Abstract: The problem of H_∞ output feedback for uncertain linear discrete-time systems with state-delay and parameter uncertainties is considered. The objective is to design a linear output feedback controller such that, for the unknown state time-delay and all admissible norm-bounded parameter uncertainties, the feedback system remains robustly stable and the transfer function from the exogenous disturbances to the state-error outputs meets the prescribed H_∞ norm upper-bound constraint. The delay-independent output feedback does not depend on the uncertainties. The conditions for the existence of the robust H_∞ output feedback controller and its analytical expression is then characterized in terms of Riccati-type equations. Copyright © 2002 IFAC

Keywords: Linear, discrete, robust H_∞ output feedback, parametric uncertainty, state delay.

1. INTRODUCTION

In recent years, much work has been put into the analysis and synthesis of controllers for state-delayed systems with norm-bounded parametric uncertainties (Choi and Chung, 1997; Jeung, et al., 1996; Li and De Souza, 1997; Song and Kim, 1998). This interest arises from the fact that delays and uncertainties are the two most important causes of instability. Furthermore, delays and uncertainties are typical in the process industry, which motivates the study of new stability conditions and the synthesis of high performance controllers. Most work has been directed towards the study of state feedback controller design (De Souza, et al., 1999; Trinh and Aldeen, 1997; Wang, et al., 1999), as separate issues. Very little effort has so far been put into the design and analysis of systems using output feedback with time-delays. In Yao, et al. (1997), both the observer and controller designs are treated as separate issues. The output feedback problem is however of the greatest practical relevance as usually the states of the system are not directly available to measurement. Also, the output feedback control case needs special attention when uncertainties are present, as for the general form of uncertainties, the separation principle does not hold and the observer design is no longer the dual of the control design. Most of the previous work involving output feedback is concerned with the continuous-time systems. Very little attention has
been giving to the discrete-time case. In Wang, *et al.* (1999), a discrete-time observer for state-delayed systems with parametric uncertainties has been developed. In this context, the contribution of this paper is the development of a robust H_∞ output feedback controller which complements the observer design of Wang, *et al.* (1999), in a way to maintain robust stability of the combined system. Furthermore, uncertainty in the delayed state matrix is taken into account as an improvement over the observer design in Wang, *et al.* (1999).

More specifically, the output feedback problem addressed in this paper aims at designing observer and controller gains such that, for all admissible parameter uncertainties, the output feedback system remains robustly stable and the transfer function from the exogenous disturbances to the state error output meets a prescribed H_∞-norm upper bound constraint, independently of the unknown time delay. The parameter uncertainties are allowed to be norm-bounded and appear in the state and the output matrices, and may be time-varying. A simple algebraic parameterized approach is exploited, which enables to derive the existence conditions for the observer and controller gains, and to characterize the set of robust H_∞ output feedback controllers in terms of several free design parameters. These free parameters, that appear in the observer and controller gains, offer additional design freedom and can be utilized to account for supplementary performance constraints.

The design formulation of the H_∞ output feedback control problem requires the solution of two Riccati matrix equalities. As shown elsewhere, see (Haurani, *et al.*, 2001), the numerical solutions to these Riccati-type equations are easiest obtained by solving two auxiliary Riccati-type inequalities.

2. PROBLEM STATEMENT

Consider the following linear uncertain discrete-time state delayed system:

\[
\begin{align*}
\dot{x}(k+1) &= (A + \Delta A)x(k) + (A_d + \Delta A_d)x(k-d) + Bu(k) + D_2w(k) \\
y(k) &= (C + \Delta C)x(k) + D_1w(k)
\end{align*}
\]

with the measurement equation

\[
y(k) = (C + \Delta C)x(k) + D_1w(k)
\]

where $x(k) \in \mathbb{R}^n$ is the state, $u(k) \in \mathbb{R}^r$ is the input to the plant, $w(k) \in \mathbb{R}^r$ is the square-integrable exogenous disturbance, $y(k) \in \mathbb{R}^p$ is the system output. The matrices A, A_d, B, D_1, C and D_2 are assumed to be known and constant and of appropriate dimensions. The positive integer variable d denotes the unknown state delay. Here $\Delta A, \Delta A_b$ and ΔC are real-valued matrix functions representing the norm-bounded parameter uncertainties and are assumed to be of the following form:

\[
\begin{align*}
\begin{bmatrix} \Delta A \\ \Delta C \end{bmatrix} &= \begin{bmatrix} M_1 \\ M_2 \end{bmatrix} F N_1, \\
\Delta A_d &= M_1 F N_2
\end{align*}
\]

where $F \in \mathbb{R}^{m \times r}$, which may be time-varying, is a real uncertain matrix with Lebesgue measurable elements and which meets the requirement that $FF^T \leq I$. The matrices M_1, M_2, N_1 and N_2 are known, real and constant and characterize the way in which the uncertain parameters of F enter the nominal matrices A, A_d and C.

The following assumption is needed for the subsequent development:

Assumption 1. The matrix D_2 or M_2 is of full rank.

