ON LINE OPTIMAL CONTROL FOR BIPED ROBOTS

Christine Azevedo * Philippe Poignet ** Bernard Espiau *

* INRIA Rhône-Alpes Zirst, 655 avenue de l’Europe Montbonnot
38334 Saint Ismier Cedex, France
christine.azevedo@inrialpes.fr

** LIRMM 161, rue Ada 34392 Montpellier Cedex 05, France
poignet@lirmm.fr

Abstract: This paper deals with the control of walking biped robots. An on line optimal control approach based on moving horizon strategy is developed. The problem is stated as an optimization one subject to physical coherent constraints issued from human behavior observation. The strategy is tested with a model of the BIP robot designed by INRIA.

Keywords: biped robot, optimal control, moving horizon, walking gait

1. INTRODUCTION

Receding horizon control approaches proved their efficiency in a large variety of processes. Due to their ability to handle multivariable constraint problems through on line optimization, they seem a very interesting way of controlling biped robot dedicated to navigate in rough terrain and subject to unilateral constraints such as the ground contacts. In the past decade, model based predictive control for non-linear system have been used very successfully in industry, especially on refining and chemical processes (Allgöwer F., 1999), (Nevistic V., 1996). More recently Richalet and al (Richalet J., 1997) have implemented their predictive controller on a KUKA robot with an approximated linear model of the robot. In (Poignet P., 2000), a predictive controller combined with a feedback linearization is compared to the computed torque control on a SCARA robot.

Fig. 1. The INRIA biped robot: BIP

The major contribution of this work is to propose a model based technique with a moving horizon. Here, on line optimal control is performed considering the dynamic model of the BIP robot (fig.1) designed by INRIA (Azevedo C., 2000). Most of the approaches are based on two stages i) walking patterns synthesis and ii) control of the biped robot along these patterns (Huang Q., 2001). On the contrary, in the present-ed approach, the trajectory is not planned. Physical robot coherent constraints are added to the optimization problem and environment is also described as constraints. These constraints will ensure the biped motion through the minimization of a quadratic cost function involving the actuator torques.

The paper is organized as follows: section 2 presents the nonlinear dynamics biped robot modeling during the different gait phases and the physical constraints,
section 3 details the finite horizon nonlinear model predictive control. Finally section 4 exhibits the major numerical results obtained with different types of steps and thrust disturbances.

2. PROBLEM STATEMENT

In this paper, we consider a planar biped model with 7 rigid moving links connected to 6 purely rotational joints. Each joint is actuated (fig.2). We study the part of the walking cycle which lies in the sagittal plane and we assume that the system has always at least one feet in contact with the ground. The biped robot is a varying kinematic chain structure (Chessé S., 2001). This chain is successively opened or closed when tips of open kinematic chains come in contact with the supporting floor. It is also supposed that the gait consists in a succession of single support phases. As in (Grizzle J.W., 1999), the duration of the double support phase is assumed to be negligible. Finally, the biped model consists of two parts: the differential equations describing the dynamics during the swing phase, and an impulse model of the contact event for computing the velocity vector after impact.

2.1 Single support phase

During the swing phase, the stance foot is modeled as a pivot fixed on the ground. Using the method of Lagrange, the dynamic model of the robot can be written as (Spong M.W., 1989):

\[M(q) \ddot{q} + N(q, \dot{q}) \dot{q} + G(q) = \Gamma \]

(1)

This equation provides with the joint torques vector \(\Gamma \) as a function of the joint positions vector (fig.2) \(q = (q_1, q_2, q_3, q_4, q_5, q_6)^T \) and joint velocity vector \(\dot{q} \), with \(M \), \(N \) and \(G \) respectively the inertia matrix, the Coriolis matrix and the gravity vector.

2.2 Impact Equation

During collision, the contact of the foot with the ground consists in unilateral constraint without sliding (Pfeiffer F., 1996). The foot is kept in the horizontal position. The impact is considered as occurring at the ankle. The condition of the geometric closure is given by:

\[\phi(q) = \begin{pmatrix} y_{fly. ankle} \\ x_{fly. ankle} - (x_{supp. ankle} + L_s) \end{pmatrix} = 0 \]

(2)

where:
- \((x_{supp. ankle}, y_{supp. ankle})\) are the Cartesian coordinates of the ankle of the stance leg (fig.3),
- \((x_{fly. ankle}, y_{fly. ankle})\) are the Cartesian coordinates of the swing leg (fig.3),
- \(L_s\) is the step length.

By derivating \(\phi \):

\[\dot{\phi}(q) = \frac{\partial \phi(q)}{\partial q} \frac{\partial q}{\partial t} = 0 \]

(3)

Let’s \(C(q) \) be the Jacobian of \(\phi(q) \):

\[C(q) = \frac{\partial \phi(q)}{\partial q} = \begin{pmatrix} C_n(q) \\ C_t(q) \end{pmatrix} \]

(4)

where \(C_n(q) \) is the normal component and \(C_t(q) \) the tangential component.

