GAUSSIAN REGRESSION BASED ON MODELS WITH TWO STOCHASTIC PROCESSES
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Abstract: When data contains components with different characteristics and it is required
to identify both, standard Gaussian regression, based on a model with a single stochastic
process, is inadequate. In this paper, a novel adaptation of Gaussian regression, based on
models with two stochastic processes, is presented. In both the prior and posterior joint
probability distributions, the Gaussian processes for the two components are
independent. The effectiveness of the revised Gaussian regression method is
demonstrated by application to wind turbine time series data. Copyright © 2005 I[FAC
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1. INTRODUCTION®

Following some initial publications in the late 1990s
(e.g., MacKay (1998), Williams (1999)), interest has
grown quickly into the application of Gaussian
processes prior models to data analysis; e.g. Gibbs
and MacKay (2000), Sambu, et al. (2000), Yoshioka
and Ishii (2001), Leithead et al. (2003). When the
data  contains  components  with  different
characteristics and it is required to identify both, the
standard model, consisting of a single Gaussian
process, is inadequate. In this paper, a novel
adaptation of the Gaussian regression methodology,
based on models with two stochastic processes, is
proposed (Section 4) and its effectiveness is
demonstrated by its application (Section 5) to wind
turbine time series data, specifically, site
measurements of rotor speed for a commercial IMW
machine.

2. GAUSSIAN PROCESS PRIOR MODELS
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A brief explanation of the standard Gaussian
regression methodology is given below. Consider a
smooth scalar nonlinear function f(.) dependent on

the explanatory variable, ze€ D < R". Suppose N

measurements, {(zi,yi)}il, of the value of the

function with additive Gaussian white measurement
noise, i.e. y=f(z)+n;, are available and denote them
by M. It is of interest here to use this data to learn the
mapping f(z) or, more precisely, to determine a
probabilistic description of f(z) on the domain, D,
containing the data. Note that this is a regression
formulation and it is assumed the input, z, is noise
free. The probabilistic description of the function,
f(z), adopted is the stochastic process, f,, with the
E[f,], as z varies, interpreted to be a fit to f(z). By
necessity, to define the stochastic process, f,, the
probability distributions of f, for every choice of
value of ze D are required together with the joint
probability distributions of f, for every choice of

finite sample, {z,...,2}, from D, for all k>1. Given
the joint probability distribution for f, , i=1..N, and
the joint probability distribution for n;, i=1..N, the
joint probability distribution for y;, i=1..N, is readily
obtained since the measurement noise, n;, and the


mailto:w.leithead@eee.strath.ac.uk

f(z;) (and so the le ) are statistically independent. M

is a single event belonging to the joint probability
distribution for y;, i=1..N.

In the Bayesian probability context, the prior belief is
placed directly on the probability distributions
describing f, which are then conditioned on the
information, M, to determine the posterior
probability distributions. In the Gaussian process
prior model, the prior probability distributions for the
f, are all Gaussian with zero mean (in the absence of
any evidence the value of f(z) is as likely to be
positive as negative). To complete the statistical
description, requires only a definition of the
covariance function Cg(z;,z;)=E[f, , fZj ], for all z;

1°
and z. The resulting posterior probability
distributions are also Gaussian. This model is used to
carry out inference as follows.

Clearly p(f, |M)=p(f,,M)/p(M) where p(M) acts
as a normalising constant. Hence, with the Gaussian
prior assumption,
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where Y=[y,—-yn17, Ay is E[f, f,], the ijth

element of the covariance matrix A, is E[y;, y;] and
the i™ element of vector A, is Ely;, f,]. Both A}, and
A, depend on z. Applying the partitioned matrix
inversion lemma, it follows that

p(fy M) oc exp[ =41, = FON (.= /)] @)
with f, =ATALY and A, =A,-ALALA,,.
Therefore, the prediction from this model is that the

most likely value of f(z) is the mean, fz, with

variance A,. Note that fz is simply a z-dependent
weighted linear combination of the measured data
points, Y, using weights AJ,A>,. The measurement
noise, n;, i=1,..N, is statistically independent of f(z;),
i=1,..N, and has covariance matrix B. Hence, the
covariances for the measurements, y;, are simply

