Abstract: The paper presents the application results concerning the fault detection of a dynamic process using linear system identification and model-based residual generation techniques. The first step of the considered approach consists of identifying different families of linear models for the monitored system in order to describe the dynamic behaviour of the considered process. The second step of the scheme requires the design of output estimators (e.g., dynamic observers or Kalman filters) which are used as residual generators. The proposed fault detection and system identification schemes have been tested on a chemical process in the presence of sensor, actuator, component faults and disturbance. The results and concluding remarks have been finally reported. Copyright © 2005 IFAC.

Keywords: Chemical industry, System Identification, Fault Diagnosis, Fault Detection, Linear Systems.

1. INTRODUCTION

Since the early 1970’s, the problem of reliable fault diagnosis in dynamic processes has received great attention and a wide variety of robust approaches has been proposed and developed. Recently, different analytical redundancy-based methods have been developed to diagnose faults in linear, time-invariant, dynamic systems and a wide variety of model-based approaches has been proposed (Chen and Patton, 1999; Patton et al., 2000). There are different model-based approaches to the fault diagnosis problem, namely parameter identification, parity equations (Gertler, 1998), methods in frequency or in state-space domain, such as diagnosis observers (Frank, 1990) and Kalman filters (Chen and Patton, 1999; Patton et al., 2000).

Even if analytical redundancy methods have been recognised as a powerful and effective technique for detecting faults, the generation of robust residuals is a critical issue because of the presence of unavoidable modelling uncertainty. The main problem regarding the reliability of fault diagnosis schemes consists of the modelling uncertainties which are due, for example, to process noise, parameter variations and non-linearities. Model-based methods use a model of the monitored process in order to produce the symptom or residual generator. If the system is not complex and can be described accurately by the mathematical model, fault detection is directly performed by using a simple geometrical analysis of residuals. In real industrial systems however, since the modelling uncertainty is unavoidable, the design of a robust fault diagnosis scheme should consider the modelling uncertainty with respect to the sen-
sitivity of the faults. Several papers addressed this problem. For example, optimal robust parity relations were proposed in (Gertler, 1998), and the threshold selector concept was introduced (Chen and Patton, 1999; Patton et al., 2000). One other promising approach is the decoupling between disturbances and residuals achieved by means of a proper observer scheme and design (Chen and Patton, 1999; Patton et al., 2000). This approach requires the knowledge of a model of the process under investigation and, in particular, of the disturbance distribution matrix. Thus, modelling requires the knowledge of a model of the process which use Equation Error (EE), Errors–In–Variables (EIV) and State–Space (SS) models (Ljung, 1999; Simani et al., 2000; Simani et al., 2002). In the case of the EIV identification technique, it is based on the Frisch scheme methodology (Frisch, 1934; Simani et al., 2000; Simani et al., 2002). This approach gives a reliable model of the plant under investigation, as well as providing variances of the input–output noises (Beghelli et al., 1990; Simani et al., 2000). Secondly, this work exploits linear prototypes for the design of linear output estimators (Simani et al., 2000). In fact, as the feature of system supervision is to monitor the operation and performance of the system with respect to an expected point of operation, linear system methods are still very valid.

The paper is organised as follows. In Section 2 the problem statement is given and described from a mathematical point of view. The fault diagnosis scheme is then presented in Section 3. In Section 4, the chemical industrial process used to test the proposed methodology is presented and the results concerning the diagnosis of faults are also reported. Finally, conclusions reported in Section 5 close the paper.

2. MODEL DESCRIPTION

This section recalls the methods for the mathematical modelling of the system under diagnosis and that are exploited for the problem of model–based fault diagnosis.

