PROPER ORTHOGONAL DECOMPOSITION BASED OPTIMAL CONTROL DESIGN OF HEAT EQUATION WITH DISCRETE ACTUATORS USING NEURAL NETWORKS

Radhakant Padhi¹ S. N. Balakrishnan²
Dept. of Mechanical and Aerospace Engineering and Eng. Mechanics
University of Missouri-Rolla, USA

Abstract: A new method is presented for the optimal control design of one-dimensional heat equation with the actuators being concentrated at discrete points in the spatial domain. This systematic methodology incorporates the advanced concept of proper orthogonal decomposition for the model reduction of distributed parameter systems. After designing a set of problem oriented basis functions an analogous optimal control problem in the lumped domain is formulated. The optimal control problem is then solved in the time domain, in a state feedback sense, following the philosophy of adaptive critic neural networks. The control solution is then mapped back to the spatial domain using the same basis functions. Numerical simulation results are presented for a linear and a nonlinear one-dimensional heat equation problem.

Keywords: distributed parameter systems, optimal control, feedback control, neural networks, nonlinear systems

1. INTRODUCTION
Distributed Parameter Systems (DPS) are governed by a set of partial differential equations. One approach to deal with the distributed parameter systems is to have a finite dimensional approximation of the system using a set of orthogonal basis functions via Galerkin projection (Holmes, 1996). The methodology of Galerkin projection normally leads to high order lumped system representations to adequately represent the properties of the original system, if arbitrary orthogonal functions are used as the basis functions. For this reason attention is being increasingly focused in the recent literature on the technique of Proper Orthogonal Decomposition (POD) (Banks et. al., 2000; Holmes et. al., 1996; Ravindran, 1999; Singh et. al. 2001).

The synthesis of various nonlinear control laws using neural networks has been demonstrated in a variety of applications (Hunt, 1992; White, 1992). Towards designing a computational tool for finding a feedback form of the optimal control solution for nonlinear lumped parameter systems, the Adaptive Critic neuro control methodology has been proposed in the literature (Balakrishnan & Biega, 1996; Werbos, 1992). This methodology comes up with a state feedback control law by the off-line training of the so-called ‘action’ and ‘critic’ networks, for an entire envelope of states. This makes it possible to synthesize the feedback optimal controllers for complex system. It allows the philosophy of dynamic programming to be carried out without the need for impossible computation and storage requirements.

This paper is an attempt to combine the ideas of POD and adaptive critic synthesis to come up with a powerful computational tool for the optimal control of one-dimensional heat equation. First the problem oriented basis functions are designed from a set of snapshot solutions, following the idea of POD. Then an analogous finite dimensional optimal control problem is formulated in the time domain. After synthesizing the control in the time domain we generate the control function in the spatial domain by using the basis functions. We have presented numerical simulation results for one-dimensional linear and nonlinear heat equation problems, with an infinite time optimal control formulation. The control synthesis was carried out assuming point actuators in the spatial domain.

The neuro optimal control methodology described in this paper retains all the powerful features of the adaptive critic methodology. However, we have been successful in completely eliminating the action networks. As an added benefit, we no more require the iterative training loops between the action and critic networks. So the methodology presented in this paper leads to a considerable saving of computations.

¹ Lecturer and Post Doctoral Fellow (padhi@umr.edu)
² Professor (Contact Person, bala@umr.edu)
besides eliminating the error associated with the additional neural network approximations. For this reason, this paper can also be thought of as an improvement of the adaptive critic technique.

To the knowledge of the authors, this is the first neural network paper to present a systematic computational tool for the feedback optimal control synthesis of distributed parameter systems that incorporates the powerful technique of proper orthogonal decomposition. It is also the first paper to present a viable computational tool to address discrete (point) controllers in the spatial domain.