E[ylvyj] = E[ fzi s fzj ]+ Blj 5 E[yi9 fl] = E[ fzi s fZ] (3)

The prior covariance function is generally dependent
on a few hyperparameters, . To obtain a model
given the data, M, the hyperparameters are adapted
to maximise the likelihood, p(M|6), or equivalently
minimise the negative log likelihood, L(6), where

L(0) = %log detC(0) +%YTC((9)’1Y @)
with C(0)=A,, .
3. MODELS WITH COMPOUND COVARIANCE

FUNCTIONS

The procedure outlined in Section 2 is very effective
when used to identify a single function. However,

suppose that the measurements are not of a single
function but of the sum of two functions with
different characteristics; that is, the measured values
are y=f(z)+g(z)+tn. A possible probabilistic
description of h(z)=f(z)+g(z) is by means of the sum
of two independent Gaussian processes, f, and g,. Let
the covariance functions for f, and g, be C;(z;,z;)

and C,(z;,z;), respectively, then h,=(f,+g,) is itself

1

a stochastic process with covariance function,
Ciy=(C¢tCy), since f, and g, are independent.

Following Section 2, the prior joint probability
distribution for H=[h, ,---h

with mean zero and covariance matrix,
H A A
EHY}[HT YT] _ { HH HH:| )

Aun  Qu
with  Apy = E[HH'] and Qy=B+Ayy.
Conditioning on the data set, the posterior
probability distribution for H remains Gaussian with
mean and covariance matrix, respectively,
AHHQf{lY and Ayy =Ayn —AHHQﬁlAHH (6)

The prediction for H is the mean (A zz Qg Y ) with

- 1" and Y is Gaussian

confidence interval +2 standard deviations (£ 24D s
where the diagonal matrix D = diag(XHH) ).

Fig. 1. Two length-scale data (x x), prediction (—),
error and confidence interval (= =

Example 1: A commonly used prior covariance
function for a Gaussian process with scalar
explanatory variable is

aexp[—%d(zi —zj)z] )
It ensures that measurements associated with nearby
values of the explanatory variable should have higher
covariance than more widely separated values of the
explanatory variable; a is related to the amplitude of
the Gaussian process and d inversely related to its
length-scale. Let the covariance function for f, be (7)
with a=1.8 and d=2.5, and the covariance function
for g, be (7) with a=0.95 and d=120; that is, f, has a
long length-scale and g, a short length-scale. Also,
let the measurement noise be Gaussian white noise
with variance $=0.04, i.e. B;=bJ;., where Jj is the
Kronecker delta. Gaussian regression is applied to a



set of 800 measurements, y=f(z)tg(z)+n;, at
constant interval, 0.01 with the f(z;) and g(z) the
sample values for the above stochastic processes f,
and g,, respectively. The data values are shown in
figure 1 together with the prediction, error and
confidence intervals obtained using (6).

Data, prediction with confidence intervals
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Fig. 2. Variable density data, prediction and
confidence interval.
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Fig. 3. Prediction and confidence interval with long
and short length scale components.
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Fig. 4. Prediction and confidence interval with long
length scale and periodic components.

Remark 1: In Example 1, the probabilistic
description for h(z) is by means of a single Gaussian
process, h,, with the compound covariance function,
Cy=(C¢tCy). An alternative simpler probabilistic
description would be by means of a Gaussian

process, h,, with the covariance function, C,, of

the form (7). A suitable value of the length scale
hyperparameter, d, is the same as that for the short

length-scale in Example 1, i.e. ﬂz has the same short

length-scale as g, in Example 1, but a suitable value
of the amplitude hyperparameter, a, is larger, i.e. the
value maximising the likelihood of the data. A
suitable value of the length scale hyperparameter, d,.
This simpler probabilistic description is almost
equally as effective as the probabilistic description
with covariance function Cy, since the prediction and
confidence interval at any point depend primarily on
nearby data values rather than remoter values.