Let us suppose that a number of N samples can be acquired form the monitored system depicted in Figure (1). Such time sequences of data can represent the input and the output variables $u(t) \in \mathbb{R}^n$ and $y(t) \in \mathbb{R}^m$ of the process, with $t = 1, \ldots, N$, respectively. In the general framework of linear systems, in this paper we consider the description of the plant (1) and its input–output measurements by means of a discrete–time, time–invariant, input–output dynamic model with the following structure:

$$y(t) = F(z) u(t) + G(z) e(t), \quad t = 1, \ldots, N. \quad (1)$$

The entries of the discrete–time transfer matrices $F(z)$ and $G(z)$ are parametrised as rational functions of polynomials in the variable z, the coefficients of which are the model parameters to be identified (Ljung, 1999). Since the equation error term $e(t)$ is introduced to describe the disturbance (un–modelled dynamics) affecting the model, the system (1) is often called equation error (EE) model structure. The variable z represents the forward shift operator, i.e. $z \ y(t) = y(t + 1)$ and it is consistent with the conventional definition of the z–transform. Depending on the structure of the transfer matrices $F(z)$ and $G(z)$, the family of the EE models can describe the classes of the so–called ARX (Auto–Regressive eXogenous), ARMAX (Auto–Regressive Moving Average eXogenous) and the most general Box–Jenkins (BJ) structures (Ljung, 1999).

The input–output models represented by the system family (1) can be transformed into a state–space formulation, in which a first–order difference equation exploits an auxiliary state vector $x(t) \in \mathbb{R}^n$ (Ljung, 1999). Hence, the following representation can also be considered:

$$\begin{cases}
 x(t+1) = A \ x(t) + B \ u(t) + H \ e(t) \\
 y(t) = C \ x(t) + e(t), \quad t = 1, \ldots, N,
\end{cases} \quad (2)$$

where A, B, C and H are matrices of appropriate dimensions that can be obtained by direct identification procedures, e.g., the subspace approaches (Ljung, 1997; van Overschee and De Moor, 1999). Since the vector $e(t)$ appears explicitly as in (1), the SS representation (2) is known as the innovation form of the state–space description.

Finally, another set of models which can be used for identification purpose is represented by the
EIV systems. According to this theory, it is assumed that the monitored system can be described by a linear, discrete-time, time-invariant, dynamic model of the type:

$$y(t) = F(z) u(t), \quad t = 1, \ldots, N, \quad (3)$$

where the transfer matrix $F(z)$ consists of polynomial rational function of z representing the link between the input and the output measurements.

As depicted in Figure (1), the input and the output variables $u^*(t)$ and $y^*(t)$ are usually measured through actuator and sensors. Generally, sensor and actuator measurements are affected by additive noise, that can be modelled as:

$$\begin{align*}
\{ u(t) &= u^*(t) + \tilde{u}(t), \\
y(t) &= y^*(t) + \tilde{y}(t).
\end{align*} \quad (4)$$

According to the EIV model theory, the variables $\tilde{u}(t)$ and $\tilde{y}(t)$ are generally described as white, zero-mean, uncorrelated Gaussian noises (Frisch, 1934; Beghelli et al., 1990; Simani et al., 2000). Since the error vector $e(t)$ does not appear explicitly in the EIV models as in (1), the uncertainty is represented by the noise terms $\tilde{u}(t)$ and $\tilde{y}(t)$ and their variances, that have to be identified (Beghelli et al., 1990). Hence, it is assumed that $u(t)$ and $y(t)$ are the only available measurements from the real process. These model sets (1), (2) and (3) belong to the most commonly used ones in practice and we have therefore reason to present and use them since both explicit algorithms for parameter identification and analytic results are available (Ljung, 1997; Ljung, 1999).

The model description in Eqs. (1), (2) and (3) assumes fault–free system operations and working conditions. As depicted in Figure (1), additive fault occurrence can be modelled by means of the following relations

$$\begin{align*}
\{ u(t) &= u^*(t) + f_u(t) \\
y(t) &= y^*(t) + f_y(t)
\end{align*} \quad (5)$$

where $f_u(t)$ and $f_y(t)$ are the actuator and sensor faults, respectively.

These vectors may be modelled by step and ramp signals in order to describe the presence of bias or drift on the measurements (abrupt and slowly developing faults). Signals $u(t)$ and $y(t)$ represent the input and output measurements, respectively, which have been used for the fault detection task. Therefore, by neglecting actuator and sensor dynamics, under fault–free assumptions (1), $u(t) = u^*(t)$ and $y(t) = y^*(t)$. On the other hand, the case of component faults $f_u(t)$ cannot be described by Eqs. (5). On the other hand, by assuming general detectability conditions (Chen and Patton, 1999), faults affecting output measurements $y(t)$ can be successfully detected by monitoring both $u(t)$ and $y(t)$ signals. In particular, in some cases, the fault $f(t)$ could be described as:

$$x(t+1) = A x(t) + B u(t) + f(t) \quad (6)$$

where the fault is represented as the case when some condition changes in the system rendering the dynamic relations (2) invalid.

