Accuracy Analysis of Time-domain Maximum Likelihood Method and Sample Maximum Likelihood Method for Errors-in-Variables Identification

Mei Hong ∗ Torsten Söderström ∗ Johan Schoukens ∗∗ Rik Pintelon ∗∗

∗ Division of Systems and Control, Department of Information Technology, Uppsala University, P O Box 337, SE-75105 Uppsala, Sweden
∗∗ Department ELEC, Vrije Universiteit Brussel, B-1050 Brussels, Belgium

Abstract: The time domain maximum likelihood (TML) method and the sample maximum likelihood (SML) method are two approaches for identifying errors-in-variables models. Both methods may give the optimal estimation accuracy (achieve Cramér-Rao lower bound) but in different senses. In the TML method, an important assumption is that the noise-free input signal is modeled as a stationary process with rational spectrum. For SML, the noise-free input needs to be periodic. It is interesting to know which of these assumptions contain more information to boost the estimation performance. In this paper, the estimation accuracy of the two methods is analyzed statistically. Numerical comparisons between the two estimates are also done under different signal-to-noise ratios (SNRs). The results suggest that TML and SML have similar estimation accuracy at moderate or high SNR.

Keywords: System identification, Errors-in-variables, Joint output method, Maximum Likelihood, Periodic data

1. INTRODUCTION

The dynamic errors-in-variables (EIV) identification problem has been a topic of active research for several decades. Till now, many solutions have been proposed with different approaches. For example, the Koopmans-Levin (KL) method Fernando and Nicholson (1985), the Frisch scheme Beghelli et al. (1990), the Bias-Eliminating Least Squares methods Zheng and Feng (1989), Zheng and Feng (1992), the prediction error method Söderström (1981), frequency domain methods Pintelon et al. (1994), and methods based on higher order moments statistics Tugnait and Ye (1995), etc. See Söderström (2007) and references therein for a comprehensive survey in this respect.

In system identification, besides system properties and method performances, experimental conditions also play an important role. For example, periodic input signals will give many interesting advantages in identification. The sample maximum likelihood (SML) method Schoukens et al. (1997) works under the assumption that the noise-free signal is periodic, and it provides optimal estimation accuracy under that assumption. If periodic data are not available, among the possible methods for identifying EIV systems, the time domain maximum likelihood method (TML), also called the joint output approach, Söderström (1981), will achieve the Cramér-Rao lower bound. This property is conditioned on the prior information that the true input is an ARMA process.

The comparison of the TML and SML methods is of general interest. When the input can freely be chosen it is important to know whether a random (filtered white noise) input or a periodic input will lead to the smallest uncertainty of the estimated plant model parameters. If there is no significant difference then other issues are important such as the ease of generating starting values, the optimization complexity, etc.

In general, the TML method and the SML method work under different experimental situations. An essential assumption for the TML method is that the noise-free input signal is a stationary stochastic process with rational spectrum, so that it can be described as an ARMA process. Also, in the TML method, the input and output noises are usually described as ARMA processes. In contrast, the SML method works under more general noise-free input signals and noise conditions, but with another necessary assumption: the noise-free signal is periodic. Further, for the SML method cross-correlation between the noise sources is allowed.

In this paper, we focus on comparing the asymptotic covariance matrix of these two methods. The paper is organized as follows. In Section 2 we describe the EIV problem and introduce notations. The main idea of the TML and SML methods are reviewed in Section 3 and 4.
In Section 5, we make a statistical comparison for TML and SML under high SNR cases. Numerical comparisons between the asymptotic covariance matrices of these two methods under different SNR are shown in Section 6. Further, discussions on how to optimally utilize the periodic data are given in Section 7 before we draw conclusions in Section 8.

2. NOTATIONS AND SETUP

As a typical model example, consider the linear single-input single-output (SISO) system depicted in Figure 1 with noise-corrupted input and output measurements.

![System Diagram](image)

Fig. 1. The basic setup for a dynamic errors-in-variables problem.

Let the noise-free input and output processes $u_0(t)$ and $y_0(t)$ be linked by a linear stable, discrete-time, dynamic system

$$A(q^{-1}) y_0(t) = B(q^{-1}) u_0(t),$$

where

$$A(q^{-1}) = 1 + a_1 q^{-1} + \cdots + a_n q^{-n}$$

$$B(q^{-1}) = b_1 q^{-1} + \cdots + b_n q^{-n}$$

are polynomials \(^1\) in the backward shift operator q^{-1}.

