ADAPTIVE OBSERVER DESIGN FOR CHAOTIC DUFFING SYSTEM

Alexey Bobtsov*, Anton Pyrkin*, Nikolay Nikolaev*, Olga Slita**

*Saint-Petersburg State University of Information Technologies Mechanics and Optics, Saint-Petersburg, Russia (e-mail: bobtsov@mail.ru, a.pyrkin@gmail.com)
**Department of Mechatronics and Robotics, Baltic State Technical University, Saint-Petersburg, Russia

Abstract: Problem of unknown encoded parameter reconstruction is solved by means of procedure of design of adaptive observer for chaotic Duffing system. Unlike known analogues, the problem in question is only solved using measurements of output of chaotic system and in conditions of full parametrical uncertainty. Copyright © 2008 IFAC

Keywords: Chaotic system, adaptive observer, data transmitting.

1. INTRODUCTION

Problem of adaptive observer design for nonlinear dynamic systems has been in the centre of attention for the last years. One of reasons of this interest is that there is a possibility of use of adaptive observers for information encoding and transmission. One of new directions of data transmission is encoding information with parameters of a dynamic system (“transmitter”). Output signal of that system is transmitted to “receiver”, which is intended to reconstruct unmeasured signals and model parameters of “transmitter”. Structural scheme of such system is shown in Fig.1, where θ is parameter vector of “transmitter” system model, encoding transmitted information; y is “transmitter” output transmitted via communication channel; ẑ is estimation of vector θ, produced by receiver.

Fig. 1. Structural scheme of data transmitting system

It is especially prospective to use chaotic dynamic systems as models of “transmitters” because output signal of a chaotic system has, on the one hand, wide frequency range and, on the other hand, solutions of such systems show weak dependence on initial conditions that increases protection of the system from unauthorized reconstruction of signal information component. In this case “receiver” must construct adaptive observer of chaotic system. A few groups of methods (Fradkov et al., 1997, Markov et al., 1996) are usually used for design of adaptive observers. Most of the methods are based on possibility of passification of transmitter system model via feedback in assumption that this model has relative degree equal to zero or one. Other solutions imply accessibility for measurement full state vector of the “transmitter” system (Fradkov et al., 1998, Huijberts et al., 2000). In paper (Nikiforov et al., 2002) the solution which allows to design adaptive observers for “transmitter” models of high (more than one) relative degree and not passificated via output feedback was proposed. These results are based on use of new canonical form of nonlinear adaptive observers proposed in (Nikiforov et al., 2002). Result of (Nikiforov et al., 2002) was strengthened in (Efimov, 2004, Efimov et al., 2005) where problem of design of adaptive partial observers for non-autonomous nonlinear dynamic systems was considered. Use of external exiting signal is one of approaches to create chaotic modes of operation in nonlinear systems. Examples of such systems are Duffing model and model of brusselator (Nikolis et al., 1977) demonstrating chaotic behaviour only in presence of proper harmonic disturbance. Propagation of classical results on adaptive observers design problem for non-autonomous systems allows essential extending of class of possible models for “transmitter” system and increases protection of the system from unauthorized access.

In this paper we consider problem of adaptive observer design for chaotic signals generated by Duffing chaotic system. The heart of the problem involves separation of useful information transmitted via communication channel from chaotic signal. Unlike known results, in this paper problem of observer
design using only measurements of output variable of chaotic signal in conditions of full parametrical uncertainty of its model is considered.

2. PROBLEM STATEMENT

Consider chaotic Duffing system described by equation of the following form
\[
\ddot{y}(t) + c_1 \dot{y}(t) + c_2 y(t) - \bar{\theta} f(y) - w(t) = 0,
\]
where \(c_1 \), \(c_2 \) and \(\bar{\theta} \) are unknown numbers, nonlinear function \(f(y) = y^3 \) and \(w(t) = A \sin(\alpha t + \phi) \) is unmeasured harmonic signal.

It is required to design an observer ensuring reconstruction of unknown parameter \(\bar{\theta} \) of model (1). Let us assume that only output variable \(y(t) \) of model (1) is measured. We also assume that parameters of chaotic system \(c_1, c_2, \bar{\theta}, A, \omega \) and \(\phi \) are unknown numbers.