2. ONE-DIMENSIONAL HEAT CONDUCTION PROBLEM WITH POINT ACTUATORS

2.1 Problem Description

We consider a nonlinear one-dimensional heat conduction problem given by:

$$\frac{\partial x(t,y)}{\partial t} = \frac{\partial^2 x(t,y)}{\partial y^2} - x^3(t,y) + u(t,y)$$

(1)

The linear version of the problem is without the $x^3(t,y)$ term. We assume that the control is excited by a set of actuators concentrated at discrete points. So, $u(t,y)$ is given by:

$$u(t,y) = \sum_{m=1}^{M} v(t,y) \cdot \delta(y - y_m)$$

(2)

where $v(t,y)$ is a continuous function both in time t and space y. We define the $\delta(y)$ function as follows.

$$v(t,y) \cdot \delta(y - y_m) = \begin{cases} v(t,y_m), & y = y_m \\ 0, & y \neq y_m \end{cases}$$

(3)

We consider the cost function to be minimized is given by:

$$J = \frac{1}{2} \int_{0}^{L} \int_{0}^{L} (q \chi^2 + r u^2) \, dy \, dt$$

(4)

We assume that the boundary conditions are given by the boundary condition $x'(t,0) = x'(t,L) = 0$; i.e. both the ends are insulated. For initial profiles, we assume that the profiles can be any profile from the domain of interest.

2.2 Domain of Interest and State Profile Generation

We assume an envelope profile

$$f_{env}(y) = a + A \cos\left(-\pi + (2\pi y / L)\right)$$

(5)

Then we define

$$S_i = \left\{ x(t,y) : \|x(t,y)\| \leq \|f_{env}(y)\|, \right. \\
\left. \|x'(t,y)\| \leq \|f_{env}'(y)\| \right\}$$

(6)

as the domain of interest. After fixing $0 \leq C_i \leq 1$, we assume

$$\|x\|_{\text{max}} = C_i \|f_{env}\|, \quad \|x'\|_{\text{max}} = \|f_{env}'\|$$

(7)

To satisfy the boundary conditions, we assume a Fourier cosine series expansion approximation

$$x(t,y) = a_0 + \sum_{n=1}^{N_f} a_n \cos\left(\frac{n\pi y}{L}\right)$$

(8)

After some algebra, we can write:

$$\frac{L}{2} \left(2a_0^2 + \sum_{n=1}^{N_f} a_n^2\right) \leq C_i (a^2 + A^2 / 2) L$$

$$\frac{L}{2} \left(\sum_{n=1}^{N_f} n^2 a_n^2\right) \frac{\pi^4}{L} \leq A^2 \pi^4 \left(2 / L\right)^3$$

(9)

To satisfy both the inequalities of (9), we select random coefficients $a_n, n = 0,1,\ldots,N_f$ and generate a state profile using Eq. (8). Such a profile is guaranteed to lie within our definition of the domain of interest (6).

2.3 Snapshot Solution Generation

To generate snapshot solutions we follow the procedure outlined below.

- Fix $0 \leq C_i \leq 1$ and generate a random state profile.
- Generate a random control profile as well, similar to the state profile generation and select the values at the control application points.
- Holding the control as constant, simulate the original system Eq.(1), possibly using a finite difference technique [Smith], for some finite time.
- Randomly select some profiles at arbitrary instants of time and assume that those are the snapshot solutions.

We propose to repeat the steps outlined above a number of times and to collect some snapshot solutions each time till enough snapshots are collected.

2.4 Finite Dimension Approximations

With the snapshot solutions we design the problem oriented POD basis functions [Ravindran, 1999; Holmes, et al. 1996]. Then we expand $x(t,y)$ and $v(t,y)$ as:

$$x(t,y) = \sum_{j=0}^{N_f} \hat{x}_j(t) \Phi_j(y), \quad v(t,y) = \sum_{j=0}^{N_f} \hat{v}_j(t) \Phi_j(y)$$

