Abstract: This paper discusses a vehicle control augmentation strategy bringing into focus the phase property, and proposes a control bandwidth phase shaping technique which is applicable to control augmentation system design. This paper points out that the problem setting of the control augmentation system design and structure/control integrated design has similarity. As expected from the similarity, it is observed that the phase crossover bandwidth of vehicle dynamics has crucial effect to the tracking performance for pilot control input. Furthermore, a finite bandwidth phase shaping technique via dissipative control theory is proposed. Namely, the phase shaping in control bandwidth is achieved with no phase constraint in the higher frequency range. Therefore, a control augmentation system which achieves the phase shaping in the control bandwidth is easily designed by the presented technique. Copyright © 2005 IFAC

Keywords: Phase Crossover Bandwidth, Finite Bandwidth Loop Shaping, Integrated Design, Dissipative Control, Control Augmentation System.

1. INTRODUCTION

Manned vehicles, such as cars or aircrafts, are virtually considered as the feedback system which consists of the vehicle and the pilot. The vehicles are desired to have some appropriate open-loop properties for easy and precision control by the pilots. What is called “handling quality” mainly represents the control performance of the closed system which consists of the vehicle and the pilot, and several criteria of vehicle dynamical properties for good handling quality are proposed via experimental investigations (Bihrle Jr., 1966; Neal and Smith, 1971; Military Specification, 1990).

However, improving the handling quality by vehicle structural design alone is often difficult, because costs or other practical restrictions strongly constrain the structure. Therefore, additional control systems aiming at improvement of handling quality are widely implemented nowadays. Examples are power steering, traction control system, pitch/yaw damper, and more advanced feedback control systems. Let us generally call these systems CAS (control augmentation system).

To evaluate the handling quality for a given vehicle and CAS without human pilot, a practical idea of “optimal control model” was proposed (Kleinman et al., 1970; Davidson and Schmidt, 1992). This is a pilot model based on optimal control theory, and the handling quality is estimated from the achieved optimal control performance.

Although this idea is successfully applied to handling quality analysis (Schmidt, 1979; Doman and Anderson, 2000), it is not as effective for CAS design. Because, the optimal control model ob-
This means that CAS should not be designed to improve the control performance for a fixed pilot model, but the best performance for every pilot model. As is shown in the later, this problem setting is similar to that of the structure/control integrated design, which is well-known in the area of mechanical control system design (Onoda and Haftka, 1987; Grigoriadis and Wu, 1997; Iwasaki, 1999). This similarity suggests that the CAS design is a class of BMI problem and difficult to obtain a globally optimal solution, even if the pilot is simply modeled as an optimal controller.

However, Iwasaki (1999) proposed a tractable integrated design strategy by separation. The point of Iwasaki's strategy is that the achievable closed-loop performance definitely depends on a certain open-loop property, therefore we can achieve near-optimal integrated design without solving BMI problem. From numerical analysis and theoretical results, Iwasaki concluded that the phase crossover bandwidth of the plant is crucial for optimal closed-loop H_2 tracking performance. Therefore, from the similarity of both problem settings, it is natural to expect that the phase crossover bandwidth of a vehicle dynamics is the essential property for the CAS design.

This paper discusses a vehicle control augmentation strategy bringing into the focus the phase crossover bandwidth, and proposes a new CAS design via the control bandwidth phase shaping technique. In the first half of this paper, the relationship of the phase crossover bandwidth of the vehicle dynamics and the achievable optimal handling quality is considered by H_2 performance analysis, however this approach was proposed in the authors’ preliminary work (Satoh et al., 2004).

Then, in the latter half, a finite bandwidth phase shaping technique via dissipative control theory is proposed. Namely, gain and phase shaping in the control bandwidth is achieved with no phase constraint in the higher frequency range. Therefore, a control augmentation system which achieves the phase shaping in the control bandwidth is easily designed by the proposed technique.

Let us define the crossover frequency which is often used in this work. For a SISO transfer function $H(s)$, the smallest $\omega_p > 0$ such that $\angle H(j\omega_p) = -\pi$ is called Phase crossover frequency.

\[H_2 \]

Fig. 1. Aircraft pitch tracking control.

Fig. 2. CAS design problem.