For errors-in-variables systems, the input and the output are measured with additive noises:

$$u(t) = u_0(t) + \tilde{u}(t),$$

$$y(t) = y_0(t) + \tilde{y}(t).$$

The system has a transfer function

$$G(q^{-1}) = \frac{B(q^{-1})}{A(q^{-1})}.$$

The unperturbed input is modeled as an ARMA process driven by white noise

$$u_0(t) = C(q^{-1}) D(q^{-1}) v(t).$$

The noise $\tilde{u}(t)$ and $\tilde{y}(t)$ are assumed to be mutually independent zero mean white noise sequences both independent of $u_0(t)$. \(^2\)

The noise variances are denoted

$$\mathbb{E}\tilde{u}^2(t) = \lambda_u^2, \quad \mathbb{E}\tilde{y}^2(t) = \lambda_y^2, \quad \mathbb{E}v^2(t) = \lambda_v^2.$$

Problem: The task is to consistently estimate the system parameter vector

$$\theta = (a_1 \ldots a_n \ b_1 \ldots b_n)^T$$

from the measured noisy data $\{u(t), y(t)\}_{t=1}^N$.

3. REVIEW OF THE TML METHOD

In the TML method, we consider the EIV system as a multivariable system with both $u(t)$ and $y(t)$ as outputs. An important assumption for this method is that the signal $u_0(t)$ is stationary with rational spectrum, so that $u_0(t)$ can be described as an ARMA process of the type (3).

In this way the whole errors-in-variables model can be rewritten as a system with a two-dimensional output vector $z(t) = (y(t) u(t))^T$ and three mutually uncorrelated white noise sources $v(t)$, $\tilde{u}(t)$ and $\tilde{y}(t)$:

$$z(t) = \begin{pmatrix} (y(t) u(t)) \end{pmatrix} = \begin{pmatrix} B(q^{-1}) C(q^{-1}) & 0 & 1 \\ A(q^{-1}) D(q^{-1}) & 1 & 0 \\ C(q^{-1}) & 1 & 0 \end{pmatrix} \begin{pmatrix} v(t) \\ \tilde{u}(t) \\ \tilde{y}(t) \end{pmatrix}.$$

By transforming the model to a general state space model and then using the well-known techniques Anderson and Moore (1979) to convert it into the innovations form, we will get

$$z(t) = S(q^{-1}, \vartheta) \varepsilon(t, \vartheta),$$

where $S(q^{-1})$ is a stable transfer function matrix which can be computed from the Riccati equation for Kalman filters, and $\varepsilon(t, \vartheta)$ is the prediction error $\varepsilon(t, \vartheta) = z(t) - \hat{z}(t|t-1; \vartheta)$, which depends on the data and the model matrices. Note that the parameter vector ϑ contains not only the system parameters θ but also the noise parameters and variances of $u_0(t)$, i.e. the coefficients of the polynomials C and D.

The parameter vector ϑ is consistently estimated from a data sequence $z(t)_{t=1}^N$ by minimizing the loss function:

$$\hat{\vartheta}_N = \arg\min_{\vartheta} \frac{1}{N} \sum_{t=1}^N \ell(\varepsilon(t, \vartheta), \vartheta, t),$$

with

$$\ell(\varepsilon(t, \vartheta), \vartheta, t) = \frac{1}{2} \log |Q(\vartheta)|$$

$$+ \frac{1}{2} \varepsilon^T(t, \vartheta) Q^{-1}(\vartheta) \varepsilon(t, \vartheta),$$

where $Q(\vartheta)$ denotes the covariance matrix of the prediction errors. For Gaussian distributed data, the covariance matrix of the TML estimates parameters turns out to be asymptotically $(N \to \infty)$ equal to the Cramér-Rao bound Söderström (2006).

4. REVIEW OF THE SML METHOD

The ML estimate can also be computed in the frequency domain, Pintelon and Schoukens (2001). Let $U(w_k)$ and $Y(w_k)$, with $w_k = 2\pi k/N$, $k = 1, \ldots, N$, denote the discrete Fourier transforms of the input and output measurements, respectively. Write the transfer function as $G(e^{jw_k}) = B(e^{jw_k})/A(e^{jw_k})$ (note that there is no need to assume that A is stable as long as the system has stationary input and output signals, e.g. an unstable plant captured in a stabilizing feedback loop is allowed). The ML criterion in the frequency domain can be written as

\(^1\) It can be generalized to include a b_0 term, or to allow different degrees of A and B.