(10)
Substituting Eq.(10) and Eq.(2) in Eq.(1), taking the inner product with Φ_i we get
\[\left\langle \sum_{m=1}^{S} \mathbf{\hat{x}}, \Phi_i, \Phi_i \right\rangle = \left\langle \frac{\partial}{\partial t} \left(\sum_{m=1}^{S} \mathbf{\hat{x}}, \Phi_i, \Phi_i \right) \right\rangle - \left\langle \left(\sum_{m=1}^{S} \mathbf{\hat{x}}, \Phi_i \right), \Phi_i \right\rangle \] (11)
Using the boundary conditions, we have $\Phi_j(t, 0) = \Phi_j(t, L) = 0$, which leads to
\[\left\langle \Phi_j^*, \Phi_i \right\rangle = - \left\langle \Phi_j^*, \Phi_j^* \right\rangle \] (12)
We define a nonlinear function:
\[f_i^nl(\hat{X}) = - \left(\int_0^L \left(\sum_{j=1}^{N} \hat{x}_j \Phi_j \right)^3 \Phi_i \ dy \right) \] (13)
We assume
\[v(t, y) = \sum_{j=1}^{N} \mathbf{\hat{v}}_j(t) \Phi_j(y) \] (14)
After some algebra, we can write:
\[\left\langle u(t, y), \Phi_i(y) \right\rangle = \sum_{m=1}^{M} \sum_{j=1}^{N} \hat{x}_j(y_m) \Phi_i(y_m) \phi_j(t) \] (15)
\[= \sum_{j=1}^{N} \left[\sum_{m=1}^{M} \Phi_j(y_m) \Phi_i(y_m) \right] \phi_j(t) \]
We define
\[A = \left[a_{ij} \right]_{N \times N}, a_{ij} = - \left\langle \Phi_i^*, \Phi_j^* \right\rangle \] (16)
\[B = \left[b_{ij} \right]_{N \times N}, b_{ij} = \sum_{m=1}^{M} \Phi_j(y_m) \Phi_i(y_m) \]
Using Eq. (11), (13) and (16) for $i = 1, 2, \cdots, N$, we obtain:
\[\hat{X} = AX + f^nl(\hat{X}) + BU \]
\[\hat{U} \equiv \left[\mathbf{\hat{v}}_1, \mathbf{\hat{v}}_2, \cdots, \mathbf{\hat{v}}_N \right] \] (17)
where $f^nl(\hat{X})$ is a nonlinear function that comes from the nonlinear term in Eq.(1). For the linear problem this term will be absent. For the cost function, we observe:
\[q\{x, x\} = q\left(\sum_{i=1}^{N} \mathbf{\hat{x}}_i, \Phi_i \right) - \left(\sum_{j=1}^{N} \mathbf{\hat{x}}_j, \Phi_j \right) \]
\[= \sum_{j=1}^{N} \mathbf{\hat{x}}_j, \mathbf{\hat{x}}_j = \hat{X}^T Q \hat{X} \] (18)
where $Q = \text{diag}(q_1, q_2, \cdots, q_N)$

Similarly,
\[r\{u, u\} = \hat{X}^T R \hat{X} \]
where $R = r B$
Thus the cost function in Eq.(4), can be written as:
\[J = \frac{1}{2} \int_0^L \left(\hat{X}^T Q \hat{X} + \hat{U}^T R \hat{U} \right) dt \] (20)
From Eq.(17) and (20) we have an optimal control formulation in the lumped parameter framework.

2.5 Optimality Conditions
Following the standard optimal control theory for lumped systems (Bryson, 1975). The optimal control equation can be derived as:
\[\hat{U} = -R^{-1}B^T \lambda \] (21)
Similarly the costate equation can be derived as:
\[\dot{\lambda} = -Q \hat{X} - \left(A^T + \frac{\partial f^nl}{\partial \hat{X}} \right) \lambda \] (22)
where λ is the Lagrange multiplier. For the linear problem the optimal control equation remains same as Eq. (21). However, the costate equation (22) does not contain $\partial f^nl / \partial \hat{X}$.

2.6 Choice of Neural Network Structure
For this particular problem we have taken five $\pi_{5,5,3}$ neural networks, one each for each of the costates. A $\pi_{5,5,3}$ neural network means 5 neurons in the input layer, 5 neurons in the first hidden layer, 5 neurons in the second hidden layer and 1 neuron in the output layer. For activation functions, we have taken a tangent sigmoid function for all the hidden layers and a linear function for the output layer.

3. NEURAL NETWORK SYNTHESIS
We propose a set of neural networks, which solve the optimal control problem contained in Eq. (17), (21) & (22), with appropriate boundary conditions.

