Abstract: Distribution system planning is a key component to accomplish the service in a fast growing demand market, both from a technical point of view and from the economic costs management. In the near future, electric companies will need faster and cheaper planning tools to evaluate different scenarios and their consequences for the rest of the system and provide their clients with safe reliable and economic energy. The objective of this paper is to review different articles about this subject trying to continue the previous work from Gonen and Ramírez-Rosado in 1986 (Gonen, 1986).

Keywords: planning, distribution, optimisation.

1. INTRODUCTION

The distribution system planning goal is to assure that a demand growth can be satisfied in an optimal way from the secondary feeders to the substations from where energy must be delivered to the final client economically while complying with several technical specifications. These considerations and several others - like the difficulties to obtain urban soil, aesthetic and ecological considerations - can harden the problem of optimal planning calculus. The people in charge of distribution planning should consider the energy consumption, their geographical location, laws regarding the use of soil plus other aspects to come up with the substations dimensioning and location, the maximum efficiency routes, while minimising the energy loss in the feeders and deployment costs, plus satisfying the reliability of service constraints.

The planners usually divide the planning in several subproblems, which can be efficiently solved by algorithms and procedures already available. The objective is minimising the installation costs of substations and feeders, plus the implied costs associated to maintenance and operation, while satisfying several constraints related to the allowable voltage values, reliability, service maintenance, etc.

As the distribution system related costs constitute an important part of the electric power systems total costs, the need of more rigorous mathematical models and the development of more efficient algorithms is obvious. The final objective should be minimising incurred costs and achieving the desired goals.

The design of electric energy distribution system planning is executed around the existing system using a procedure containing the following steps: demand forecasting and assignment to existing or new areas, location and dimensioning of substations, dimensioning and routing of feeders and distribution networks. Today, and thanks to the computers development, improvements to the proposed plans can be obtained analysing several different
alternatives by using mathematical models and different optimisation procedures.

2. MODELS REVIEW

In this section we will review the published works about growth planning of the distribution systems, as well as different approaches given to this topic in order to know the models, resolution methods and constraints.

Of the works existing about this topic, we have revised the ones which have appeared in specialised journals, as IEEE and IEE.

The models have been classified in accordance to several characteristics such as system treatment, planning horizon and time lapse, methods to handle the problems related with substations and/or feeders consider: costs, location and dimensioning problems, voltage drops and radiality consideration, and finally the proposed mathematical methods to solve them, as suggested by Gönen T. and Ramírez-Rosado in 1986.

From the point of view of how the system is handled, the problem of distribution system planning is usually subdivided in two subproblems, due to their large size. The two subproblems are:

The subproblem of dimensioning and/or location of feeders [Adams, Laughton, 1974, Mikic 1986, Wall et al. 1979].

Some researchers try to solve the problem as a sequence of both subproblems, after analysing the location and dimensioning of substations in a first step, the optimal dimensioning and routing from the feeders is calculated. But from a mathematical point of view, this approach does not guarantee us that an optimal solution to the global problem is found, because each subsystem is solved independently and the optimisation of the whole system is not separable in two unrelated subproblems [Skrlec 1996]. The solutions may end up in a local minimum of the separated problems, not reaching the global minimum.

2.2. Planning horizon.

In the revised models, the plan duration can be defined as simple (one step) or as multiple (several steps).

The simple step models - usually called static models - consider that the energy demand will be static during the horizon of planning. There is no analysis of the demand growth, and there is no need to study the possible changes in substation and feeders installations through the planning period. Usually the horizon considered is one year [Adams, Laughton, 1974, Aoki et al. 1990, Crawford, Holt Jr 1975, El-Kadi 1984, Fawzi et al. 1983, Gönen, Foote 1981, Hindi, Brameller 1977, Holt Jr, Crawford 1976, Masud 1974, Sun et al. 1982, Thompson, Wall 1981, Wall et al. 1979].

In the multiperiod case researchers have opted for two methodologies:

a) A pseudodynamic one based on solving a group of problems with a single period, where each period output is the next period input plus a demand growth forecasting. As in the previous case, the optimal solution to these subproblems might be suboptimal for the whole problem, as the decisions taken in a step of the resolution cannot be modified afterwards.

b) A dynamic methodology, known as dynamic models, which try to solve the multi-period distribution system planning in a single procedure, and the building decisions for. In the dynamic methodology the decision building for several years or steps are optimised in a single procedure.

