H∞ CONTROL FOR NONLINEAR STOCHASTIC SYSTEMS:
THE OUTPUT-FEEDBACK CASE

Nadav Berman *,1 Uri Shaked **,2

* Ben-Gurion University of the Negev, Dept. of Mechanical
Engineering, Beer-Sheva, Israel
** Tel-Aviv University, School of EE, Tel Aviv, Israel

Abstract: In this paper we develop an H∞ control theory, from the dissipation point of view,
for a large class of time-continuous, stochastic, nonlinear, time-invariant systems with output-
feedback. In particular, we introduce a notion of stochastic dissipative systems, analogously
to the familiar notion of dissipation associated with deterministic systems and we utilize it as
a basis for the development of the theory. In particular, we utilize the stochastic version of
what is called Bounded Real Lemma (BRL) to synthesize an output-feedback controller. It
is shown that this controller makes the resulting closed-loop system dissipative. Stability, in
probability and in the mean square sense, is discussed and sufficient conditions for achieving
the stability and the H∞ performance are introduced. Copyright © 2005 IFAC.

Keywords: Stochastic systems, Nonlinear systems, Disturbance attenuation, H∞ control.

1. INTRODUCTION

In recent years there has been a growing interest, as
reflects from the various published research works, in
the extension of of H∞ control and estimation theory
to accommodate stochastic systems (see e.g. [El
Ghaoui, 1995], [Costa and Kubrusly, 1996], [Dragan
and Morozan, 1997], [Dragan and Morozan, 1998],
The main thrust for these efforts stems from the at-
tempt to model system uncertainties as a stochastic
process, in particular, as a white noise, or formally
as a Wiener process. This has led to the development
of a H∞ theory for stochastic linear systems with
multiplicative noise.

The present paper is an extension of the state-feedback case ([Berman and Shaked, 2003]) to the case of output-feedback control. In particular, we extend some of the H∞ theory to nonlinear stochastic systems of the following form.

\[
\begin{align*}
\dot{x}_t &= f(x_t)dt + g(x_t)u_t dt + g_1(x_t)v_t dt
+ \bar{g}(x_t)u_t dW_t + g_2(x_t)v_t dW_t^2 + G(x_t)dW_t^1 \\
\dot{y}_t &= h_2(x_t)dt + g_3(x_t)v_t dt + G_2(x_t)dW_t^3
\end{align*}
\]

(1)

(2)

where \(\{x_t\}_{t \geq 0} \) is a solution to (1) with the initial condition \(x_0 \), an exogenous disturbance \(\{v_t\}_{t \geq 0} \), a control signal \(\{u_t\}_{t \geq 0} \), and Wiener processes \(\{W_t\}_{t \geq 0}, \{W_t^1\}_{t \geq 0}, \{W_t^2\}_{t \geq 0}, \) and \(\{W_t^3\}_{t \geq 0} \). Also, \(y_t \) is an observations vector in \(\mathbb{R}^p \) which is corrupted with noise (a Wiener process \(\{W_t^3\}_{t \geq 0} \)), and contains an uncertain component (a stochastic process \(\{v_t\}_{t \geq 0} \)). The following will be assumed to hold throughout this work.

1 Partially supported by the Pearlstone Center
2 This work was supported by C&M Maus Chair at Tel Aviv University, Israel
1. Let $\{\Omega, F, \{F_t\}_{t \geq 0}, P\}$ be a filtered probability space where $\{F_t\}_{t \geq 0}$ is the family of sub σ-algebras generated by $\{W_t\}_{t \geq 0}$, where $\{W_t^1\}_{t \geq 0}$ and $\{W_t^2\}_{t \geq 0}$ are taken to be R^1-valued and R^2-valued, respectively.

2. All the functions below are assumed to be continuous on R^n, $f : R^n \rightarrow R^n$, $g : R^n \rightarrow R^{n \times m}$, $g_1 : R^n \rightarrow R^{n \times m_1}$, $g_2 : R^n \rightarrow R^{n \times m_2}$, $G : R^n \rightarrow R^n$. In addition, it is assumed that $f(0) = 0$, $G(0) = 0$, $h_2(0) = 0$ and $G_2(0) = 0$.

