact since only phase data are used as constraints of the set inversion problem and any positive gain could fit in.

4.4 Applying SIVIA on gain and phase data simultaneously

SIVIA algorithm is now applied on gain and phase data simultaneously and is hence initialized by using the gain and phase contracted box (36). The obtained inner and outer approximations of θ are plotted in Fig. 8. The inner solution sets are enclosed in:

([K], [b], [v]) = ([2.57, 3.51], [1.76, 2.21], [0.47, 0.52]).

The gain and the phase diagrams of feasible models are plotted in Fig. 9. Now, feasible gain and phase diagrams are all included in the gain and phase uncertainty intervals. This is a normal fact since both gain and phase data are used in the set inversion problem.
Fig. 8. Inner (dark) and outer (light) solutions obtained for $\eta = 0.01$. Number of bisections 83,245.

Fig. 9. Gain and phase diagrams of inner (dark) and outer (light) solution sets obtained by applying SIVIA on gain and phase data.

5. CONCLUSION

In this paper, set membership estimation methods have been applied to compute all feasible parameter sets of a fractional differentiation model. First of all, a contractor named forward-backward propagation is applied to reduce initial searching space. Then, a set inversion algorithm, SIVIA, is applied on gain and phase data. As a result, all parameters, including differentiation order, are expressed as intervals. Furthermore, one of the interesting points of this study is to show the separate contribution of gain and phase data on the final models.

REFERENCES