2.3. Voltage losses and radiality considerations

Both considerations have a great deal of importance in planning. When planning the interested is centered in obtaining a radial network of feeders, because radial networks are usually cheaper and easier to administrate, while the voltage losses are restricted by technical considerations, usually represented as a minimum allowable voltage.
The radiality has not been included in some of the studied mathematical methods [Adams, Laughton, 1974, Gönen, Foote 1981, Gönen, Foote 1982, Sun et al. 1982].

2.4. Mathematical models used.

In the reviewed papers from the last years, there is a tendency to use evolutionary algorithms [Bouchard et al. 1994, Lin et al. 1998, Miranda et al. 1994, Ramírez-Rosado, Bernal-Agustin 1998, Neimane, Andersson 1999, Skrlec 1996] and expert systems [Chen, Hsu 1989, Hsu, Chen 1990, Wong, Cheung 1987, Dueire, Carvalho 1996, Tumazos 1997] as solution procedures, obtain which have achieved good results with these techniques.

Table I is presented as an annex, there the characteristics of each reviewed work is shown.

3. CONCLUSIONS

From the review we can obtain these conclusions:

- Due to the problem complexity, the model will always be approximated to their real counterparts.
- Most reviewed models do not include the fixed costs from the feeders.
- Many models have poor representations of the feeders, usually linearizing the losses in a single step.
- The linearization of voltage losses does not reflect the real problem.
- Most models do not consider or badly treat the voltage loss as a constraint giving non applicable results in some cases.
- Many models do not consider the demand growth on the studied period.
- Some models consider a uniform growth of the demand on the whole geographical area of study.
- Reliability is badly considered.
- A topic still not treated is the sensibility analysis on the planned system expansion to the changes in the demand forecasting. The forecasting of the demand depends on several factors and is not usually verified. More efficient procedures, including sensibility analysis would provide a method allowing a better consideration of alternatives.
- In the recent works, the greatest effort has been the development of better model approximations for solving via Artificial Intelligence procedures. Researchers involved in these developments consider that those methods are the fittest for the problem characteristics and hardness.
- Many works have only academic interest, and few have been applied to real life problems.
- Some researchers consider fuzzy formulations as a way to stop resource wastes. The definition of good levels of truth and falseness, as well as tolerable constraint violations must be defined.
- There are no works regarding the distribution system planning of urban areas.

REFERENCES

Sun D.I., Farris D.R., Cote P.J., Shoults R.R., Chenn S.S., Optimal Distribution Substation and Primary Feeder Planning via the Fixed Charge
| TABLE I |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| YEAR | AUTHOR |
| Fixed costs | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y |
| Variable costs | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y |
| Optimal location problem | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y |
| Optimal sizing problem | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y |
| Load x distance | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y |
| Substations | Fixed costs | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y |
| Variable costs | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y |
| Optimal routing problem | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y |
| Optimal sizing problem | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y |
| Feeder box | Fixed costs | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y |
| Variable costs | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y |
| Optimal routing problem | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y |
| Optimal sizing problem | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y |
| Substations and feeders | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y |
| One stage (static) | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y |
| Several stages | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y |
| Pseudodynamic | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y |
| Completely dynamic | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y |
| Radiality | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y |
| Voltage drop | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y |
| Mixed-integer linear programming | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y |
| Dynamic Programming | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y |
| Mathematical Programming system | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y |

Notes:
- CCT= Shortest path and transportation
- FF= Ford and Fulkerson
- MSBE= Multi-stage branch exchange Algorithm
- AI= Artificial Intelligence
- TS= Tabu search
- BB= Branch and Bound
- DA= Dijkstra Algorithm
- CFyP= Clustering and Forecasting, Planning Algorithm
- GA= Genetic Algorithm
- PD= Dynamic programming
- TCA= Transhipment capacitated Algorithm
- KB= Knowledge-Based
- MCVRP= Multiple Capacitated Vehicle Routing Problem
- NF= Netword Flow Algorithm
- BE= branch exchange Algorithm
- ES= Expert System
- NCA= Network Configuration Algorithm