3.1 State generation for neural network training
Once the snapshot solutions are generated and POD basis functions are designed, we observe that
\[\mathbf{\hat{x}}_{jk} = \left\langle x_k(y), \Phi_j(y) \right\rangle \] (23)
So we use all the snapshots in Eq.(23) and fix the minimum and maximum values for the individual elements of \hat{X}_k. Let \hat{X}_{max} denote the vector of maximum values for \hat{X}_k and \hat{X}_{min} the vector for minimum values. Then fixing a positive constant $0 \leq C_i \leq 1$, we select $\hat{X}_k \in C_i[\hat{X}_{min}, \hat{X}_{max}]$.
Let $S_i = \left\{ \hat{X}_k : \hat{X}_k \in C_i[\hat{X}_{min}, \hat{X}_{max}] \right\}$. One
can notice that for \(C_1 \leq C_2 \leq C_3 \leq \ldots, S_1 \subseteq S_2 \subseteq S_3 \subseteq \ldots \). Thus, for some \(i = I \), \(C_i = 1 \) and \(S_i \) will include the domain of interest for initial conditions. Hence, to begin the synthesis procedure, we fix a small value for the constant \(C_i \) and train the networks for the states, randomly generated within \(S_i \). Once the critic networks converge for this set, we choose \(C_2 \) close to \(C_1 \) and again train the networks for the profiles within \(S_2 \) and so on. We keep on increasing the constant \(C_i \) this way till the set \(S_i \) includes domain of interest for the initial conditions. In this paper, we have chosen \(C_1 = 0.05 \), \(C_i = C_1 + 0.05 (i - 1) \) for \(i = 2, 3, \ldots \) and continued till \(i = I \), where \(C_I = 1 \). However, any other scheme should also be fine.

3.2 Neural Network Training

For better capturing of the relationship between \(\hat{X}_k \) and \(\hat{\lambda}_{k+1} \), we have synthesized separate networks for each element of the vector \(\hat{\lambda}_{k+1} \). We synthesize the neural networks in the following manner [Figure 1].

1. Fix \(C_i \) and generate \(S_i \)
2. For each element \(\hat{X}_k \) of \(S_i \) follow the steps below
 - Input \(\hat{X}_k \) to the networks to get \(\hat{\lambda}_{k+1} \). Let us denote it as \(\hat{\lambda}_{k+1} \)
 - Calculate \(\hat{U}_k \), knowing \(\hat{X}_k \) and \(\hat{\lambda}_{k+1} \), from optimal control equation (21)
 - Get \(\hat{X}_{k+1} \) from the state equation (17), using \(\hat{X}_k \) and \(\hat{U}_k \)
 - Input \(\hat{X}_{k+1} \) to the networks to get \(\hat{\lambda}_{k+2} \)
 - Calculate \(\hat{\lambda}_{k+1} \), form the costate equation (22). Denote this target output as \(\hat{\lambda}_{k+1} \)
3. Train the networks, with all \(\hat{X}_k \) as input and all corresponding \(\hat{\lambda}_{k+1} \) as output
4. If proper convergence is achieved, stop and revert to step 1, with \(S_{i+1} \). If not, go to step 1 and retrain the networks with a new \(S_i \).

We have taken the convex combination \(\beta \hat{\lambda}^c_{i+1} = (1 - \beta) \hat{\lambda}_{i+1} \) as the target output for training, where \(0 < \beta < 1 \) is the learning rate for the neural network training. Moreover, to minimize the chance of getting trapped in a local minimum, we have followed the batch training philosophy, where the network is trained for all of the elements of \(S_i \) together. For our heat conduction example problems, we have chosen \(\beta = 0.5 \).

One can notice, since \(\hat{U}_k \) is supposed to be a known function of \(\hat{X}_k \) and \(\hat{\lambda}_{k+1} \), after successful training of the networks, we can directly calculate the associated optimal control \(\hat{U}_k \) from Eq.(21) and hence \(v(t, y) \) from Eq.(14) and \(u(t, y) \) from Eq.(2).