3. $\{v_t\}_{t \geq 0}$ is a non-anticipative R^{m_1}-valued stochastic process defined on $\{\Omega, F, \{F_t\}_{t \geq 0}, P\}$, which satisfies $E\{\int_0^T \|v_s\|^2 ds\} < \infty$ for all $t \in [0, \infty)$, where E stands for the expectation operation, that is if x is a random variable defined on the probability space (Ω, F, P), then $E(x) = \int_{\Omega} x(\omega)dP(\omega)$.

4. $\{u_t\}_{t \geq 0}$ is a non-anticipative R^{n}-valued stochastic process defined on $\{\Omega, F, \{F_t\}_{t \geq 0}, P\}$.

5. x_0 is assumed to be F_0-measurable, and to satisfy $E\{\|x_0\|^2\} < \infty$.

Definition 1. The pair $\{u_t, v_t\}_{t \in [0, \infty)}$, or in short $\{u, v\}$, are said to be admissible if the stochastic differential equation (1) possesses a unique strong solution relative to the filtered probability space $(\Omega, F, \{F_t\}_{t \geq 0}, P)$ so that $E\{\|x_t\|^2\} < \infty$ for all $t \in [0, \infty)$.

Remark 1. The family of all admissible pairs $\{u, v\}$ will be denoted by A. The notation A_u will be used for all admissible pairs $\{u, v\}$ with fixed u. We note that A_u may be empty for some non-anticipative u.

Remark 2. It will be assumed, throughout this paper, that $\{u, v\}$ are admissible. For sufficient conditions which guarantee the existence of a unique strong solution to (1) (see e.g. [Gihman and Skorohod, 1972], [Hasminskii, 1980]).

The problem of H_∞ output-feedback control is formulated in the following obvious way.

Given an output which is to be regulated (entitled, in this paper, controlled output):

$$z(t) = col\{h(x_t, t), u_t\} \quad (3)$$

where $h : R^n \rightarrow R^r$, synthesize a controller $u_t = u(Y_t^1)$, $Y_t^1 = \{y_s : s \leq t\}$, such that, for a given $\gamma > 0$, the following H_∞ criterion is satisfied.

$$E\{\int_0^T \|z_t\|^2 dt\} \leq \gamma^2 E\{\|x_0\|^2\} + \int_0^T (\|v_t\|^2)dt$$

for all $T \geq 0$ and for all disturbances v_t in A_u (provided A_u is nonempty). Whenever the system (1) satisfies the above inequality, it is said to have the L_2-gain property, and we also write L_2-gain $\leq \gamma$.

This problem may be treated within the context of stochastic game theory analogously to the utilization of the game theory in the deterministic H_∞ control and estimation (see, e.g. [Basar and Bernhard, 1995]). In this connection, there is also a recent work ([Charalambous, 2003]) that deals with the problem of stochastic minimax dynamic games using the information state concept. The latter work characterizes the information state by means of a solution to a certain Hamilton-Jacobi equation, and it differ from ours, first in its underlying approach, as our is based on the stochastic dissipative notion of a system, and second, in the representation of the observation model, as Charalambous takes the underlying probability space associated with the measurements to be finitely additive.

As we adopt the approach that is based on the notion of stochastic dissipativity, we first introduce the concept of stochastic dissipative systems, and then discuss some properties of these systems. This is done in Section 2.

In Section 2 we also state and prove some kind of a bounded real lemma for non linear stochastic systems. In particular, we introduce a certain Hamilton-Jacobi inequality (HJI for short) and we establish necessary and sufficient conditions for the HJI to guarantee a dissipation of the underlying system, which in turn implies the $L_2 - gain$ property of the system.