\(^2\) For SML, \tilde{u} and \tilde{y} might be correlated. TML can also be extended to accommodate cases with rather arbitrarily correlated noises. The assumptions here will simplify the analysis. However, it will be not crucial for the analysis.
\[V(\theta) = \frac{1}{N} \sum_{k=1}^{N} |B(e^{i\omega_k}, \theta)U(w_k) - A(e^{i\omega_k}, \theta)Y(w_k)|^2 \]

\times \{ \hat{\sigma}_U^2(w_k)|B(e^{i\omega_k}, \theta)|^2 + \hat{\sigma}_Y^2(w_k)|A(e^{i\omega_k}, \theta)|^2 \]

\[-2 \text{Re} \left\{ \hat{\sigma}_{UY}(w_k)B(e^{i\omega_k}, \theta)\right\} B(e^{-i\omega_k}, \theta)\} \}, \quad (10) \]

where \(\hat{\sigma}_U^2(w_k) \) and \(\hat{\sigma}_Y^2(w_k) \) are the variance or covariance of the input and output frequency at \(w_k \), respectively. If these (co)variances are not known a priori, it is easy to minimize the cost function (10) to get good estimates. However, knowing exactly the noise model is not realistic in many practical cases. Then we have to consider the (co)variances of the noise terms as additional parameters which should also be estimated from the data. In this case, a high dimensional nonlinear optimization problem should be solved, which leads to infeasible situations. Instead of doing so, another way is to replace the exact covariance matrices of the disturbances by sample estimates obtained from a small number (\(M \)) of repeated experiments. From the reviews above, it can be seen that the TML method and the SML method work under different assumptions. We assume here that \(NM \) periodic data are available, where \(M \) is the number of periods and \(N \) denotes the number of data points in each period. Also assume that in each period the noise-free input signal is the same realization of a stationary process. This experimental condition is suitable for both approaches. The TML method uses all data points and the information that the input signal is an ARMA process, but does not exploit the periodicity of the data. However, the SML method uses the periodic information but disregards that the input signal is an ARMA process and does not use any parametric models of the noise terms.

Consider the case when SNRs at both input and output are high. This is achieved by keeping \(\lambda_2^2 \) and \(\lambda_4^2 \) fixed, and letting \(\lambda_0^2 \) tend to infinity. We have the following theorem.

Theorem 1: The normalized asymptotic covariance matrices of the SML and TML estimators have the relation:

\[\lim_{\lambda_2^2 \to \infty} \lambda_2^2 \text{Cov}(\hat{\theta}_{\text{SML}}) = \lim_{\lambda_2^2 \to \infty} \lambda_2^2 \text{Cov}(\hat{\theta}_{\text{TML}}) = \lambda_2^2 \text{CRBA}, \]

where CRBA is an asymptotic Cramér-Rao lower bound when data number tends to infinity. It holds

\[\text{CRBA} = \frac{1}{M}, \]

where the \((j,k)\) elements of the matrix \(M_1 \) is defined as

\[M_1(j,k) = \frac{1}{2\pi i} \int G_j \phi_0 \frac{1}{\lambda_0^2 + G_j^* \lambda_2^2 + G_j \lambda_4^2} \frac{dz}{z}. \]

Here \(\phi_0 \) is the spectrum of the noise-free input, and \(G_j \) denotes the derivative of the system transfer function \(G(z) \) with respect to the system parameters \(\theta_j \).

Proof: See Hong et al. (2007) Appendix A.

The theorem states that, for large SNR’s,

\[\text{Cov}(\hat{\theta}_{\text{SML}}) \approx \text{Cov}(\hat{\theta}_{\text{TML}}) \approx \text{CRBA}. \]

The asymptotic estimation accuracy for SML and TML will be very similar when the SNRs at both the input and output sides are large. Both will be approximately equal to an asymptotical CRB, which is directly proportional to \(1/\lambda_2^2 \). As stated in Pintelon and Hong (2007), this result can be weakened for SML. It is enough that for

\[3 \text{ In Theorem 1 below, the factor (\(M - 2 \))/(\(M - 3 \)) is disregarded.} \]
SML, either the input SNR or the output SNR becomes large, the \(\text{cov}(\hat{\theta}_{SML}) \) will reduce to CRBA. The covariance expressions in Theorem 1 can be simplified. The details are given in Hong et al. (2007) Appendix B.