3. DESIGN OF ADAPTIVE OBSERVER

Let us rewrite model (1) the following way to derive the main result
\[
y(t) = \frac{1}{a(p)} \left[\bar{\theta} y^3 + w(t) \right],
\]
where polynomial \(a(p) = p^2 + c_1 p + c_2 \) and \(p = d/dt \).

Passing to Laplace images in equation (1) we obtain
\[
Y(s) = \frac{\bar{\theta} F(s)}{s^2 + c_1 s + c_2} + \frac{W(s)}{s^2 + c_1 s + c_2} + \frac{D(s)}{s^2 + c_1 s + c_2},
\]
where \(s \) is complex variable, \(Y(s) = \mathcal{L}\{y(t)\} \), \(F(s) = \mathcal{L}\{f(y(t))\} \), \(W(s) = \mathcal{L}\{w(t)\} \) are Laplace images of functions \(y(t), f(y(t)) \) and \(w(t) \) respectively, polynomial \(D(s) \) denotes sum of all terms containing nonzero initial conditions.

Let us transform model (3) the following way
\[
Y(s) = \frac{\bar{\theta} F(s)}{s^2 + c_1 s + c_2} + \frac{W(s)}{s^2 + c_1 s + c_2} + \frac{D(s)}{s^2 + c_1 s + c_2},
\]
whence
\[
Y(s) = \frac{a_1(s)}{(s+1)^2} Y(s) + \frac{\bar{\theta} F(s)}{(s+1)^2} + \frac{W(s)}{(s+1)^2} + \frac{D(s)}{(s+1)^2},
\]
where polynomials \(a_1(s) = (s+1)^2 - a(s) \) and \(a(s) = s^2 + c_1 s + c_2 \).

From equation (4) we obtain
\[
y(t) = \frac{a_1(p)}{(p+1)^2} y(t) + \frac{\bar{\theta}}{(p+1)^2} y^3(t) + \frac{1}{(p+1)^2} w(t) + \varepsilon_y(t),
\]
where \(f(y) = y^3 \) and \(\varepsilon_y(t) = L^{-1}\left[\frac{D(s)}{(s+1)^2} \right] \) is exponentially decaying function of time caused by nonzero initial conditions. Neglecting exponentially decaying item \(\varepsilon_y(t) = L^{-1}\left[\frac{D(s)}{(s+1)^2} \right], \) let us parameterize model (5).

Consider auxiliary filters of the following form
\[
\xi_1(t) = \frac{1}{(p+1)^2} y(t), \quad \xi_2(t) = \frac{1}{(p+1)^2} y^3(t).
\]

Substituting (6) and (7) into equation (5), we obtain
\[
y(t) = a_1(p) \xi_1(t) + \bar{\theta} \xi_2(t) + \bar{\theta} \varepsilon_2(t),
\]
where function \(\varepsilon_2(t) = L^{-1}\left[\frac{D(s)}{(s+1)^2} \right] \).

Consider filter (6)
\[
\xi_1(t) = \frac{1}{(p+1)^2} y(t) = \frac{1}{(p+1)^2} \delta(t) + \frac{1}{(p+1)^2} \bar{w}(t),
\]
where function \(\delta(t) = a_1(p) \xi_1(t) + \bar{\theta} \xi_2(t) \).

As signal \(\bar{w}(t) = A \sin(\alpha t + \phi) \), and polynomial \((p+1)^2 \) is Hurwitz then function \(\bar{w}(t) \) can be represented the following way
\[
\bar{w}(t) = \sigma \cdot \sin(\alpha t + \phi), \\
p^2 \bar{w}(t) = -\sigma \omega^2 \sin(\alpha t + \phi) = \theta \bar{w}(t),
\]
where \(\theta = -\omega^2 \).

Let us rewrite the last equation
\((p + 1)^2 \bar{w}(t) = p^2 \bar{w}(t) + 2 p \bar{w}(t) + \bar{w}(t) = \delta \bar{w}(t) + 2 p \bar{w}(t) + \bar{w}(t) = (2 p + 1) \bar{w}(t) + \theta \bar{w}(t)\).

\((p + 1)^2 \bar{w}(t) = 2 p + 1 + \bar{w}(t) = (2 p + 1) \bar{w}(t) + \theta \bar{w}(t)\).