2. CONTROL AUGMENTATION SYSTEM DESIGN

A typical example of CAS design is an aircraft pitch tracking control (Fig. 1). The CAS represents the dynamics of the attached controller. The airframe represents the dynamics of the vehicle except for the CAS. Let the airframe is given and we can only design the CAS to change the total dynamical property of the vehicle. Then, the CAS is virtually considered as the design parameter of the vehicle. Furthermore, the pilot is virtually considered as the feedback controller to the vehicle.

Following the idea of optimal control model, let us consider to model an well-motivated and experienced (or “optimized”) pilot as a simple H_2 optimal controller which achieves servo tracking control of θ (pitch angle) to θ_c(pitch angle command) in this work.

3. CAS DESIGN FROM THE VIEWPOINT OF INTEGRATED DESIGN

Then, let us consider the CAS design for servo tracking control from the viewpoint of the integrated design. For a given G, consider the feedback system in Fig. 2. Assume that K, G and H are finite dimensional LTI systems. The P_K denotes the extended plant, where u, y are control input/output and r, e are reference input/error.

Note that K, G, and H correspond to a CAS, an airframe and a pilot model respectively. Therefore, the design objective is to find the subsystems K and H such that optimize the optimal H_2 tracking performance from r to e, for the given G.

By using the above framework, let us define the CAS design problem as follows (Satoh et al., 2004).

Problem 1. (CAS design problem). Let G and $\gamma_u > 0$ be given. Find H, K which minimize the optimal H_2 tracking performance:

\[
\gamma_2(\gamma_u) := \min ||T_e||_2 \text{ such that } ||T_u||_2 < \gamma_u,\tag{1}
\]

where

\[
\begin{bmatrix}
\bar{e} \\
\bar{u}
\end{bmatrix} =
\begin{bmatrix}
\bar{T}_e \\
\bar{T}_u
\end{bmatrix} r.
\]

The index γ_u corresponds the limit of pilot control power (e.g. average power of the control stick
Fig. 3. Adequate phase crossover bandwidth for optimal H_2 performance.

force. If Problem 1 is feasible for the given γ_u, the H is the optimal pilot model in the meaning of H_2 performance, the K is an optimal CAS and the γ_e represents the achieved handling quality of the vehicle (with CAS).

If the K is restricted to a passive component (i.e. $K := \text{block-diag}[p_1, \ldots, p_r]$ with design parameters (p_1, \ldots, p_r)), Problem 1 is reduced to an integrated design problem of structure and control system. This suggests that Problem 1 is a class of BMI problem and difficult to design an optimal CAS with a reasonable computing cost in general, even if the systems are LTI and the pilot is simply modeled as an H_2 controller.

However, Iwasaki (1999) proposed a tractable design strategy for the integrated design version of Problem 1, by separation. The separation strategy means that first K is designed to make P_K meet the open-loop property which is desirable to achieve optimal closed-loop performance, then H is designed to achieve optimal closed-loop performance. Iwasaki considered the H_2 tracking performance for the step reference input r, and concluded that the phase crossover frequency of P_K is desired to be higher than control bandwidth.

4. BANDWIDTH ANALYSIS AND THE OPTIMAL CLOSED-LOOP PERFORMANCE

From the similarity between the problem setting of CAS design and integrated design, it is natural to expect that the phase crossover bandwidth of P_K is essential for the CAS design as well.

Then, let us reconsider the Neal and Smith’s (1971) handling quality investigation from the integrated design point of view. For an airframe and 52 variations of the CAS from their work, the authors solved the H_2 optimization problem (1) for the pitch tracking control (Fig. 1), and evaluated the handling quality by the achieved H_2 performance γ_e. In Fig. 3, the plotted circles or crosses correspond to each configuration (i.e. 52 combinations of the airframe and the CAS). We can observe that H_2 performance is optimized for the configurations which has about $\omega_p \geq 8.7$ (rad/s) (plotted as the circles). In the above meaning, let us call them “good” configurations.

On the other hand, Neal and Smith (1971) evaluated the handling quality by “Pilot Rating” (PR). The rating is a numerical index which is systematically determined from pilot comments, and primary depends on how quickly and precisely the pilot could control pitch angle. The range of PR is from 1 (best) to 10 (worst). In Fig. 4, the phase crossover frequency ω_p and PR for each aircraft configuration are plotted. We can observe that PR is also optimized for “good” configurations, which is characterized by the phase crossover bandwidth. The average PR for “good” configurations is 3.95.

From the above bandwidth analysis, we can observe that

(i) If the phase crossover bandwidth of the vehicle is sufficiently large, then both H_2 tracking performance and PR are optimized.