The orders and parameters (structures) of the EE and SS models (1) and (2) can be estimated from the measured data $u(t)$ and $t(t)$ by means of automatic identification procedures available in the System Identification Toolbox in Matlab environment (Ljung, 1997; Ljung, 1999). On the other hand, the estimation of EIV models (3) was presented in (Beghelli et al., 1990) and was achieved by a software program implemented in Matlab environment by the same author (Simani et al., 2000). Among all the systems presented above, the aim of the paper consists of selecting the most accurate identified model which is able to describe the measured data $u(t)$ and $y(t)$ in the “best possible” way. Since the essence of an identified model is its prediction aspect, we can introduce the following performance index:

$$J = \frac{1}{N} \sum_{i=1}^{m} \sum_{t=1}^{N} (\hat{y}_i(t) - y_i(t))^2 \quad (7)$$

representing the sum of the mean square errors between the i-th output vector $\hat{y}_i(t)$ predicted by the different MIMO models (1), (2) and (3) and the corresponding i-th output measurement $y_i(t)$.

It is worth noting how another very effective way of evaluating the adequacy and flexibility of the identified models consists in their use for performing complete simulations (i.e. using only the initial samples of the predicted outputs) and in comparing the obtained predictions with the measured output samples. This procedure gives the best results when applied to sequences different from those used to identify the model. The mean square prediction error (7) between the measured outputs and the ones obtained by simulation can be used to compare the different identified models.

3. RESIDUAL GENERATION

The problem treated in this work regards the diagnosis of faults on the basis of the knowledge of the measured sequences $u(t)$ and $y(t)$.

The structure of the fault detection device is depicted in Figure (2). The symptom or residual generation $r(t)$ is implemented by means of dynamic observers or Kalman filters, driven by $u(t)$ and $y(t)$, in order to produce a set of signals
from which it will be possible to diagnose faults associated to actuators, components and sensors. As depicted in Figure (2), the symptom evaluation refers to a logic device which processes the redundant signals generated by the first block in order to unequivocally detect any fault occurrence. Fault diagnosis is therefore achieved through the

\[\begin{align*}
 u(t) & \rightarrow \text{Residuals} & \text{Fault signals} \\
 y(t) & \rightarrow \text{Residual generation} & r(t) \rightarrow \text{Residual evaluation}
\end{align*} \]

Fig. 2. Logic diagram of the residual generator.

processing of the residual signals \(r(t) = y(t) - \hat{y}(t) = y(t) - C \hat{x}(t) \). They are obtained by comparing the system measurements with the dynamic observer or Kalman filter predictions designed on the basis of the identified model of the process under diagnosis.

As an example, a dynamic observer for the SS model has the following structure:

\[\dot{x}(t+1) = A\hat{x}(t) + Bu(t) + K(y(t) - C \hat{x}(t)) \] (8)

\(\hat{x}(t) \) being the observer state vector. The observer eigenvalues are often chosen in order to maximise fault detection promptness and to minimise the occurrence of false alarms. On the other hand, for the Kalman filter design, the essential difference regards the choice of the feedback matrix \(K \) which is computed by solving a Riccati equation. The solution of this equation requires the knowledge also of the variance matrices of the input and the output noises, which can be identified by means of the dynamic Frisch scheme (Frisch, 1934; Beghelli et al., 1990; Simani et al., 2000). The proposed fault detection scheme is applied to a Continuous Stirring Tank Reactor (CSTR) process (Russell et al., 2000), the dynamic behaviour description of which has been achieved by using a model obtained from identification procedures.

\[u(t) = \begin{bmatrix} T_{\text{in}}(t), T(t), q(t) \end{bmatrix}, \quad y(t) = \begin{bmatrix} T_{\text{out}}(t), C(t), N_m(t), W_m(t) \end{bmatrix}, \quad d(t) = \begin{bmatrix} d_1(t), d_2(t), d_3(t) \end{bmatrix} \]

Fig. 3. The observer (filter) residual generator scheme.