In Section 3 we develop the H_∞ output feedback control theory for non linear stochastic systems which is based on a consequence of the BRL introduced in Section 2. In particular, we synthesize a controller which results from a solution to a certain algebraic HJI and renders the closed-loop system L_2-gain $\leq \gamma$

We also discuss the stability of the closed-loop system. In particular, we establish sufficient conditions under which stability in probability and in the mean square sense is guaranteed.

2. PRELIMINARIES: DISSIPATIVE STOCHASTIC SYSTEMS, AND THE BRL

This section introduces the concept of a dissipative stochastic system which is to be the basis on which we lay out our H_∞ control theory for nonlinear stochastic systems of the type introduced in Section 1.

The notion of dissipative stochastic systems as introduced in this work is in fact a natural extension of the concept of dissipation introduced by [Willems, 1972]) for deterministic systems; it has been utilized in the development of the H_∞ control and estimation theory for nonlinear deterministic systems by several researchers (see e.g. [Ball and Helton, 1996], [James, 1993], [van der Schaft, 2000]).

The concept of dissipative stochastic system is also related to the notion of passive stochastic systems...
that has been introduced by ([P.Florchinger, 1999]). It is used there as a basis for the development of a theory for stabilizing, in the probability sense, a class of stochastic nonlinear systems which enjoy this passivity property.

Consider the nonlinear stochastic system of (1) together with the controlled output (3). As in the deterministic case (see, e.g. [van der Schaft, 2000],[Helton and James, 1999]), the notion of supply rate will play a fundamental role in the theory of H_∞ control for nonlinear stochastic systems. Define a function $S: R^n \times R^{r+m_1} \rightarrow R$, and call it supply rate.

Remark 3. Dealing with H_∞ control, we will be concerned exclusively, in this work, with the particular supply rate defined by

$$S(v, z) = \gamma^2 ||v||^2 - ||z||^2,$$

where $(v, z) \in R^n \times R^{r+m_1}$.

Using the notion of supply rate, we have now the following definition of dissipative stochastic systems.

Definition 2. Consider the system (1) together with the controlled output as defined by (3), and let S be a supply rate as defined above. Let u be such that A_u is nonempty. Then, the system (1) is said to be dissipative with respect to the supply rate S if there is a function $V: R^n \rightarrow R$, with $V(x) \geq 0$ for all $x \in R^n$, such that $V(0) = 0$ satisfies $E\{V(x_t)\} < \infty$ for all $t \geq 0$ whenever $\{x_t\}_{t \geq 0}$ is a strong solution to (1), and

$$E\{V(x_t)\} \leq E\{V(x_s)\} + E\{\int_s^t (\gamma^2 ||v||^2 - ||z||^2) d\sigma\}$$

for all $t \geq s \geq 0$ and for all admissible disturbances (v_t, z_t) in A_u. V is then called the storage function of the system (1).

Similar to the deterministic theory of dissipative systems, the theorem below (the proof of which may be found in [Berman and Shaked, 2003]) establishes conditions under which the system (1) possesses a storage function. First we introduce a candidate for a storage function.

Definition 3. Consider the system (1). Let $t \in [0, \infty)$ and let x_t be an R^n valued random variable defined on the probability space (Ω, F, P). Assume also that x_t is F_t measurable. Let u be such that A_u is nonempty. Define

$$V_a(x_t) = \sup_{T \geq t} \left[-E\{\int_t^T S(v_x, z_x) ds\} / x_t \right]$$

(4)

Remark 4. We note that in the case where x is deterministic, V_a assumes the following form:

$$V_a(x_t) = \sup_{T \geq t, \ v \in A_u} \left[-E\{\int_t^T S(v_x, z_x) ds\} \right]$$

(5)

Theorem 1. The function V_a of the above definition is a storage function for the system (1) (or equivalently, the system (1) is dissipative with respect to the supply rate S) iff $E\{V_a(x_t)\}$ is finite for all $t \in [0, \infty)$. The proofs of the next lemma and the following theorem (entitled Bounded Real Lemma or BRL, in short) may be found in [Berman and Shaked, 2003] and therefore are omitted.