(ii) For this vehicle, $\omega_p = 8.7$ (rad/s) is enough for optimal H_2 tracking performance and PR.

These observations suggests that the separation strategy is effective for the CAS design. From the observation (2), it seems that the desired control bandwidth for optimal PR is about 8.7 (rad/s) for this vehicle. This gives us the CAS design specification from integrated design point of view.

5. FINITE BANDWIDTH PHASE SHAPING AND APPLICATION TO CAS DESIGN

The above discussion suggests that the phase crossover bandwidth of the vehicle is crucial
Theorem 1. The next H_∞ norm condition holds.
\[\| W(s)(Q(s) - 1) \|_\infty < 1. \] (2)

(ii) For all $\omega \in \mathbb{R}$,
\[[Q(j\omega)]^* \begin{bmatrix} -1 & 1 \\ 1 & |W(j\omega)|^{-2} - 1 \end{bmatrix} [Q(j\omega)] > 0. \] (3)

The inequality (3) means that the Nyquist plot of Q always resides in the disk whose center is $1 + j\gamma$ and radius is $1/|W(j\omega)|$. Note that the radius depends on ω.

Theorem 1. If (2) holds, then $\forall \omega \in \Omega_c$,
\[|Q(j\omega)| < \arcsin(|W(j\omega)|^{-1}). \] (4)
\[1 - \frac{1}{|W(j\omega)|} < |Q(j\omega)| < 1 + \frac{1}{|W(j\omega)|}. \] (5)

Furthermore, $\forall \omega \in \overline{\Omega}_c$,
\[|Q(j\omega)| < 1 + \frac{1}{|W(j\omega)|}. \] (6)

Proof 1. Let us show a brief proof. From the condition (2), for all $\omega \in \mathbb{R}$,
\[|Q(j\omega) - 1| < |W(j\omega)|^{-1} \] (8)
\[\Leftrightarrow |\Re(Q(j\omega) - 1)|^2 - |W(j\omega)|^{-2} < -\Im(Q(j\omega) - 1)^2. \] (9)

The right term of (9) is less than or equal to zero. Therefore the next inequalities hold for all $\omega \in \mathbb{R}$.
\[-\frac{1}{|W(j\omega)|} < \Re(Q(j\omega)) - 1 < \frac{1}{|W(j\omega)|}. \] (10)

The first two inequalities of (10) implies the first two inequalities of (5) hold for all $\omega \in \Omega_c$. On the other hand, from (8),
\[|Q(j\omega)|^2 < \left(1 + \frac{1}{|W(j\omega)|} \right)^2 + 2 \left(\Re(Q(j\omega)) - 1 - \frac{1}{|W(j\omega)|} \right). \] (11)

The second term of the right hand side of (11) is less than zero from (10). This implies (6) and the latter two inequalities of (5) hold. The condition (4) is proved via geometric relation of (3).

Note that no phase condition holds for $\omega \in \overline{\Omega}_c$ from theorem 1. Then, let us discuss the finite bandwidth phase shaping by feedback control. For a given SISO plant P and weighting functions W_1, W_2, consider the next H_∞ problem (Fig. 5).
\[\| W_1(W_2^{-1}P_K - 1) \|_\infty < 1, \] (12)
\[P_K := (1 + PK)^{-1}PK. \] (13)

The generalized plant is given as follows.
\[\begin{bmatrix} z \\ y \end{bmatrix} = \begin{bmatrix} -W_1 & W_1W_2^{-1}P \\ 1 & -P \end{bmatrix} \begin{bmatrix} w \\ u \end{bmatrix}. \] (14)

Note that the weightings should be selected to make W_1 and $W_1W_2^{-1}P$ be proper.

The phase shaping bandwidth Ω_c is determined by W_1, and the phase property in Ω_c is determined by W_2. If the design problem (12) is solved, then the phase shaping in the specified bandwidth Ω_c is achieved by K.

Let us show an illustrative example of the aircraft CAS design (Fig. 6). The plant is from Neal and
Then, because $j\omega \leq \Omega_w$ for all ω, the condition (12) is satisfied, from Theorem 1 this guarantees that the maximum phase lag of P is

$$P(s) := \frac{1}{\tau_0} \frac{K_0(\tau_2 s + 1)}{s \left(\frac{1}{\tau_p} s + \frac{1}{\zeta} \right) \left(\frac{1}{\tau_p} s + \frac{1}{\zeta} \right) + 1}.$$ (15)

Plant parameters are $K_0 = 1$, $\tau_2 = 1/1.25$, $\omega_p = 2.2$, $\zeta = 0.69$ respectively.

