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Abstract: When data contains components with different characteristics and it is required 
to identify both, standard Gaussian regression, based on a model with a single stochastic 
process, is inadequate. In this paper, a novel adaptation of Gaussian regression, based on 
models with two stochastic processes, is presented. In both the prior and posterior joint 
probability distributions, the Gaussian processes for the two components are 
independent. The effectiveness of the revised Gaussian regression method is 
demonstrated by application to wind turbine time series data.  Copyright © 2005 IFAC 
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1. INTRODUCTION2 A   brief   explanation   of   the    standard    Gaussian 
regression methodology is given below. Consider a 
smooth scalar nonlinear function f(.) dependent on 
the explanatory variable, . Suppose N 

measurements, 

pD ℜ⊆∈z

{ }N
iii )y,(z 1= , of the value of the 

function with additive Gaussian white measurement 
noise, i.e. yi=f(zi)+ni,  are available and denote them 
by M. It is of interest here to use this data to learn the 
mapping f(z) or, more precisely, to determine a 
probabilistic description of f(z) on the domain, D, 
containing the data. Note that this is a regression 
formulation and it is assumed the input, z, is noise 
free. The probabilistic description of the function, 
f(z), adopted is the stochastic process, fz, with the 
E[fz], as z varies, interpreted to be a fit to f(z). By 
necessity, to define the stochastic process, fz, the 
probability distributions of fz for every choice of 
value of D∈z  are required together with the joint 
probability distributions of f  for every choice of 
finite sample, {z

iz

i
fz

1,…,zk}, from D, for all k>1. Given 
the joint probability distribution for , i=1..N, and 
the joint probability distribution for ni, i=1..N, the 
joint probability distribution for yi, i=1..N, is readily 
obtained since the measurement noise, ni, and the 

 
Following some initial publications in the late 1990s 
(e.g., MacKay (1998), Williams (1999)), interest has 
grown quickly into the application of Gaussian 
processes prior models to data analysis; e.g. Gibbs 
and MacKay (2000), Sambu, et al. (2000), Yoshioka 
and Ishii (2001), Leithead et al. (2003). When the 
data contains components with different 
characteristics and it is required to identify both, the 
standard model, consisting of a single Gaussian 
process, is inadequate. In this paper, a novel 
adaptation of the Gaussian regression methodology, 
based on models with two stochastic processes, is 
proposed (Section 4) and its effectiveness is 
demonstrated by its application (Section 5) to wind 
turbine time series data, specifically, site 
measurements of rotor speed for a commercial 1MW 
machine. 
 
 

2. GAUSSIAN PROCESS PRIOR MODELS 
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f(zi) (and so the f ) are statistically independent. M 
is a single event belonging to the joint probability 
distribution for y

iz

) =

i, i=1..N. 
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In the Bayesian probability context, the prior belief is 
placed directly on the probability distributions 
describing fz which are then conditioned on the 
information, M, to determine the posterior 
probability distributions.  In the Gaussian process 
prior model, the prior probability distributions for the 
fz are all Gaussian with zero mean (in the absence of 
any evidence the value of f(z) is as likely to be 
positive as negative). To complete the statistical 
description, requires only a definition of the 
covariance function =E[ , ], for all z),(C jif zz

i
fz j

fz i 

and zj. The resulting posterior probability 
distributions are also Gaussian. This model is used to 
carry out inference as follows. 
 
Clearly  where p(M) acts 
as a normalising constant.  Hence, with the Gaussian 
prior assumption, 

M)/p(M),f(pM|f(p zz
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where , ΛTy ],[ 1=Y 11 is E[fz, fz], the ijth 
element of the covariance matrix Λ22 is E[yi, yj] and 
the ith element of vector Λ21 is E[yi, fz].  Both Λ11 and 
Λ21 depend on z.  Applying the partitioned matrix 
inversion lemma, it follows that 