As \(\bar{w}(t) = y(t) - \delta(t)\), then

\[(p + 1)^2 (y(t) - \delta(t)) = (2 p + 1) \bar{w}(t) + \theta \bar{w}(t) = (2 p + 1)(y(t) - \delta(t)) + \theta(y(t) - \delta(t)) = (p + 1)^2 \left[\frac{(2 p + 1)}{p + 1} (y(t) - \delta(t)) + \frac{\theta}{p + 1} (y(t) - \delta(t))\right].\]

From the last equation we obtain

\[
\bar{w}(t) = (y(t) - \delta(t)) = (2 p + 1) \xi_1 + \theta \xi_1 + \frac{(2 p + 1)}{p + 1} (-\delta(t)) + \frac{\theta}{(p + 1)^2} (-\delta(t)) = (2 p + 1 + \theta) \xi_1 + \frac{(2 p + 1)}{p + 1} (-\delta(t)) + \frac{(2 p - \theta)}{(p + 1)^2} \delta(t) = (2 p + 1 + \theta) \xi_1 - \delta(t) + \delta(t).
\]

\[
\delta(t) = \frac{(2 p - \theta)}{(p + 1)^2} \delta(t) = \frac{p^2}{(p + 1)^2} \delta(t) - \frac{\theta}{(p + 1)^2} \delta(t) = \frac{p^2 a_1(p) + \theta a_1(p)}{(p + 1)^2} \xi_1(t) + \frac{p^2 \bar{\theta} + \theta \bar{\theta}}{(p + 1)^2} \xi_2(t) + \frac{\theta \bar{\xi}_2(t) - \bar{\theta} \xi_2(t)}{(p + 1)^2} \xi_1(t) = (p + 1 + \theta) \xi_1(t).
\]

Let us transform model (11)

\[
\theta \hat{\xi}_1(t) + \bar{\xi}(t) = \bar{w}(t) + \delta(t) - 2 \hat{\xi}_1(t) - \xi_1(t) = y(t) - 2 \hat{\xi}_1(t) - \xi_1(t),
\]

denoting

\[
z(t) = \theta \hat{\xi}_1(t) + \bar{\xi}(t) = y(t) - 2 \hat{\xi}_1(t) - \xi_1(t),
\]

where function \(z(t)\) is measured by virtue of measurability of signals \(y(t), \bar{\xi}_1(t)\) and \(\hat{\xi}_1(t)\).

Substituting equation (12) into (14), we obtain

\[
z(t) = \theta \hat{\xi}_1(t) + \bar{\xi}(t) = y(t) - 2 \hat{\xi}_1(t) - \xi_1(t) = \theta \left\{1 - a_1(p) \xi_1(t) + \bar{\theta} \frac{p^2}{(p + 1)^2} \xi_2(t) - \frac{\theta}{(p + 1)^2} \xi_1(t) - \frac{\theta}{(p + 1)^2} \xi_2(t) + \frac{p^2 a_1(p)}{(p + 1)^2} \xi_1(t) + \frac{p^2 \bar{\theta}}{(p + 1)^2} \xi_2(t) + \frac{\theta \bar{\xi}_2(t) - \bar{\theta} \xi_2(t)}{(p + 1)^2} \xi_1(t)\right\}.
\]

Taking into consideration that \(a_1(p) = a_1 p + a_0\), we have

\[
\theta \left\{p^2 + 2 p + 1 - a_1 p - a_0\right\} \xi_1(t) = \theta \left\{p^2 - 2 a_0 \theta + \frac{p^2}{(p + 1)^2} \xi_1(t)
ight\}.
\]

Substituting (16), (17) into equation (15), we have

\[
z(t) = \theta \xi_2(t) + \bar{\xi}(t) = y(t) - 2 \hat{\xi}_1(t) - \xi_1(t) = \xi_1(t) + \frac{p^2}{(p + 1)^2} \xi_1(t) + \frac{\theta}{(p + 1)^2} \xi_2(t).
\]

From equation (18) we obtain

\[
z(t) = \xi_1(t) \bar{\xi}_1(t) + \psi_2(t) \bar{\xi}_2(t) + \psi_3(t) \bar{\xi}_3(t) + \psi_4(t) \bar{\xi}_4(t) + \psi_5(t) \bar{\xi}_5(t) + \psi_6(t) \bar{\xi}_6(t),
\]

where unknown parameters

\[
\bar{\xi}_1 = \theta + a_0, \bar{\xi}_2 = a_1, \bar{\xi}_3 = \theta + \bar{\theta} a_0, \bar{\xi}_4 = \theta - a_0 \theta.
\]

and known functions

\[
\psi_1(t) = \frac{p^2}{(p + 1)^2} \xi_1(t), \psi_2(t) = \frac{p^2}{(p + 1)^2} \xi_2(t), \psi_3(t) = \frac{1}{(p + 1)^2} \xi_2(t), \psi_4(t) = \frac{p^2}{(p + 1)^2} \xi_2(t), \psi_5(t) = \frac{p}{(p + 1)^2} \xi_1(t), \psi_6(t) = \frac{1}{(p + 1)^2} \xi_1(t).
\]