4. CHEMICAL PROCESS DESCRIPTION

The aim of the study presented in this paper is to develop a general procedure for the diagnosis of faults in a chemical process by means of identified models of the process under investigation.

In particular, the monitored process is a real Continuous Stirring Tank Reactor, where the reaction between reactant and product is exothermic. The main input variables \(r = 3 \) are: the reactor jacket inlet temperature \(T_{\text{in}}(t) \) [K], the reactor temperature \(T(t) \) [K] and the reactor cooling water rate \(q(t) \) \([\text{m}^3/\text{min}]\). The main output \(m = 4 \) measurements are: the reactor jacket outlet temperature \(T_{\text{out}}(t) \) [K], the product percentage conversion \(C(t) \) [%], the number average molecular weight \(N_m(t) \) \([\text{mol}]\) and weight average molecular weight \(W_m(t) \) \([\text{mg}]\).

The importance of this case study is that there are many examples of reactors in industry like polymerisation reactor (Russell et al., 2000). The CSTR with cooling jacket is shown in Figure (4). Hence, the process has \(r = 3 \) control inputs, \(u(t) = [T_{\text{in}}(t), T(t), q(t)] \), while the output measurements \(m = 4 \) are \(y(t) = [T_{\text{out}}(t), C(t), N_m(t), W_m(t)] \). These actual signals can be acquired from the real plant depicted in Figure (4). The disturbance vector \(d(t) \) represents reactor impurities and fouling. Constant physical properties and constant boundary pressures of all input and output streams are assumed.

Both process normal operating time series and faulty data (with different amount of impurities and fouling) have been measured from the real process. A sampling rate of 0.5s. was used to acquire a number of \(N = 600 \) actual data sequences. The measurements acquired from the actual chemical process have been modified for proprietary reasons.

According to Section (2), several families of multiple input–multiple output (MIMO) models (three inputs and four outputs) have been identified by using a batch sequence of normal operating data. Each MIMO model of type (1), (2) and (3) is driven by \(u(t) \) and provides the prediction of the output \(\hat{y}(t) \) for \(t = 1, \ldots, N \).

Table (1) shows the performances of the different identified models by reporting the values of the \(J \) index (7) with respect to the identification data. Each model has been tested also in different operating conditions and the output reconstruction errors \(J \) are compared in Table (1). Several time series of batch data from by reactor corresponding
to different amounts of reactor impurities and fouling (validation data) have been also exploited in order to validate the ARX, ARMAX, BJ, SS and EIV models.

The dynamic model orders reported in Table (1) have been chosen on the basis of the trend of the performance index with respect to \(n \) and, in particular, when an increase of \(n \) does not correspond to a meaningful decrease of \(J \). On the basis of the simulation results summarised in Table (1), a MIMO SS model can be chosen to describe with the “best accuracy” the monitored process dynamics. The CSTR process data contains several faults. Some of these faults are known (actuator fault \(f_c(t) \) and sensor fault \(f_s(t) \)), and other are unknown (component or system \(f_c(t) \)). Abrupt fault dynamics can be associated with a step change in process variables. On the other hand, slow developing faults can be associated with an increase in the variability of some process variables, e.g., a slow drift in the reaction kinetics.

In this work different fault cases have been considered: (a) the reactor jacket inlet temperature \(T_{\text{in}}(t) \) (sudden actuator fault \(f_a(t) \)), (b) the reactor jacket outlet temperature \(T_{\text{out}}(t) \) (incipient sensor fault \(f_s(t) \)) and (c) the process \(f_c(t) \) fault (reactor impurities and fouling) concerning the product percentage conversion \(C(t) \) have been considered in the following. Therefore, in such fault scenario, in order to successfully perform the fault detection task, three process measurements \(T_{\text{in}}(t) \), \(T_{\text{out}}(t) \) and \(C(t) \) are exploited. The residual \(r(t) \) generation has been performed according to the fault diagnosis scheme presented in Section (3).