 ( ) ])ˆ()ˆ(| 1
2
1

zzzzzz ffffMfp −Λ−−∝ −     (2) 

with  and . 
Therefore, the prediction from this model is that the 
most likely value of f(z) is the mean, f , with 

variance Λ

z
T
21f̂ ΛΛ= 21

-1
22

T
2111 ΛΛΛ−Λ=Λ z

z
ˆ
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21Λ

z. Note that  is simply a z-dependent 
weighted linear combination of the measured data 
points, Y, using weights . The measurement 
noise, n

zf̂

Λ

i, i=1,..N, is statistically independent of f(zi), 
i=1,..N, and has covariance matrix B. Hence, the 
covariances for the measurements, yi, are simply 
E[yi,yj] = E[ f , ]+ B

iz ij  ;  E[yi, fz] = E[ f , f
iz z]  (3) 

 
The prior covariance function is generally dependent 
on a few hyperparameters, θ . To obtain a model 
given the data, M, the hyperparameters are adapted 
to maximise the likelihood, p(M|θ), or equivalently 
minimise the negative log likelihood, L(θ), where 

 YY 1)(
2
1)(det)( −+= θθθ CCL T       (4) 

with 22)( Λ=θC . 
 
 
3. MODELS WITH COMPOUND COVARIANCE 

FUNCTIONS 
 
The procedure outlined in Section 2 is very effective 
when used to identify a single function. However, 

suppose that the measurements are not of a single 
function but of the sum of two functions with 
different characteristics; that is, the measured values 
are yi=f(zi)+g(zi)+ni. A possible probabilistic 
description of h(z)=f(z)+g(z) is by means of the sum 
of two independent Gaussian processes, fz and gz. Let 
the covariance functions for fz and gz be  

and , respectively, then h

),(C jif zz

),(C jig zz z=(fz+gz) is itself 
a stochastic process with covariance function, 
Ch=(Cf+Cg), since fz and gz are independent. 
 
Following Section 2, the prior joint probability 
distribution for H and Y is Gaussian 
with mean zero and covariance matrix, 

T]h,h[
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with   and ]E[ THHHH =Λ HHH BQ Λ+= . 
Conditioning on the data set, the posterior 
probability distribution for H remains Gaussian with 
mean and covariance matrix, respectively, 

YQHHH
1−Λ  and HHHHHHHHH Q ΛΛΛΛ 1−−=    (6) 

The prediction for H is the mean ( ) with 

confidence interval 

YQHHH
1−Λ

2±  standard deviations ( D2± , 
where the diagonal matrix )( HHΛdiagD = ). 
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Fig. 1. Two length-scale data (x x), prediction (––), 

error and confidence interval (= =) 
 
Example 1: A commonly used prior covariance 
function for a Gaussian process with scalar 
explanatory variable is 

][ 2
2
1 )zz(exp jida −−                 (7) 

It ensures that measurements associated with nearby 
values of the explanatory variable should have higher 
covariance than more widely separated values of the 
explanatory variable;  is related to the amplitude of 
the Gaussian process and d inversely related to its 
length-scale. Let the covariance function for f

a

z be (7) 
with a=1.8 and d=2.5, and the covariance function 
for gz be (7) with a=0.95 and d=120; that is, fz has a 
long length-scale and gz a short length-scale. Also, 
let the measurement noise be Gaussian white noise 
with variance b=0.04, i.e. Bij=bδij., where δij is the 
Kronecker delta. Gaussian regression is applied to a 

     



 

set of 800 measurements, yi=f(zi)+g(zi)+ni, at 
constant interval, 0.01 with the f(zi) and g(zi) the 
sample values for the above stochastic processes fz 
and gz, respectively. The data values are shown in 
figure 1 together with the prediction, error and 
confidence intervals obtained using (6). 
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Fig. 2.  Variable density data, prediction and 

confidence interval. 
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Fig. 3. Prediction and confidence interval with long 

and short length scale components. 
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Fig. 4. Prediction and confidence interval with long 

length scale and periodic components. 
 