When the end point of the kinematic chain enters in contact with the ground, velocity vector suddenly changes (Wieber P.B., 2000), (Roussel L., 1998), (Zheng Y.F., 1984). Using the conservation of linear and angular impulse and momentum for the entire chain, one can write the impulsive dynamic model:

\[M(q)(\dot{q}^+ - \dot{q}^-) = C(q)^T \Lambda \]

(5)

\(\dot{q}^- \) and \(\dot{q}^+ \) are respectively the velocity of the joints before and after impact. From equation (5), \(\dot{q}^+ \) is given by:

\[\dot{q}^+ = \dot{q}^- + M^{-1}(q)C(q)^T \Lambda \]

(6)

where \(\dot{q}^-; M(q) \) and \(C(q) \) are supposed to be known. Assuming that the motion is achieved without slipping.
or rebounding, equation (6) is supplemented by equation (3) written after impact:

\[
\begin{bmatrix}
C_t(q)q^+ \\
C_n(q)q^+
\end{bmatrix} = 0
\]
\[
(7)
\]

The Lagrangian \(\Lambda \) can then be computed by replacing equation (7) into equation (6):

\[
\Lambda = -(C(q)M(q)^{-1}C(q)^T)^{-1}C(q)q^-
\]
\[
(8)
\]

Finally, equations (1), (4), (6) and (8) describe the dynamic model over the whole gait phases and will be used for the simulations.

2.3 Physical dynamic constraints

In addition to the classical robot constraints such as joint and torque limitations, coherent physical constraints are deduced by observing the human behavior. In (Hurmuzlu Y., 1993\textit{a}), (Hurmuzlu Y., 1993\textit{b}), the body erection posture and the overall progression are prescribed to characterize the motion. In (Patla A., 1991), a successful human locomotion is stated in 3 points: i) the production of a basic locomotor rhythm, ii) the control of the equilibrium and iii) the adaptation of the movements to meet the environmental demands and goals. In (Pratt J., 1998), the conditions for a planar robot to walk are defined in terms of height, pitch and speed stabilization. The role of the swing leg is presented as important to ensure the stabilization.

According to these intuitive but physical considerations, a set of equality and inequality constraints listed below has been established (fig.3):

- **Robot internal constraints:**
 - Actuator torque limitations:
 \[
 \Gamma_{\text{min}} \leq \Gamma \leq \Gamma_{\text{max}}
 \]
 - Joint position limitations:
 \[
 q_{\text{min}} \leq q \leq q_{\text{max}}
 \]
- **Erected Body Posture**
The biped should maintain an erected posture during locomotion. This condition is guaranteed by a constraint on the pelvis height:

\[
y_{\text{pelvis}} \geq h_{\text{pelvis min}}
\]

- **Overall Progression Velocity**
The overall progression velocity is defined as the ankle speed of the flying foot in the positive x-direction.

\[
v_{\text{heel min}} \leq v_{\text{fly ankle}} \leq v_{\text{heel max}}
\]

- **Static stability**
In this study, with the manipulator based model described in section 2, the locomotion we can consider is limited to static walking. The static stability is guaranteed by maintaining the projection of the center of mass within the soil of the support foot:

\[
x_{\text{supp heel}} \leq x_{\text{CoM}} \leq x_{\text{supp toe}}
\]

3. FINITE HORIZON NONLINEAR MODEL PREDICTIVE CONTROL

Let’s consider the class of nonlinear systems described by the following set of equations:

\[
x_{k+1} = f(x_k, u_k)
\]
\[
(9)
\]

with \(u_k \) and \(x_k \) respectively the input and the state of the system. The nonlinear model predictive control
(NMPC) (Allgöwer F., 1999) open loop optimization problem that is solved at each time is given by:

$$\min_{u_k} J(x_k, u_k^N)$$ \hspace{1cm} (10)$$

subject to:

\begin{align*}
 x_{i+1k} &= f(x_{ik}, u_{ik}) \\
 x_{0k} &= x_k \\
 u_{ik} &\in U, i \in [0, N_c - 1] \\
 x_{ik} &\in X, i \in [0, N_c]
\end{align*}

with:

$$J(x_k, u_k^N) = \Phi(x_{N_c|k}) + \sum_{i=0}^{N_c-1} L(x_{ik}, u_{ik})$$ \hspace{1cm} (12)$$

and:

\begin{align*}
 U := \{ u_k \in \mathbb{R}^m | u_{\min} \leq u_k \leq u_{\max} \} \\
 X := \{ x_k \in \mathbb{R}^n | x_{\min} \leq x_k \leq x_{\max} \}
\end{align*}

Usually the stage cost \(L \) is a quadratic function in \(x \) and \(u \):

$$L(x_{ik}, u_{ik}) = x_{ik}^T Q x_{ik} + u_{ik}^T R u_{ik}$$ \hspace{1cm} (14)$$