Lemma 1. Suppose there is a controller $u_t = u(x_t, t)$ such that the system (1) is dissipative with respect to the supply rate $S(v, z) = \gamma^2 ||v||^2 - ||z||^2$ and assume that the associated storage function satisfies $E\{V(x_t, t)\} \leq \gamma^2 E||x_0||^2$ for all $t \geq 0$. Then, the closed-loop system (1) has an $L_{2}\text{-gain} \leq \gamma$.

Utilizing now the of stochastic dissipation concept, we prove the following:

Theorem 2. Consider the system described by (1) with the controlled output of (3), and the supply rate $S(v, z) = \gamma^2 ||v||^2 - ||z||^2$. Then the following hold:

A. Suppose there is a positive function $V(x, t) \in C^2$. Let $V(x)$ satisfy $\gamma^2 I - \frac{1}{2} U(x) \geq aI$ for some $\alpha > 0$, and for all x, where $U(x)$ is defined by

$$U(x) = [g_2(x)]^T V_x(x) g_2(x)$$

(6)

Assume the following HJI is satisfied for all $x \in R^n$.

$$V_a(x) f(x) - \frac{1}{4} V_a(x) g(x) [I + \frac{1}{2} g^T(x) V_a(x) g(x)]^{-1}$$

$$g^T(x) V_a(x) + \frac{1}{4} V_a(x) g(x) [\gamma^2 I - \frac{1}{2} U(x)]^{-1} g^T(x)$$

(7)

Then, for $u(x) = -\frac{1}{2} [I + \frac{1}{2} g^T(x) V_a(x) g(x)]^{-1} g^T(x) V_a(x) f(x)$ the system (1) is dissipative with respect to the supply rate $S(v, z)$ (provided A_u is nonempty).

B. Assume that for some control $u(x) = l(x)$ the system (1) is dissipative with respect to the supply rate $S(v, z)$ for some storage function $V \in C^2$ which is assumed to satisfy $2 \gamma^2 I - U(x) \geq \alpha I$ for all x. Assume also that $v(x) = [2 \gamma^2 I - U(x)]^{-1} g_1^T(x) V_a(x) l(x) \in A_u$. Then $V(x)$ satisfies the HJI for all $x \in R^n$.

3. STOCHASTIC H_∞ CONTROL: THE OUTPUT FEEDBACK CASE

We consider now the system (1), together with the observations (2) and the controlled output (3). Since the state x_t of the plant is not available, we follow the common practice (the certainty equivalence approach) of replacing the state that is to be processed by the controller, with the estimator output. A natural
choice of an estimator (see, e.g. [Isidori, 1994] for the deterministic case is:

\[
d\hat{x}_t = f(\hat{x}_t) dt + g(\hat{x}_t) u_t^*(\hat{x}_t) dt + g_1(\hat{x}_t) v_t^*(\hat{x}_t) + K(\hat{x}_t) (dy_t - h_2(\hat{x}_t) dt - gs(\hat{x}_t) v_t^*(\hat{x}_t) dt)
\]

(8)

where \(K(\hat{x}_t) \) is the estimator gain, an \(n \times r \) matrix, \(u_t^*(\hat{x}_t) = -\frac{1}{2} [I + g^T(\hat{x}_t) V_{xx}(\hat{x}_t) g(\hat{x}_t) - g^T(\hat{x}_t) V^T_{xx}(\hat{x}_t)] \) and

\[
v_t^*(\hat{x}_t) = \frac{1}{2} [\gamma_1 I - \frac{1}{2} U(\hat{x}_t)]^{-1} g_1^T(\hat{x}_t) V^T_{x}(\hat{x}_t).
\]

Using now \(y_t \), of the observations equation (2) in (8), we arrive at the following augmented system.