Remark 1: In Example 1, the probabilistic 
description for h(z) is by means of a single Gaussian 
process, hz, with the compound covariance function, 
Ch=(Cf+Cg). An alternative simpler probabilistic 
description would be by means of a Gaussian 

process, zh
~

, with the covariance function, Ch
~ , of 

the form (7). A suitable value of the length scale 
hyperparameter, d, is the same as that for the short 
length-scale in Example 1, i.e. zh

~
has the same short 

length-scale as gz in Example 1, but a suitable value 
of the amplitude hyperparameter, a, is larger, i.e. the 
value maximising the likelihood of the data. A 
suitable value of the length scale hyperparameter, d,. 
This simpler probabilistic description is almost 
equally as effective as the probabilistic description 
with covariance function Ch, since the prediction and 
confidence interval at any point depend primarily on 
nearby data values rather than remoter values. 
 
The benefits for prediction of using a compound 
covariance function such as Ch, become apparent 
when the density of the data varies. Consider the data 
in Figure 2. It clearly contains a long length-scale 
component and a short length-scale component. Both 
are sinusoids. However, there are large gaps in the 
data between 2 and 3.5 (except for two values at 2.5) 
and between 6 and 8. First, consider the situation 
when, the covariance function is chosen to be (7) 
with the hyperparameters adapted such that the value 
of the length scale hyperparameter, d, corresponds to 
the short length-scale. The prediction and confidence 
interval obtained are shown in figure 2. Since it now 
depends only on nearby values, the prediction over 
the data gaps is poor. Indeed, no prediction is made 
over the second gap between 6 and 8. Over the data 
gaps, the confidence interval, reflecting the 
uncertainty in the prediction, is much enlarged. Now, 
consider the situation when the covariance function 
is chosen to be similar to that of Example 1; that is, it 
is the sum of two functions, for the long length-scale 
and short length-scale, respectively. The prediction 
and confidence interval are shown in figure 3. Over 
the data gaps, the prediction is improved due to the 
inclusion of the long length-scale component in the 
covariance function. The confidence interval, 
reflecting that the uncertainty is now mainly in the 
short length scale component, is considerably 
reduced. Nevertheless, the periodic nature of the 
short length-scale component in the data can be 
exploited to further improve the prediction over the 
gaps. A suitable prior covariance function for a 
periodic Gaussian process with scalar explanatory 
variable is 

][ ))zz((sinexp 2
2
1

jida −− πλ             (8) 
Finally, consider the situation when the covariance 
function is chosen to be the sum of (7) and (8), the 
former being for the long length-scale component 
and the latter for the periodic short-term component 
in the data. The prediction and confidence interval 
are shown in figure 4. Over the data gaps, the 
prediction is much improved and the confidence 
interval much narrower. 
 
 

4. MODELS WITH TWO GAUSSIAN 
PROCESSES 
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Fig. 5. Ad hoc prediction and confidence intervals. 
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Fig. 6. Prediction and confidence intervals from joint 

probability distribution. 
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Fig. 7. Prediction and confidence intervals from 
modified probability distribution of theorem 1. 

 
Rather than the probabilistic description for 
h(z)=f(z)+g(z) by means of a single stochastic 
process, hz, see Section 3,  the  requirement here is to 
determine a separate probabilistic description for 
both f(z) and g(z) by means of  the  two  independent 
Gaussian processes, fz and gz.  
 
4.1 Ad hoc identification of f(z) and g(z) 
 
A simple procedure to identify the two contributions 
to the data values might be as follows. Firstly, 
interpret the measurements to be of the form 

; that is, to be due solely to the f*
ii n)(f +z z plus 

white noise with covariance matrix . The 
variance of the noise, b , is adapted to be 
sufficiently large to account for g(z

Ib** =B

YQFFF
1ˆ −Λ

*

T]

i)+ni. 
Conditioning on the Y, the mean and covariance 
matrix for F  are  and f,f[

N1 zz=

FFFFFQ ΛΛ 1ˆ −−

FF
* Λ+

FFFF ΛΛ =

F BQ =ˆ
, where  

and . Secondly, interpret the residues 
with respect to the mean of F, 

]TFFE[FF =Λ

Y1QBYQ FF
1 ˆˆ −− = *YR FF−= Λ

ii n)(g
, to be of the form 

+z ; that is, to be due to gz. Conditioning on 
R , the mean and covariance matrix for 

 are T]g
Nz,g[

1zG = RQG
1−

GGΛ  and 

GGGGGQ ΛΛ 1−−

]T

YQFFF
1ˆ −Λ

GGGG Λ=

E[GGGG =

*b

*b

Λ

Λ

, where 

 and Q . The 
predictions and confidence intervals for F and G are 
calculated as for H in Section 3. 