Following the observation in §4, let us design the CAS to shape the phase property of the vehicle. The design specification is given as follows.

Specification 1. The phase crossover frequency of the P_K is more than $\omega_p := 8.7$ (rad/s).

Considering the specification 1, the shaping bandwidth should be selected as $\Omega_c = \{0 \leq \omega \leq \overline{\omega} \}$ for some $\overline{\omega} \geq \omega_p$. In this example, W_1 is selected as

$$W_1(s) := \frac{1 \times 10^{-5} s + 28.5}{s + 5},$$ (16)

because $|W_1(j\omega)| \geq 1$ for all ω in $\Omega_c = \{0 \leq \omega \leq 28.1$ (rad/s)\}.

Then, W_2 is selected as a second-order lag,

$$W_2(s) := \frac{2}{0.6 s^2 + 3.2 s + 1.8}.$$ (18)

This guarantees that the maximum phase lag of W_2 (18) in Ω_c (17) is less than or equal to 180 (deg.), and $W_1 W_2^{-1} P$ is proper.

If the condition (12) is satisfied, from Theorem 1 , P_K satisfies the following phase/gain conditions for all $\omega \in \Omega_c$ (17).

$$\angle P_K(j\omega) - \angle W_2(j\omega) < \arcsin(|W_1(j\omega)|^{-1}),$$ (19)

$$1 - \frac{1}{|W_1(j\omega)|} < \frac{|P_K(j\omega)|}{|W_2(j\omega)|} < 1 + \frac{1}{|W_1(j\omega)|}.$$ (20)

Furthermore, for all $\omega \notin \Omega_c$ (17),

$$\frac{|P_K(j\omega)|}{|W_2(j\omega)|} < 1 + \frac{1}{|W_1(j\omega)|}.$$ (21)

From (16) and (18), $\angle W_2(j\omega_p) = -147.4$ (deg.) and $|\angle P_K(j\omega_p) - \angle W_2(j\omega_p)| < 20.9$ (deg.). Since $\angle W_2(j\omega)$ is monotonically decreasing function, this guarantees that phase crossover bandwidth of P_K is more than ω_p.

The H_{∞} problem (12) is solved by LMI control toolbox in MATLAB R13 SP1. The designed controller is

$$K(s) = \left(4230 s^4 + 21320 s^3 + 46150 s^2 + 40930 s + 3.611 \right) / \left(s^5 + 132.8 s^4 + 11670 s^3 + 71820 s^2 + 68540 s - 956.4 \right)$$ (22)

We can clearly see the improvement of phase crossover bandwidth in Fig. 7. The broken line is the Bode plot of the P (15). The phase crossover frequency of the P is about 2.6 (rad/s), therefore it is not enough for good handling quality. The solid line in Fig. 7 is the Bode plot of the closed-loop system P_K (13) which is designed via the presented technique, where dash-dot line with marker ‘x’ is the Bode plot of W_2 (18). We can confirm that the phase crossover frequency of P_K is improved to about 20.9 (rad/s), therefore the specification 1 is fully achieved.
In Fig. 7, phase/gain constraint (19), (20) and (21) are shown as hatched areas. Note that the phase constraint (19) is meaningful in the specified bandwidth (17). Therefore, the finite bandwidth phase shaping technique gives us more reasonable phase shaping than the technique based on γ-positive realness.

6. CONCLUSION

This paper discussed the vehicle control augmentation strategy from the viewpoint of the phase bandwidth of the vehicle dynamics. Furthermore, the finite bandwidth phase shaping technique is proposed and applied to the phase crossover bandwidth shaping for the CAS (control augmentation system) design. From the reconsideration of Neal and Smith’s handling quality investigation, it is observed that phase crossover bandwidth plays an important role to improve the handling quality. However, the phase shaping design in the authors’ preliminary work results in the phase shaping in all frequency range, though the plant phase property in the very high frequency is noncrucial for control performance. Therefore, in this paper, the authors proposed another tractable phase shaping technique in the finite bandwidth via dissipative control theory. The design problem is reduced to a LMI problem and the design example of the aircraft pitch pointing CAS is shown to demonstrate the effectiveness of the proposed technique.

REFERENCES

ACKNOWLEDGMENT

This work was supported in part by Tateisi Science and Technology Foundation.