\[
dx_t^e = f^e(x_t^e,Kv_t) + g_1^e(x_t^e,K)[v_t - v_t^*(x_t)] dt + g_2^e(x_t) [v_t - v_t^*(x_t)] dW_t^e + G^e(x_t^e) dW_t
\]

(9)

where

\[
x_t^e = \text{col}\{x_t, \hat{x}_t\}, \quad W_t^e = \text{col}\{W_t, W_t^I, W_t^2, W_t^3\},
\]

\[
f^e(x_t^e) = \begin{bmatrix} f(x_t) \\ f(\hat{x}_t) + g(\hat{x}_t) u_t^*(\hat{x}_t) + g_1(\hat{x}_t) v_t^*(\hat{x}_t) + g_2(\hat{x}_t) (\hat{x}_t - h_2(\hat{x}_t)) \end{bmatrix}
\]

\[
g^e_1(x_t^e, t) = \begin{bmatrix} g_1(\hat{x}_t) (\hat{x}_t - h_2(\hat{x}_t)) \\ g_1^e(x_t, t) = \text{col}\{g_1(x_t), g_1(x_t) g_3(x_t)\} \\ g_2^e(x_t, t) = \text{col}\{g_2(x_t), t, 0\} \end{bmatrix}
\]

\[
G^e(x_t^e, v_t) = \begin{bmatrix} \tilde{g}(\hat{x}_t) u^*(\hat{x}_t) \quad G_{x_t}^e \quad g_2(x_t) v_t^*(\hat{x}_t) \\ 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \end{bmatrix}
\]

and \(h_2(x) = h_2(x) - g_3(x) v_t^*(\hat{x}_t) \).

We now have the following theorem.

Theorem 3. Consider the stochastic system (1) together with the augmented system (9) and the controlled output (2). Assume there is a positive function \(V : R^n \rightarrow R^+ \), with \(V \in C^2 \) so that it satisfies the HJI (7) of Theorem 2. Assume also that there are: a positive function \(\tilde{W} : R^{2n} \rightarrow R^+ \) and a matrix \(K(\hat{x}) \), which satisfy the following HJI for some \(\gamma > 0 \), and that

\[
\gamma^2 I - \frac{1}{2} [g_2^e(x^e)]^T \tilde{W}_{xx}^e(x^e) g_2^e(x^e) \geq \alpha I \text{ for some positive number } \alpha, \text{ and for all } x^e \in R^{2n}.
\]

\[
\tilde{W}_{x^e}^e(x^e) f^e(x^e) + h^e(x^e) h^e(x^e) + \frac{1}{4} \tilde{W}_{xx^e}^e(x^e)
\]

\[
g_1^e(x^e) [\gamma^2 I - \frac{1}{2} \tilde{U}(x^e)]^{-1} g_1(x^e)^T \tilde{W}_{x^e}^e(x^e) \]

\[
+ \frac{1}{2} \text{trace}\left\{ (G^e)^T \tilde{W}_{x^e}^e(x^e) G^e(x^e) \right\} \leq 0
\]

(10)

where

\[
\tilde{U}(x^e) = [g_2^e(x^e)]^T \tilde{W}_{xx^e}^e(x^e) g_2^e(x^e),
\]

\[
h^e(x^e) = u^*(x) - u^*(\hat{x}_t), \text{ and } v = v - v^*(x).
\]

Then, the closed-loop system with the control \(u^*(\hat{x}) = -\frac{1}{2} [I + g^T(\hat{x}) V_{xx}(\hat{x}) g(\hat{x}) - g^T(\hat{x}) V^T_{xx}(\hat{x})] \) is dissipative with respect to the supply rate \(\gamma^2 ||v||^2 - ||z||^2 \), it possesses a storage function defined as \(S(x^e) = V(x, t) + \tilde{W}(x^e) \), and has an \(L_2 \)-gain \(\leq \gamma \).