The benefits for prediction of using a compound
covariance function such as C;, become apparent
when the density of the data varies. Consider the data
in Figure 2. It clearly contains a long length-scale
component and a short length-scale component. Both
are sinusoids. However, there are large gaps in the
data between 2 and 3.5 (except for two values at 2.5)
and between 6 and 8. First, consider the situation
when, the covariance function is chosen to be (7)
with the hyperparameters adapted such that the value
of the length scale hyperparameter, d, corresponds to
the short length-scale. The prediction and confidence
interval obtained are shown in figure 2. Since it now
depends only on nearby values, the prediction over
the data gaps is poor. Indeed, no prediction is made
over the second gap between 6 and 8. Over the data
gaps, the confidence interval, reflecting the
uncertainty in the prediction, is much enlarged. Now,
consider the situation when the covariance function
is chosen to be similar to that of Example 1; that is, it
is the sum of two functions, for the long length-scale
and short length-scale, respectively. The prediction
and confidence interval are shown in figure 3. Over
the data gaps, the prediction is improved due to the
inclusion of the long length-scale component in the
covariance function. The confidence interval,
reflecting that the uncertainty is now mainly in the
short length scale component, is considerably
reduced. Nevertheless, the periodic nature of the
short length-scale component in the data can be
exploited to further improve the prediction over the
gaps. A suitable prior covariance function for a
periodic Gaussian process with scalar explanatory
variable is

aexp[-Ldsin’(7A(z; - z,))] (8)

Finally, consider the situation when the covariance
function is chosen to be the sum of (7) and (8), the
former being for the long length-scale component
and the latter for the periodic short-term component
in the data. The prediction and confidence interval
are shown in figure 4. Over the data gaps, the
prediction is much improved and the confidence
interval much narrower.

4. MODELS WITH TWO GAUSSIAN
PROCESSES



Long and short length-scale predictions with confidence intervals
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Fig. 5. Ad hoc prediction and confidence intervals.

Long and short length-scale predictions with confidence intervals
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Fig. 6. Prediction and confidence intervals from joint
probability distribution.

Long and short length-scale predictions with confidence intervals
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Fig. 7. Prediction and confidence intervals from
modified probability distribution of theorem 1.

Rather than the probabilistic description for
h(z)=f(z)+g(z) by means of a single stochastic
process, h,, see Section 3, the requirement here is to
determine a separate probabilistic description for
both f(z) and g(z) by means of the two independent
Gaussian processes, f, and g,.

4.1 Ad hoc identification of f(z) and g(z)

A simple procedure to identify the two contributions
to the data values might be as follows. Firstly,
interpret the measurements to be of the form

f (zi)+nf; that is, to be due solely to the f, plus

white noise with covariance matrix B" =5"7. The

variance of the noise, b*, is adapted to be
sufficiently large to account for g(z)+n;.
Conditioning on the Y, the mean and covariance

matrix for F= [le""sz]T are AFFQEIY and
App = App —AppQp' App, where Agp = E[FF’]
and QF =B+ A g . Secondly, interpret the residues
with respect to the mean of F,
R=Y —AFFQEIY = B*QEIY , to be of the form
g(z;)+n;; that is, to be due to g,. Conditioning on

covariance matrix for
AccQER and

R, the mean and

_ T
G=[g,, 8,1 are
Age =Ace _AGGinlAGG >
Agc =E[GG"] and Qg =B+Age. The

predictions and confidence intervals for F and G are
calculated as for H in Section 3.

where

Example 1 (cont.): The above procedure is applied to
Example 1 with f, the long length-scale component
and g, the short length-scale component. The long
length-scale (solid line) and short length-scale
(dashed line) predictions together with their
confidence intervals are shown in figure 5. The value

for b° is 0.48249. The confidence interval for the
short length-scale component is narrow and similar
in magnitude to the confidence interval in figure 5,
as would be expected (see Remark 1). The
confidence interval in the long length-scale
component is much broader since it has to account

through b° for both the short length-scale
component and the measurement noise.