The situation of high SNR is of limited practical importance, as the bias effects will vanish as SNR \(\rightarrow \infty \). However, high SNR seems so far to be the only case where a more explicit analysis is possible.

6. NUMERICAL COMPARISONS OF TML AND SML ESTIMATES

We will show some numerical experiments for the TML and SML methods for different signal-to-noise ratios (SNR). A second order system and a sixth order system are illustrated in this paper. The polynomials of this second order system are:

\[
A(q^{-1}) = 1 - 1.5q^{-1} + 0.7q^{-2}, \quad B(q^{-1}) = 2 + 1.0q^{-1} + 0.5q^{-2},
\]

and the sixth order system is:

\[
A(q^{-1}) = 1 - 1.1q^{-1} + 0.5q^{-2} - 0.12q^{-3} + 0.23q^{-4} - 0.235q^{-5} + 0.175q^{-6}, \quad B(q^{-1}) = 0.1 + 1.0q^{-1} + 0.85q^{-2} + 0.06q^{-3} - 0.534q^{-4} + 0.504q^{-5} + 0.324q^{-6}.
\]

The polynomials of the noise-free input signal model are:

\[
C(q^{-1}) = 1 + 0.5q^{-1}, \quad D(q^{-1}) = 1 - 0.5q^{-1}.
\]

All the comparisons are based on the asymptotic case where the data number \(N \) is assumed to be large enough, and we assume \(M = 6 \) periods data are available. For comparison, we also give the asymptotic covariance matrix of the frequency domain maximum likelihood (FML) method calculated under the assumption of knowing the input/output noise variances and the period information. See Schoukens et al. (1997) for details. The standard deviations (std) are calculated from the theoretical covariance matrices of the estimation parameters, which have been proved to well meet their relevant Monte-Carlo simulations. Details on these formulas can be found in Söderström (2006), Pintelon and Schoukens (2001), Schoukens et al. (1997) and Pintelon and Hong (2007).

In the following numerical analysis, we fix the noise variance at both input and output sides to be 1 (for white noises cases), and let the noise variance of \(\lambda_e^2 = 1 \), \(\lambda_y^2 = 1 \), and \(\lambda_u^2 = 10 \).

In Figure 2, the comparison results show that when the SNR at both the input and the output side are high or moderate, the two methods always give very similar performance both for low and high order systems. See Figure 2. When the SNR becomes very low, the difference of the TML method and the SML method are observable only in the low SNR frequency regions especially for the high order dynamic systems. See Figure 3. It seems that, in regions where SNR is poor, the benefit of using periodic information in the SML method is more pronounced, which results in the SML having a lower covariance matrix than that of the TML. In Figure 4, new comparison results under the same condition as in Figure 3 are shown except adding the periodic information to TML by simple averaging of the data over the \(M \) periods. It can be seen that the difference between TML and SML estimation results in the low SNR area has disappeared.

Besides, several examples with colored output measurement noises were also studied. They give similar results as for the white noise cases.

Fig. 2. Comparison of the TML, SML and FML estimates for a second (left) and a sixth (right) order system with \(\lambda_e^2 = 1 \), \(\lambda_y^2 = 1 \), and \(\lambda_u^2 = 10 \).

Fig. 3. Comparison of the TML, SML and FML estimates for a second (left) and a sixth (right) order system with \(\lambda_e^2 = 1 \), \(\lambda_y^2 = 1 \), and \(\lambda_u^2 = 0.1 \).
The theoretic std for a 2-order EIV system

\[
\begin{align*}
&\text{Normalized freq.} \quad \text{dB} \\
&0 \quad 0.1 \quad 0.2 \quad 0.3 \quad 0.4 \quad 0.5
\end{align*}
\]

Theoretic std for a 6-order EIV system

\[
\begin{align*}
&\text{Normalized freq.} \\
&0 \quad 0.1 \quad 0.2 \quad 0.3 \quad 0.4 \quad 0.5
\end{align*}
\]