Proof. Application of the HJI (7) yields

\[
V_\alpha[f(x)] + g_1(x) v + g(x) u^*(\hat{x}) + ||z||^2 - \gamma^2 ||v||^2
\]

\[
+ \frac{1}{2} \text{trace}\left\{ (G^T)(x^e) G(x^e) \right\}
\]

\[
+ \frac{1}{2} ||u^T(\hat{x}) g^T(x^e) V_{xx}(x^e) g(x) u^*(\hat{x})|| \leq \frac{1}{2} I + \gamma^2 \frac{1}{2} \text{trace}\left\{ (G^T)(x^e) G(x^e) \right\}
\]

\[
+ \frac{1}{2} ||g^T(x^e) V_{xx}(x^e) g(x) u^*(\hat{x})||^2 \leq ||u^*(x) - u^*(\hat{x})||^2
\]

\[
- \gamma^2 ||v - v^*(x)||^2 = ||h^e(x^e)||^2 - \gamma^2 ||r||^2
\]

Define \(S(x^e) = V(x) + \tilde{W}(x^e) \). Thus \(S \) is positive definite and satisfies: \(S(0) = 0 \). Obviously, the infinitesimal generator of the augmented system satisfies

\[
L(S(x^e)) = L(V(x)) + L(\tilde{W}(x^e))
\]

where

\[
L(V(x)) = V_\alpha[f(x)] + g_1(x) v + g(x) u^*(\hat{x})
\]

\[
+ \frac{1}{2} \text{trace}\left\{ (G^T)(x^e) G(x^e) \right\}
\]

\[
+ \frac{1}{2} u^T(\hat{x}) g^T(x^e) V_{xx}(x^e) g(x) u^*(\hat{x})
\]

\[
- \gamma^2 ||v - v^*(x)||^2 = ||h^e(x^e)||^2 - \gamma^2 ||r||^2
\]

Recall (11), that is:

\[
L(V(x)) + ||z||^2 - \gamma^2 ||v||^2 \leq ||h^e(x^e)||^2 - \gamma^2 ||r||^2
\]

By the HJI (10) it follows that

\[
L(\tilde{W}(x^e)) + ||h^e(x^e)||^2 - \gamma^2 ||r||^2 \leq 0
\]

Therefore

\[
L(S(x^e)) + ||z||^2 - \gamma^2 ||v||^2 \leq L(V(x)) + ||z||^2
\]

\[
- \gamma^2 ||v||^2 \leq L(\tilde{W}(x^e)) \leq 0
\]

This implies that \(S(x^e) \) is a storage function for the closed loop system with the supply rate \(||z||^2 - \gamma^2 ||v||^2 \), which implies that the closed loop system is \(L_2 \)-gain \(\leq \gamma \).

Remark 5. As in the deterministic case, it is difficult to establish, in general, conditions under which there exists a matrix \(\hat{K}(\hat{x}, t) \) so that the HJI (10) is satisfied. The part of the latter inequality that contains \(K \) is given by:

\[
\Gamma(K) = \tilde{W}(x^e) K(\hat{x}_t) g_3(x_t) + \tilde{W}_x^e(x^e) g_1(x_t)
\]

\[
+ \frac{1}{2} \left[K^T(\hat{x}_t) \tilde{W}_{xx}^e(x^e) - \Psi^T(\hat{x}_t) \right] R_a(x_t)
\]

\[
\left[K^T(\hat{x}_t) \tilde{W}_{xx}^e(x^e) - \Psi^T(\hat{x}_t) \right] R_a(x_t)
\]

\[
\Psi^T(\hat{x}_t) - \tilde{W}(x^e) g_1(x_t) (I - \frac{1}{2} \tilde{U}(x_t)) - g_1^T(\hat{x}_t) \tilde{W}_{x}^e(x^e)
\]
where
\[\Psi(x^c) = -2\gamma^2(\dot{h}_2(x_1) - \dot{h}_2(x^c)) + W_x(x^c)g_1(x_1) \]
\[(I - \frac{1}{2\gamma} g^T_3(x_1) \dot{W}_x(x^c)g_2(x_1))^{-1} g^T_3(x_1) R_a^{-1}(x_1) \]
and
\[R_d(x_1) = g_3(x_1)(I - \frac{1}{2\gamma} g^T_3(x_1) \dot{W}_x(x^c)g_2(x_1))^{-1} g^T_3(x_1) \]