Unfortunately, the probabilistic description for f(z)
and g(z), obtained by the above simple procedure, is
not coherent. Other than the somewhat dubious
procedure of accounting for g(z;)+n; by white noise,
the concern is over combining the separate
probabilistic descriptions for F and G to obtain a
similar description for H=(F+G) to that of Section 3.

In the context of Example 1 when f, has a long
length-scale and g, a short length-scale, suppose the

prediction, AFFQEIY , for F is interpreted as a de-

trending of the data. The description for G is, then,
probabilistic, a Gaussian distribution with mean

AccQdR and covariance matrix Agg , whilst the

description for F is deterministic, AFFQEIY. The

covariance matrix for H is Agg (the short length-

scale covariance matrix) and the confidence intervals
are narrow as required; see the Remark 1. However,
when f(z) need be explicitly identified, this
description being deterministic is inadequate.

An alternative is to consider the residues, R, for all
possible values of the contribution to the data due to



f, rather than only the mean. Since the probability
distribution for F conditioned on Y is Gaussian with

mean AFFQEIY and covariance matrix Ay, the
probability distribution for R conditioned on Y,
p(R]Y), is Gaussian with mean B*QEIY and
covariance matrix App. For each R belonging to

p(R]Y), the probability distribution for G
conditioned on R, p(G|R), remains Gaussian with

mean Agg QalR and covariance matrix KGG .
Suppose the hyperparameters are unchanged for each
R (again somewhat dubious), then the joint
probability distribution for [R',G']" conditioned on
Y, p(R,G]Y)=p(G|R)p(R]Y), is Gaussian with mean ,
B'Q;'Y
AccQeB QFY
and covariance matrix,

{ Agp KFFQaIAGG
AgQGArr  Age +AceQc ArrQcAcc
It follows immediately that the joint probability
distribution for [F',G']" conditioned on Y, is
Gaussian with mean vector,

AerQr'Y }
AccQsB QY
and covariance matrix,

Apg - A Q6 Age }
~AeQcAwr  Age +AccQc ArrQc Ace
Consequently, the covariance matrix for H is
Acc +BQE A QgB . In the context of Example

1, this covariance matrix is very similar to Agg as

required. However, the description for f(z) remains
inadequate since its confidence interval is
unnecessarily broad through accounting for both the
short length-scale component and the measurement
noise, see figure 5.

4.2 Systematic identification of f, and g,

A systematic and statistically correct procedure to
identify the two contributions is required. Since f,
and g, are independent, i.e. E[FG']=0, it follows that

Apr 0 Agp
A=E[|G|FT GT YT|l=| 0 Agg Agg| (9
Y Arr Age  Q
with  Q=B+Agz +Agg. The prior joint
probability distribution for F, G and Y is Gaussian
with mean zero and covariance matrix A. The

posterior joint probability distribution for F and G
conditioned on the data Y remains Gaussian with

mean, M , and covariance matrix, A, where

-1
M:{AFFQ IY} (10)
AgcQY

A= | Arr ~AprQ Ay - AprQ A

~AgQ ' Agg Agc —AecQ 'Age
The  covariance matrix for H=F+G is
(App +Agg) + (App +Agg )Q_l (Apr +Agg)
which is identical, as required, to Ay in Section 3.

Example 1 (cont.): The above procedure is applied to
Example 1. The long length-scale and short length-
scale predictions together with their confidence
intervals are shown in figure 6. The large breadth of
the confidence intervals reflects uncertainty over
attributing part of the data values to either f, or g,.