Fig. 4. Comparison of the TML (with averaging of the data), SML and FML estimates for a second (left) and a sixth (right) order system with \(\lambda_2^2 = 1, \lambda_7^2 = 1, \) and \(\lambda_6^2 = 0.1. \)

The preceding theoretical and numerical studies show that, when the SNR level is large or modest, the estimation accuracy of SML and TML method are quite similar. However, we should note that they are not identical, since the two methods are based on different conditions/assumptions. The matrices \(\text{cov}(\hat{\theta}_{\text{SML}}), \text{cov}(\hat{\theta}_{\text{TML}}) \) and CRBA are only approximately equal to each other. It means that the difference between the two covariance matrices is not necessarily positive definite, and there are not any order relation between these three matrices. For example, let us check the eigenvalues of the matrix difference between the asymptotic covariance matrices of TML and SML. Let the vector \(\Lambda \) denote the eigenvalues of the difference matrix of the covariance matrices of the two methods. For the second order system as (17) with the noise-free input signal model as (19), it holds

\[
\Lambda = \left(\begin{array}{c}
-1.96 \times 10^{-3}, 1.13 \times 10^{-4}, -1.48 \times 10^{-4}, \\
1.48 \times 10^{-8}, 2.97 \times 10^{-6}
\end{array} \right).
\]

It can be seen that the eigenvalues of the difference matrix have both positive and negative values. Hence the difference between the two covariance matrices is indefinite. None of the two methods, SML and TML, is uniformly better than the other.

7. USING PERIODIC DATA

When the unperturbed input is periodic, the way the estimation problem is treated so far, both for SML and for TML, is to average over the \(M \) periods. In this way we get a new data set, where the data length is \(N \) (not \(NM \) as for the original data series). The effect is also that the variance of the measurement noise decreases with a factor \(M \), both on the input side and on the output side.

However, using the averaged data in this way to compute the covariance matrix of estimates does not give the true CRB. The true CRB is lower. The reason can be explained as follows. Let the measured data series be a long vector, that is partitioned into \(M \) blocks each of size \(N' \),

\[
Z = (Z_1 \quad Z_2 \ldots \quad Z_M)^T.
\]

Let us then make a linear (nonsingular) transformation of the full data vector as

\[
W = \left(\begin{array}{c} \\
\frac{1}{M} \sum_{k=1}^{M} Z_k \\
Z_1 - Z_2 \\
\vdots \\
Z_{M-1} - Z_M \end{array} \right) \triangleq \left(\begin{array}{c} W_1 \\
W_2 \\
\vdots \\
W_M \end{array} \right). \tag{21}
\]

To compute the CRB from \(Z \) must be the same as to compute the CRB from \(W \). However, in the simplified form we only use \(W_1 \) for computing the CRB and neglect the remaining part of the data. The parts \(W_2, \ldots, W_M \) do not depend on the noise-free input, but on the noise statistics (say the variance \(\lambda_2^2 \) of the input noise \(\tilde{u}(t) \) and the variance \(\lambda_7^2 \) of the output noise \(\tilde{y}(t) \)). As the CRB of the system parameters (that is, the \(A \) and \(B \) coefficients) and the noise parameters is not block-diagonal, it will be beneficial from the accuracy point of view, to make use of also the remaining data \(W_2, \ldots, W_M \).

To simplify things, the preceding sections consider only the case when \(W_1 \) is used. It is a reasonable thing to do and worthwhile enough to focus on this 'simplified or idealized CRB'. In this section, we will further examine the effect of additional data records \(W_2, \ldots, W_M \). To this aim, it is useful to use the Slepian-Bang formula, Stoica and Moses (2005), for the CRB. It holds for Gaussian distributed data

\[
\text{FIM}_{j,k} = \frac{1}{2} \text{tr} (R^{-1} R_j R_k^{-1}), \quad R_j = \frac{\partial R}{\partial \theta_j}, \tag{22}
\]

where \(R \) denotes the covariance matrix of the full data vector \(W \).

Now split the covariance matrix \(R \) as

\[
R = EWW^T = \begin{pmatrix} R_{11} & R_{12} \\
R_{21} & R_{22} \end{pmatrix}, \tag{23}
\]

where \(R_{11} \) corresponds to the data part \(W_1 \) and the block \(R_{22} \) is associated to \(W_2 \ldots W_M \).