The gain matrix \(K(x_1) \) that minimizes \(\Gamma(K) \), and thus leads to a minimum left hand side in (10), is clearly one that satisfies \(W_2(x^c)K(x_1) = \Psi(x^c) \). Unfortunately, the latter equation may not possess a solution for \(K \) which depends only on \(x_1 \). One way to circumvent this difficulty is to choose \(K(x_1) \) s.t.
\[\dot{W}_x(x_1)K(x_1) = \Psi(x^c) + \Phi(x^c) \quad (12) \]

where \(\Phi(x^c) \) is a function that allows a solution \(K^* \) for (12) that is independent of \(x_1 \). For this choice of \(K^*(x_1) \) the above \(\Gamma(K) \) becomes the following.
\[\Gamma(K^*) = \frac{1}{4\gamma^2}[\Phi(x^c)R_d(x_1)\Phi^T(x^c) - \Phi(x^c)R_a(x_1)\Psi^T(x^c)] + \dot{W}_x(x^c)g_1(x_1)(I - \frac{1}{2\gamma} \dot{U}(x^c))^{-1} g^T_3(x_1) \dot{W}_x^T(x^c) \]

Assuming an existence of a solution \(K(x_1) \) to (12) for some function \(\Phi(x^c) \), we have established the following theorem.

Theorem 4. Consider the stochastic system (1) together with the augmented system (9) and the controlled output (2). Assume there is a positive function \(V : R^n \to R^+ \), with \(V \in C^2 \) so that it satisfies the HJI (7) of Theorem 2. Assume also that there are: a positive function \(W : R^{2n} \to R^+ \) in \(C^2 \) and a matrix \(K(x_1) \), which satisfy (12). In addition, let \(W \) satisfy the following HJI.
\[\dot{W}_1(x^c) + \dot{W}_x(x^c)[f(x_1) + g_1(x_1)v^*_1(x_1) + g_2(x_1)v^*_2(x_1)] + \dot{W}_3(x^c)f(x_1) + g_1(x_1)v^*_1(x_1) + g_2(x_1)v^*_2(x_1) + \frac{1}{2} \text{trace} \{G(x^c)\dot{W}_x(x^c)G(x_1)\} + \frac{1}{2}v^T(x^c)\dot{W}_x(x^c)g_3(x_1)v(x_1) + \frac{1}{2}v^T(x^c)R_a(x_1)\Phi^T(x^c) - \Psi(x^c) \]
\[R_a(x_1)\Phi^T(x^c) + \dot{W}_x(x^c)g_1(x_1)(I - \frac{1}{2\gamma} \dot{W}_x^T(x^c)g_2(x_1))^{-1} g^T_3(x_1) \dot{W}_x^T(x^c) \leq 0 \quad \forall x^c \in R^{2n} \]

Then the closed-loop system is dissipative with respect to the supply rate \(\gamma^2||x||^2 - ||z||^2 \), with the storage function defined as \(S(x^c) = V(x_1) + \dot{W}(x^c) \), and therefore has an \(L_2 \)-gain \(\leq \gamma \).

3.1 Stability

Various types of asymptotic stability may be considered. We consider here global asymptotic stability in probability and mean square sense. A comprehensive account of stochastic systems’ stability may be found in [Hasminskii, 1980]. We recall first some sufficient conditions for global asymptotic stability of the stochastic system given by
\[dx_t = f(x_t)dt + G(x_t)dW_t \quad (13) \]
with \(f(0) = G(0) = 0 \), and assume that \(f, G \) satisfy conditions that guarantee a unique strong solution relative to the filtered probability space \((\Omega, F, \{F_t\}_{t \geq 0}, P) \).