The dynamic observers for the residual signal \(r(t) \) computation can be designed on the basis of the most accurate identified SS model of the process under diagnosis. Residual signals are defined as \(r(t) = y(t) - \hat{y}(t) \), i.e. by the difference between the measured \(y(t) \) (actual measurements) and estimated outputs \(\hat{y}(t) \) (provided by output estimators).

The observer eigenvalues have been selected with a trial and error procedure in order to maximise the fault residual sensitivity and to minimise the false alarm occurrence (Simani et al., 2000). On the other hand, the Kalman filters design requires the identification noise covariance ma-

<table>
<thead>
<tr>
<th>Model</th>
<th>Order</th>
<th>(J) (Ident.)</th>
<th>(J) (Valid.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARX (EE)</td>
<td>5</td>
<td>0.1203</td>
<td>0.4631</td>
</tr>
<tr>
<td>ARMAX (EE)</td>
<td>3</td>
<td>0.0067</td>
<td>0.0161</td>
</tr>
<tr>
<td>BJ (EE)</td>
<td>3</td>
<td>0.0826</td>
<td>0.0996</td>
</tr>
<tr>
<td>SS</td>
<td>4</td>
<td>0.0034</td>
<td>0.0081</td>
</tr>
<tr>
<td>EIV</td>
<td>5</td>
<td>0.1082</td>
<td>0.3511</td>
</tr>
</tbody>
</table>

As an example, Figure (5) represents fault–free and faulty residual \(r(t) \) abrupt change for the case in which the additive actuator fault \(f_a(t) \) affects the reactor jacket inlet temperature \(T_{\text{in}}(t) \) commencing at the sample 50 \((t = 25s.) \). On the other hand, Figure (6) represents the healthy and the faulty residual \(r(t) \) slow variation for the case in which the additive sensor fault \(f_s(t) \) affects the reactor jacket outlet temperature \(T_{\text{out}}(t) \) starting at the sample 150 \((t = 75s.) \). Finally, Figure (7) represents the fault–free and the faulty residual \(r(t) \) changes when a reactor system fault \(f_c(t) \) affects the product percentage conversion \(C(t) \). Such a process fault \(f_c(t) \) is due to the formation of reactor impurities and fouling. It is worth...
noting that, in general, in order to achieve the maximal fault detection capability, the measurement corresponding to the most sensitive output $y(t)$ to a fault signal has to be selected. Moreover, with reference to this case study, the monitored signals are enough to accomplish fault isolation, as well (Simani et al., 2000). Note that after the identification step, a MIMO SS has been chosen on the basis of the performance index. In general, different kind of models have to be used in the procedure, and they should be considered and tested for faults diagnosis. Moreover, chemical reactor identification is performed on data collected during normal and perturbed operating conditions to build models. Once the models have been built, the proposed methodology can be also able to predict the onset of faults.

The results obtained by this approach indicated that the minimal detectable faults on the system actuator, component and sensor are of interest for the industrial diagnostic applications. The main aspect of this work was the use of linear system identification and modelling methods, although the system considered was non-linear. This is considered important to avoid the complexities that would otherwise be inevitable when non-linear models are used. On the other hand, when operating conditions change, at least multiple linear models should be used. See, e.g. (Patton et al., 2001; Fantuzzi et al., 2002).

There is certainly an increasing interest in the use of non-linear methods (non-linear observers, extended Kalman filters, fuzzy–logic methods, etc). However, as the feature of system supervision is to monitor the operation and performance of the system with respect to an expected point of operation, linear system methods are still very valid. Deviations from expected behaviour can be used to monitor system performance changes as well as system component malfunctions.

5. CONCLUSION

The complete design procedure for fault detection of actuators, components and sensors in an industrial process was described in this work. A model of the process under investigation was obtained by selecting the most accurate identified linear model. The fault diagnosis was performed by using dynamic observers or Kalman filters, designed on the basis of the linear identified model. Faults on the component of the system, actuator and sensors were therefore considered. It is worth observing how the presented method did not require the physical knowledge of the process under observation. Such a procedure was applied to the real data acquired from an industrial chemical process.

REFERENCES