GGB Λ+G =

RQGGG
1−Λ GG

YQFFF
1ˆ −Λ

GGΛ

 
Example 1 (cont.): The above procedure is applied to 
Example 1 with fz the long length-scale component 
and gz the short length-scale component. The long 
length-scale (solid line) and short length-scale 
(dashed line) predictions together with their 
confidence intervals are shown in figure 5. The value 
for  is 0.48249. The confidence interval for the 
short length-scale component is narrow and similar 
in magnitude to the confidence interval in figure 5, 
as would be expected (see Remark 1). The 
confidence interval in the long length-scale 
component is much broader since it has to account 
through  for both the short length-scale 
component and the measurement noise. 
 
Unfortunately, the probabilistic description for f(z) 
and g(z), obtained by the above simple procedure, is 
not coherent. Other than the somewhat dubious 
procedure of accounting for g(zi)+ni by white noise, 
the concern is over combining the separate 
probabilistic descriptions for F and G to obtain a 
similar description for H=(F+G) to that of Section 3. 
 
In the context of Example 1 when fz has a long 
length-scale and gz a short length-scale, suppose the 
prediction, , for F is interpreted as a de-
trending of the data. The description for G is, then, 
probabilistic, a Gaussian distribution with mean 

 and covariance matrix Λ , whilst the 

description for F is deterministic, . The 
covariance matrix for H is  (the short length-
scale covariance matrix) and the confidence intervals 
are narrow as required; see the Remark 1. However, 
when f(z) need be explicitly identified, this 
description being deterministic is inadequate. 
 
An alternative is to consider the residues, R, for all 
possible values of the contribution to the data due to 

     



 

fz rather than only the mean. Since the probability 
distribution for F conditioned on Y is Gaussian with 
mean  and covariance matrix YQFFF

1ˆ −Λ FFΛ

YF
1−

, the 
probability distribution for R conditioned on Y, 
p(R|Y), is Gaussian with mean  and 
covariance matrix 

QB ˆ*

FFΛ . For each R belonging to 
p(R|Y), the probability distribution for G 
conditioned on R, p(G|R), remains Gaussian with 
mean  and covariance matrix RQGGG

1−Λ GGΛ . 
Suppose the hyperparameters are unchanged for each 
R (again somewhat dubious), then the joint 
probability distribution for [RT,GT]T conditioned on 
Y, p(R,G|Y)=p(G|R)p(R|Y), is Gaussian with mean , 
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The covariance matrix for H=F+G is 
 

which is identical, as required, to 

)()()( 1
GGFFGGFFGGFF Q ΛΛΛΛΛΛ ++++ −

HHΛ  in Section 3.  
 
Example 1 (cont.): The above procedure is applied to 
Example 1. The long length-scale and short length-
scale predictions together with their confidence 
intervals are shown in figure 6. The large breadth of 
the confidence intervals reflects uncertainty over 
attributing part of the data values to either fz or gz.  
 
The requirement is to obtain the posterior probability 
distribution for F and G conditioned on the data set, 
M, subject to the condition that they remain 
independent. Of course, the posterior probability 
distribution remains Gaussian. The mean and 
covariance matrix is provided by theorem 1. 
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and covariance matrix, 
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Theorem 1: Given that the prior joint probability 
distribution for F, G and Y is Gaussian with mean 
zero and covariance matrix Λ, the posterior joint 
probability distribution for [FT, GT ]T conditioned on 
the M, subject to the condition that they remain 
independent, is Gaussian with 

It follows immediately that the joint probability 
distribution for [FT,GT]T conditioned on Y, is 
Gaussian with mean vector, 
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Consequently, the covariance matrix for H is 
BQBQ GFFGGG

11 −−+ ΛΛ . In the context of Example 
1, this covariance matrix is very similar to GGΛ  as 
required. However, the description for f(z) remains 
inadequate since its confidence interval is 
unnecessarily broad through accounting for both the 
short length-scale component and the measurement 
noise, see figure 5.   

where FFF BQ Λ+= . 
 