The requirement is to obtain the posterior probability
distribution for F and G conditioned on the data set,
M, subject to the condition that they remain
independent. Of course, the posterior probability
distribution remains Gaussian. The mean and
covariance matrix is provided by theorem 1.

Theorem 1: Given that the prior joint probability
distribution for F, G and Y is Gaussian with mean
zero and covariance matrix A, the posterior joint
probability distribution for [F', G' ]" conditioned on
the M, subject to the condition that they remain
independent, is Gaussian with

-1
mean = BQ/:FZ QF(;{_IY

Fl GG (11)
COV:|:AFFQFB . 0 . }

0 BQrAgQ B

where Qp =B+ Agyp .

Proof: The prediction, from (10), for the contribution
of g, to the data, A;gQ ™'Y , may alternatively be in
part explainable by f,. An estimate of that part of the
data values is assumed to be of the form
(AFF(};1 )AGGQ_IY. It should be transferred from

the prediction for G to the prediction for F. The
appropriate modification to (10) is achieved by
M-o>M;=TM ; A—>A,=TAT" (12)
I ApQ
0 B'Qj

assumption be correct then there exists a B such that

where T =

}. Should the above

the off-diagonal elements of A, are zero. The off-
diagonal elements are

(A =(Ag)a = AFFQ;TI [B - B*]Q_IAGGQEIB*
Hence, the correct choice for B” is B. It follows that
the required posterior joint probability distribution is
Gaussian with mean and covariance matrix given by
(11). (Note, the likelihood of the data is not affected
by this adjustment of the posterior probability
distribution).



The covariance matrix for H=F+G is again

(App +Agg) + (App +Agg )Q_I(AFF +Agg) as
required.

Example 1 (cont.): Applying Theorem 1 to Example
1, the modified long length-scale and short length-
scale predictions together with their confidence
intervals are shown in figure 7. The confidence
interval for the long length scale is much narrower
than in figure 5.

5. WIND TURBINE DATA

Long length-scale prediction with confidence intervals
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Fig. 8. Wind turbine data, long length scale
prediction and confidence intervals.
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Fig. 9. Wind turbine short length scale prediction
with confidence intervals, total error and confidence
interval.

The identification procedure of Section 4.2, based on
models with two Gausian processes, is applied to
wind turbine time series data, specifically, site
measurement of rotor speed for a commercial IMW
machine. The data consist of a run of 600 second
sampled at 40Hz. A typical section, from 200s to
250s, is shown in Figure 8 (grey line). It has a long
length-scale component due to variations in the
aerodynamic torque, caused by changes in the wind
speed and the pitch angle of the rotor blades, and a
short length-scale component due to the structural
and electro-mechanical dynamics of the machine.
These two components can be clearly seen in figure
8 as can the poor quality of the data. The purpose is

to identify both components, an initial yet important
part of identifying the aerodynamics and drive-train
dynamics of variable speed wind turbines (Leithead
et al. 2003).

A typical section, from 200s to 250s, of the long
length-scale component prediction with confidence
intervals is shown in figure 8 (black lines) and, a
typical section from 265s to 270s, of the short
length- scale component prediction and confidence
interval in figure 9 (solid lines). In addition, the
confidence interval for the total prediction of the
combined long and short length-scale components is
shown in figure 9 (dashed lines) together with the
residue between the data values and the total
prediction (dotted line). The long and short length-
scale components are successfully extracted from the
measurement data.

6. CONCLUSION

To extract two components of different
characteristics from data, a novel adaptation of the
Gaussian regression methodology, based on models
with two stochastic processes, is developed. In the
prior and posterior joint probability distributions, the
two components are independent. The effectiveness
of the revised Gaussian regression method is
demonstrated by application to wind turbine time
series data. A long and a short length-scale
component are successfully identified.
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