In case of the biped robot, the criterion \(f \) is chosen as:

$$J(u_k^N) = \sum_{i=0}^{N_c-1} \Gamma_{ik}^T \Gamma_{ik}$$ \hspace{1cm} (15)$$

where \(\{\Gamma_{ik}, i \in [0, \ldots, N_c - 1]\} \) are the actuator torque vectors over the receding horizon and

$$u_k^N = [\Gamma_{0k}, \ldots, \Gamma_{N_c-1k}]$$

By neglecting the Coriolis effect, the nonlinear system (eq.1) is written as:

$$\dot{q}_{i+1k} = M^{-1}(q_{ik}) G(q_{ik}) + M^{-1}(q_{ik}) \Gamma_{ik}$$ \hspace{1cm} (16)$$

At each time instance \(k \), the initial conditions are:

$$x_{0k} = \begin{bmatrix} q_{0k} \\ \dot{q}_{0k} \end{bmatrix} = x_k = \begin{bmatrix} q_k \\ \dot{q}_k \end{bmatrix}$$ \hspace{1cm} (17)$$

Finally our optimization problem is resumed as:

$$\min_{u_k^N} J(u_k^N) = \min_{u_k^N} \sum_{i=0}^{N_c-1} \Gamma_{ik}^T \Gamma_{ik}$$ \hspace{1cm} (18)$$

subject to:

\begin{align*}
 \dot{q}_{i+1k} &= M^{-1}(q_{ik}) G(q_{ik}) + M^{-1}(q_{ik}) \Gamma_{ik} \\
 \Gamma_{\min} &\leq \Gamma_{ik} \leq \Gamma_{\max} \\
 q_{\min} &\leq q_{ik} \leq q_{\max} \\
 h_{\text{pelvis}_{\min}} &\leq y_{\text{pelvis}_{ik}} \\
 v_{\text{lim}} &\leq v_{\text{lim}} \leq v_{\text{max}} \\
 x_{\text{supp. heel}} &\leq x_{\text{COM}_{ik}} \leq x_{\text{supp. toe}} \\
 0 &\leq \alpha_{\text{ankle}_{ik}} \leq \alpha_{\text{max}} \\
 x_{\text{fly. heel}_{ik}} &\leq x_{\text{pelvis}_{ik}} \leq x_{\text{supp. toe}_{ik}} \\
 f_{\text{fly. ankle}_{ik}} &\leq f_{\text{fly. ankle}_{ik}} \leq f_{\text{fly. ankle}_{ik}} \\
 \alpha_{\text{fly. foot}_{ik}} &= 0
\end{align*}

(19)

\textbf{4. NUMERICAL RESULTS}

The optimization problem is solved using the \texttt{fmincon} function of the Matlab Optimization Toolbox dedicated to the minimization of a constrained nonlinear multivariable function. \texttt{fmincon} is based on the sequential quadratic programming (SQP) algorithm. SQP is an iterative technique in which the objective is replaced by a quadratic approximation and the constraints by linear approximations (Allgöwer F., 1999). The BIP dynamic (fig.1) model is used for the simulations. Detailed parameters can be founded in (Espiau B., 2000).

Motion parameters are given by: \(h_{\text{pelvis}_{\min}} = 0.85\text{m}, \) \(v_{\text{lim}} = 0.2\text{ms}^{-1}, \) \(v_{\text{max}} = 0.6\text{ms}^{-1}, \) \(\alpha_{\text{max}} = 0.2\text{rad}. \)

The simulation results are computed with a sampling period of 0.01s. The moving control horizon corresponds to 5 sampling periods. Fig.5 shows different views of the initial position.

The simulation of two consecutive steps (fig.6) is performed by constraining the minimum height of the flying foot to 10cm. The trajectory of the flying ankle is shown on figure 7. The average velocity of the flying foot is of 0.93km.h\(^{-1}\) and the computation time for

1 http://www.mathworks.com/products/matlab
one sampling period of simulation is 31s. In figure 8, the upper figure shows the joint torques of the stance limbs and the lower figure presents the torques of the flying leg. Figure 9 presents a 3D simulation of one step.

The simulation of two consecutive steps with different heights (fig.10) exhibits the ability of the control strategy to negotiate on line obstacles or to match the

5. CONCLUSION

In this paper, we present a new control approach for walking biped robots. The strategy is developed with
an online optimal computation over a receding horizon using physical constraints ensuring the biped motion.

Simulations exhibit efficient results in case of a biped walking on a rough terrain or subject to a thrust disturbance. The key advantage of the proposed technique is that we do not need any reference trajectory.

The manipulator based model used in this paper limits the motion to static walking. Indeed, we are currently developing a moving reference base model, which will allow us to consider dynamic walking taking into account the support forces. We are also investigating solutions to reduce the computation times in order to implement real-time strategy on BIP robot.

REFERENCES