Proof: The prediction, from (10), for the contribution 
of gz to the data, , may alternatively be in 
part explainable by f

YQGG
1−Λ

YQ 1−

z. An estimate of that part of the 
data values is assumed to be of the form 

. It should be transferred from 
the prediction for G to the prediction for F. The 
appropriate modification to (10) is achieved by 

Q GGFFF
ˆ 1− )( ΛΛ

 
4.2   Systematic identification of fz and gz 
 
A systematic and statistically correct procedure to 
identify the two contributions is required. Since fz 
and gz are independent, i.e. E[FGT]=0, it follows that 

TTTT ΛΛΛΜΜΜ =→=→ 00 ;  (12) 

where . Should the above 

assumption be correct then there exists a B
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with . The prior joint 
probability distribution for F, G and Y is Gaussian 
with mean zero and covariance matrix Λ. The 
posterior joint probability distribution for F and G 
conditioned on the data Y remains Gaussian with 
mean, 

GGFFBQ ΛΛ ++=

Μ , and covariance matrix, Λ , where 
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Hence, the correct choice for B* is B. It follows that 
the required posterior joint probability distribution is 
Gaussian with mean and covariance matrix given by 
(11). (Note, the likelihood of the data is not affected 
by this adjustment of the posterior probability 
distribution). 
 

     



 

     

The covariance matrix for H=F+G is again 
 as 

required. 
)()()( 1
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Example 1 (cont.): Applying Theorem 1 to Example 
1, the modified long length-scale and short length-
scale predictions together with their confidence 
intervals are shown in figure 7. The confidence 
interval for the long length scale is much narrower 
than in figure 5. 
 
 

5. WIND TURBINE DATA 
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Fig. 8. Wind turbine data, long length scale 

prediction and confidence intervals. 
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Fig. 9. Wind turbine short length scale prediction 

with confidence intervals, total error and confidence 
interval. 

 
The identification procedure of Section 4.2, based on 
models with two Gausian processes, is applied to 
wind turbine time series data, specifically, site 
measurement of rotor speed for a commercial 1MW 
machine. The data consist of a run of 600 second 
sampled at 40Hz. A typical section, from 200s to 
250s, is shown in Figure 8 (grey line). It has a long 
length-scale component due to variations in the 
aerodynamic torque, caused by changes in the wind 
speed and the pitch angle of the rotor blades, and a 
short length-scale component due to the structural 
and electro-mechanical dynamics of the machine. 
These two components can be clearly seen in figure 
8 as can the poor quality of the data. The purpose is 

to identify both components, an initial yet important 
part of identifying the aerodynamics and drive-train 
dynamics of variable speed wind turbines (Leithead 
et al. 2003). 
 
A typical section, from 200s to 250s, of the long 
length-scale component prediction with confidence 
intervals is shown in figure 8 (black lines) and, a 
typical section from 265s to 270s, of the short 
length- scale component prediction and confidence 
interval in figure 9 (solid lines).  In addition, the 
confidence interval for the total prediction of the 
combined long and short length-scale components is 
shown in figure 9 (dashed lines) together with the 
residue between the data values and the total 
prediction (dotted line). The long and short length-
scale components are successfully extracted from the 
measurement data. 
 
 

6. CONCLUSION 
 
To extract two components of different 
characteristics from data, a novel adaptation of the 
Gaussian regression methodology, based on models 
with two stochastic processes, is developed. In the 
prior and posterior joint probability distributions, the 
two components are independent. The effectiveness 
of the revised Gaussian regression method is 
demonstrated by application to wind turbine time 
series data. A long and a short length-scale 
component are successfully identified. 
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