Let us use adaptive observer of the view (20), (21) for estimation of unknown parameters of model (19)

\[
\hat{\xi}(t) = \psi_1(t) \bar{\xi}_1(t) + \psi_2(t) \bar{\xi}_2(t) + \psi_3(t) \bar{\xi}_3(t) + \psi_4(t) \bar{\xi}_4(t) + \psi_5(t) \bar{\xi}_5(t) + \psi_6(t) \bar{\xi}_6(t).
\]
\[+\psi_\gamma(t)\hat{\psi}_\gamma + \psi_\delta(t)\hat{\psi}_\delta + \psi_\zeta(t)\hat{\psi}_\zeta, \]
\[\dot{\hat{\psi}}_i = k_i\psi_i(t)e(t) = k_i\psi_i(t)(\hat{\psi}_i - \hat{\psi}(t)), \]
where constant coefficient \(k_i > 0, \ i = 1,6. \)

It is easy to show that adaptive observer (20), (21) ensures
\[\lim_{t \to \infty} |z(t) - \hat{z}(t)| = 0, \]
\[\lim_{t \to \infty} |\theta_i - \hat{\theta}_i(t)| = 0. \]

Execution of (23) guarantees convergence of estimation of parameter \(\theta \) to true value of “transmitter” system model.

4. SIMULATION RESULTS

Let us simulate scheme of adaptive estimation of unknown parameter \(\theta \) for the following parameters of chaotic Duffing system (1): \(c_2 = -0.5, \ c_1 = 0, \ w(t) = 7 \sin(t) \) (i.e. \(\theta_1 = 0.5, \ \theta_2 = -0.5, \ \theta_3 = -0.5, \ \theta_4 = 2, \ \theta_5 = 0, \ \theta_6 = 0.5 \)). Algorithm of parameters tuning takes the form
\[\dot{\hat{\psi}}_1 = 18\psi_1(t)(\hat{\psi}_1 - \hat{\psi}(t)), \]
\[\dot{\hat{\psi}}_2 = 14\psi_1(t)(\hat{\psi}_2 - \hat{\psi}(t)), \]
\[\dot{\hat{\psi}}_3 = 14\psi_1(t)(\hat{\psi}_3 - \hat{\psi}(t)), \]
\[\dot{\hat{\psi}}_4 = 14\psi_1(t)(\hat{\psi}_4 - \hat{\psi}(t)), \]
\[\dot{\hat{\psi}}_5 = 14\psi_1(t)(\hat{\psi}_5 - \hat{\psi}(t)), \]
\[\dot{\hat{\psi}}_6 = 14\psi_1(t)(\hat{\psi}_6 - \hat{\psi}(t)). \]

Results of computer simulation for different values of parameter \(\theta \) are shown in fig. 2-15. Fig. 2-8 show simulation results for \(\theta = -0.5 \).
Simulation results show that $\hat{\theta}_1 \to 0.5$, $\hat{\theta}_2 = -0.5$, $\hat{\theta}_3 = -0.5$, $\hat{\theta}_4 = 2$, $\hat{\theta}_5 \to 0$, $\hat{\theta}_6 \to 0.5$.

Fig. 9 – 15 show simulation results for $\bar{\theta} = -0.75$ (i.e. $\theta_1 = 0.5$, $\theta_2 = -0.75$, $\theta_3 = -0.75$, $\theta_4 = 2$, $\theta_5 = 0$, $\theta_6 = 0.5$).

Simulation results illustrate efficiency of proposed scheme of adaptive estimation of unknown parameter θ of the Duffing model (1).
5. CONCLUSION

Problem of estimation of unknown encoded parameter is solved using adaptive observer (20), (21) for chaotic Duffing system. Unlike known analogues, this result uses only measurements of output signal of the chaotic system and also allows to find unknown encoded parameter $\tilde{\theta}$ in conditions of full parametric uncertainty of the model (1).

REFERENCES