It is easy to see that \(R_{12} = 0 \), and for large \(\lambda_2^2 \)

\[
R = \begin{pmatrix} O(\lambda_2^2) & 0 \\
0 & O(1) \end{pmatrix}. \tag{24}
\]

Write the data blocks in (20) as

\[
Z_k = Z_0 + \tilde{Z}_k, \quad k = 1, \ldots, M, \tag{25}
\]

where \(Z_0 \) denotes the effect of the noise-free input, and the noise contributions \(\{\tilde{Z}_k\}_{k=1}^{M} \) are assumed to be uncorrelated between different periods. Introduce the notations

\[
R_0 = \text{cov}(Z_0), \quad \tilde{R} = \text{cov}(\tilde{Z}_k). \tag{26}
\]

Using the full data vector \(W \), from (21) we have

\[
R = \begin{pmatrix} R_0 + \frac{1}{M} \tilde{R} & 0 & 0 & \ldots & 0 \\
0 & 2\tilde{R} & -\tilde{R} & \ldots & \ldots & \ldots \\
0 & \ldots & \ldots & \ldots & \ldots & \ldots \\
0 & \ldots & 0 & -\tilde{R} & 2\tilde{R} \\
0 & \ldots & 0 & \ldots & \ldots & \ldots \end{pmatrix} \triangleq \begin{pmatrix} R_1 & 0 \\
0 & R_2 \end{pmatrix}, \tag{27}
\]

where \(\otimes \) denotes Kronecker product and
\[
J = \begin{pmatrix}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2 \\
& & \ddots
& \ddots & -1 \\
& & & -1 & 2
\end{pmatrix}.
\] (28)

As \(R\) in (27) is block diagonal, we find directly that taking the block \(R_2\) into account means that we get an additional term in the Fisher information matrix. We get

\[
\text{FIM}_{j,k} = \frac{1}{2} \text{tr} \left[R_2^{-1} R_2 R_2^{-1} R_{2,k} \right]
= \frac{1}{2} \text{tr} \left[R_1^{-1} R_{1,j} R_1^{-1} R_{1,k} \right]
+ \frac{1}{2} \text{tr} \left[R_2^{-1} R_2 R_2^{-1} R_{2,k} \right].
\] (29)

The first term in the RHS of (29) is the contribution when only \(W_1\) is used. The second term can be expressed more explicitly as

\[
\hat{F}_{j,k} = \frac{1}{2} \text{tr} \left[J \otimes \hat{R} \right] = \frac{1}{2} \text{tr} \left[(J \otimes \hat{R})^{-1} (J \otimes \hat{R}) \right] = \frac{1}{2} \text{tr} \left[I_{M-1} \otimes \left(\hat{R}^{-1} \hat{R} \right) \right] = \frac{M-1}{2} \text{tr} \left[\hat{R}^{-1} \hat{R}^{-1} \hat{R} \right].
\] (30)

In particular, when both \(\tilde{y}(t)\) and \(u(t)\) are white noise, we have

\[
\hat{R} = \begin{pmatrix}
\lambda_y^2 I_N & 0 \\
0 & \lambda_v^2 I_N
\end{pmatrix}.
\] (31)

Then it is straightforward to derive

\[
\hat{F}_{\lambda_y^2,\lambda_v^2} = \frac{(M-1)N}{2\lambda_y^4},
\] (32)

\[
\hat{F}_{\lambda_y^2,\lambda_v^2} = \frac{(M-1)N}{2\lambda_v^4},
\] (33)

while all other elements of \(\hat{F}\) are zero. Note that due to (13), the first term of (26) is \(O(\lambda_v^2)\), while obviously the second term is \(O(1)\), and is hence almost negligible for large \(\lambda_v^2\).

8. CONCLUSIONS

In this paper, the asymptotic covariance matrices of the TML method and the SML method for estimating the EIV systems have been theoretically and numerically compared. It was shown that, although these two estimates are based on the different assumptions, they have very similar estimation accuracy when the SNR values at both input and output sides are not low. When the SNR is very low (less than 0 dB), it seems that the benefit of using the periodic information is more important than knowing that both the signals and noises have rational spectra. A notable accuracy difference can be observed at low SNR regions especially for high order dynamic systems. From the efficiency point of view, SML and TML have similar estimation accuracy at moderate or high SNR cases.

REFERENCES