3.3 Convergence Condition

Before changing \(C_i \) to \(C_{i+1} \) and generating new profiles for further training, it should be assured that proper convergence is arrived for \(C_i \). For this purpose \(C_i \) is fixed to the same values that have been used for the training of the networks. Generate a set \(S^c_i \) of profiles, exactly the same manner used to generate \(S_i \). Moreover, fix a tolerance value (we have fixed \(tol = 0.1 \))

1. By using the profiles from \(S^c_i \), generate the target outputs, as described in Section 3.2. Say the outputs are \(\hat{\lambda}_{1}^c, \hat{\lambda}_{2}^c, \ldots, \hat{\lambda}_{\hat{N}}^c \)
2. Generate the actual output from the networks, by simulating the trained networks with the profiles from \(S^c_i \). Say the values of the outputs are \(\hat{\lambda}_{1}, \hat{\lambda}_{2}, \ldots, \hat{\lambda}_{\hat{N}} \).
3. Check whether simultaneously
 \[\left\| \hat{\lambda}_{j}^c - \hat{\lambda}_{j} \right\|_2 / \left\| \hat{\lambda}_{j}^c \right\|_2 < tol, \forall j = 1, 2, \ldots, \hat{N} \]

4. NUMERICAL RESULTS

For the numerical experimentation we have assumed all variables in a compatible unit system. We chose \(q = r = 1 \), \(L = 4 \). We assumed that the controllers are separated in the spatial dimension with \(\Delta y = 1 \). We assumed a control update scheme with \(\Delta t = 0.1 \). Accordingly in the fourth order Runge-Kutta method for the time integration of state and costate equations in the neural network synthesis process, we assumed \(\Delta t = 0.1 \). In our simulations of the systems, we have collected the state profile at every \(\Delta t = 0.1 \) for control calculations and held that control profile constant in an explicit finite difference simulations [Smith] till next update of the control. In the finite difference scheme for generating the snapshot solutions we assumed \(\Delta t = 0.002, \Delta y = 0.1 \). However for simulating the system after control synthesis, we have assumed \(\Delta t = 0.001, \Delta y = 0.05 \). It should be noted that
the choice of values of Δt and Δy satisfies the
standard CFL condition for numerical stability for
linear parabolic systems $\Delta t / (\Delta y)^2 < 0.5$
[Smith] in both the cases.

The first objective was to show that the approach is a
viable tool for the optimal control synthesis of the
distributed parameter systems. We notice that the
problems we considered for numerical experimentation represent infinite time regulator
problems. So both the state and control over the
entire spatial domain should proceed towards zero as
time progresses. Further since the aim was to present
a synthesis tool in a state feedback sense in a domain
of interest, this feature should be observed for all
initial conditions in the domain of interest. However,
since its impossible to present separate results for a
large number of initial profiles (because of space
limitations), we chose some representative profiles as
initial conditions for the simulation purposes. One of
the two such test profiles was generated with
$x(0,y) = 0.2 + 0.2 \cos(-\pi + 2\pi y / L)$. The other initial
profile was generated at random.

In Figures 2-9 we present the state and associated
control histories for the two representative initial
conditions. We can see the expected trend of the state
and control developing towards zero with the
increase of time. The task of driving the state to zero
in the entire spatial domain was achieved with no
difficulty. Even though we have presented the results
only from limited typical initial profiles, the same
behaviour was observed from a large number of
arbitrarily chosen random initial conditions in the
domain of interest. This shows that the control
synthesis methodology presented can be implemented
in a feedback sense.

5. CONCLUSIONS

In this paper a systematic computational tool for the
optimal control synthesis of a one-dimensional
nonlinear and a linear heat conduction problem has
been presented. The powerful proper orthogonal
decomposition methodology has been used in
designing problem-oriented basis functions, which
were used in a Galerkin projection to come up with a
low-dimensional lumped model representation of the
infinite dimensional system. Using this low
dimensional model we synthesized the optimal
control, in a state feedback sense in the domain of
interest, following the philosophy of adaptive critic
neural networks. The synthesized control in time
domain was then extended to the spatial domain
using the same basis functions. This was done
assuming a set of discrete controllers in the spatial
domain. We point out that the neural networks
synthesized offline can be implemented online, since
the computation of control only uses the networks.
ACKNOWLEDGEMENT

This research was supported by NSF-USA grant ECS 9976588.

REFERENCES