Sufficient conditions for a global stability in probability and in the mean square sense are summarized in the following two theorems.

Theorem 5. ([Hasminskii, 1980]) Assume there exists a positive function \(V(x) \in C^2 \), with \(V(0) = 0 \), so that \((LV)(x) < 0 \) for all \(x \in R^n \). Assume also that \(V(x) \to \infty \) as \(||x|| \to \infty \). Then, the system of (13) is globally asymptotically stable in probability.

Theorem 6. ([Hasminskii, 1980]) Assume there exists a positive function \(V(x) \in C^2 \), with \(V(0) = 0 \). Then the system of (13) is globally exponentially stable if there are positive numbers \(k_1, k_2, k_3 \) such that the following hold.
\[k_1||x||^2 \leq V(x) \leq k_2||x||^2 \]
\[(LV)(x) \leq -k_3||x||^2 \]
As a consequence of the last two theorems we have the following results.

Lemma 3. Assume there exists a positive function \(V(x) \in C^2 \) such that \(V(x) \to \infty \) as \(||x|| \to \infty \), satisfying the HJI (7) with \(h_3^2(x)h_2^2(x) > 0 \) for all \(x \). Assume also that there is a positive function \(W \in C^2 \), \(\dot{W} : R^{2n} \to R^+ \), satisfying the HJI (10) with a strict inequality, so that \(\dot{W}(x^c) \to \infty \) as \(||x^c|| \to \infty \). Then, the closed-loop system is internally globally asymptotically stable in probability.

Lemma 4. Assume there exists a positive function \(V(x) \in C^2 \), with \(V(0) = 0 \) which satisfies the HJI of (7) for some \(\gamma > 0 \). In addition, let \(V \) satisfy
\[k_1||x||^2 \leq V(x) \leq k_2||x||^2 \]
for some positive numbers \(k_1, k_2, k_3 \). Furthermore, assume that for some \(k_3, h_3^2(x)h_2^2(x) \geq k_3||x||^2 \) for all \(x \in R^n \). Assume also that there is a positive function \(W \in C^2 \), and \(W : R^{2n} \to R^+ \) with
\[k_4||x||^2 \leq \dot{W}(x) \leq k_5||x||^2 \quad x^c \in R^{2n} \]
which satisfies the following algebraic HJI:
\[\dot{W}_x(x^c)f^T(x^c) + \frac{1}{2} \text{trace} \{G^T(x^c)\dot{W}_x(x^c)G(x^c)\} + \frac{1}{2}h^T(x^c)h(x^c) \leq -Q(x^c) \quad \forall x^c \in R^{2n} \]
for some positive function \(Q(x^c) \) with the property that \((h^T(x^c), t)h(x^c, t) + Q(x^c) \geq k_6||x||^2 \) for all
\(x^i \in R^{2n} \), and for some \(\kappa_0 > 0 \). Then the closed-loop system (9) with \(v = 0 \) and \(u = -\frac{1}{2} q^T(x) V^T_s(\dot{x}) \) is exponentially stable in the mean square sense, and has the property of \(L_2 - \text{gain} \leq \gamma \), that is

\[
E\left\{ \int_0^\infty \|z_t\|^2 dt \right\} \leq \gamma^2 E\{\|z_0\|^2 + \int_0^\infty (\|v_t\|^2)dt \}
\]

for all non-anticipative stochastic processes \(v \) that satisfy \(E\{\int_0^\infty (\|v_t\|^2)dt \} < \infty \), and whenever \(x_0 \) satisfies \(E\{V(x_0)\} \leq \gamma^2 E\{\|x_0\|^2\} \).

4. CONCLUSIONS

A comprehensive treatment of output-feedback control for nonlinear stochastic systems is introduced. Conditions are found for the existence of stabilizing controllers that satisfy prescribed \(H_\infty \) performance requirements. The theory developed can also be used to derive nonlinear estimators that achieve a prescribed \(H_\infty \) bound on the estimation accuracy.

REFERENCES