In the discrete-time case, the full order linear state observer, as proposed in Wang, *et al.* (1999), is of the form:

\[
\dot{x}(k+1) = G \dot{x}(k) + A_d \dot{x}(k-d) + K_c y(k) + Bu(k)
\]

where G and K_c are the observer gains and K_c is the controller gain to be determined.

Defining the state error $e(k) = x(k) - \dot{x}(k)$, it then follows from (1), (2), (4) and (5) that

\[
e(k+1) = Ge(k) + (A + \Delta A - K_c (C + \Delta C) - G)x(k) + A_d e(k-d) + \Delta A_d x(k-d) + (D_1 - K_c D_2)w(k)
\]

Let $z(k)$ then be the state-error output, which is assumed to be given by:

\[
z(k) = Le(k)
\]

where $L \in \mathbb{R}^{m \times n}$ is a given constant matrix. Defining

\[
x_i(k) = \begin{bmatrix} x(k) \\ e(k) \end{bmatrix}
\]

\[
A_i = \begin{bmatrix} A + BK_c & -BK_c \\ A - K_c C - G & G \end{bmatrix}, \\
A_{i_d} = \begin{bmatrix} A_d & 0 \\ 0 & A_d \end{bmatrix}
\]

\[
M_i = \begin{bmatrix} M_1 \\ M_1 - K_c M_2 \end{bmatrix}, \\
N_i = [N_1 \ 0]
\]

\[
M_{i_d} = \begin{bmatrix} M_1 \\ M_1 \end{bmatrix}, \\
N_{i_d} = [N_2 \ 0]
\]
\[AA_r = M_aF_{N_1}, AA_{af} = M_{af}F_{N_{af}} \]
\[D_t = \begin{bmatrix} D_t \\ D_t - K_t D_{r1} \end{bmatrix} \]
\[C_r = [0 \ L] \]
and combining (1), (2), (3), (5) and (6), the following augmented system is easily obtained:
\[x_t (k+1) = (A_r + \Delta A_r)x_t (k) + (A_{af} + \Delta A_{af})x_t (k-d) + D_t w(k) \]
\[z(k) = C_t x_t (k) \]
The transfer function from the disturbance \(w(k) \) to the state-error output \(z(k) \) is thus given by:
\[H_{sw} (z) = C_t \left[zI - (A_r + \Delta A_r) - (A_{af} + \Delta A_{af}) \right]^{-1} \times D_t \]
\[\text{for all positive integer time-delay values } \gamma \leq 1 \]
\[\| H_{sw} (z) \|_{\infty} \leq \gamma \]
\[\text{where the state-error output } z(k) \text{ is asymptotically stable if and only if the following upper-bound constraint on the } H_{\infty} \text{ norm of } H_{sw} (z) \text{ is simultaneously guaranteed:} \]
\[\| H_{sw} (z) \|_{\infty} \leq \gamma \]
\[\text{independent of the positive integer state time-delay } d. \]
\[\text{Proof. It is easy to see that the system (14), (15) is asymptotically stable if and only if the following auxiliary system is asymptotically stable:} \]
\[y_t (k+1) = (A_r + \Delta A_r)^T y_t (k) + A_{af}^T y_t (k-d) + C_t^T w_t (k) \]
\[z_t (k) = D_t^T y_t (k) \]
where the state \(y_t (k) \in R^{2n} \), the disturbance input \(w_t (k) \in R^n \), and the transfer functions of the systems (14),(15) and (20),(21) have the same \(H_{\infty} \)-norm values. Then, based on the auxiliary system (20),(21), the proof of this lemma is completely similar to that of Theorem 2 in Song and Kim (1998) and is thus omitted. QED

For the sake of simplicity, the following definitions are introduced prior to stating the main results of the paper:
\[\Phi_1 = (P_1 - e_1 A_d^T A_d - e_2 N_1^T N_1 - e_3 N_{af}^T N_{af})^{-1} \]
\[\Phi_2 = (P_2 - \gamma^2 L^T L - e_1 A_d^T A_d)^{-1} \]
\[\Gamma_1 = -A \Phi_2 (\Phi_1 + \Phi_2)^{-1} \]
\[\Gamma_2 = (-C \Phi_2 (\Phi_1 + \Phi_2)^{-1} \times \left(D_1 D_1^T + (e_1^2 + e_3^2) M_1 M_1^T \right) \]
\[\Theta_1 = e_1 A_d^T A_d + e_2 N_1^T N_1 + e_3 N_{af}^T N_{af} \]
\[\Theta_2 = \gamma^2 L^T L + e_1 A_d^T A_d \]
\[R_1 = \Phi_1 + \Phi_2, S_1 = -A \Phi_1^T \]
\[R_0 = \Gamma_1 + \tilde{C} \Phi_2 \tilde{C}, S_0 = -A \Phi_1^T \]
\[\Omega_1 = A \Phi_1^T + A \Phi_2 \tilde{C}^T \left(I - \Theta_1^{T/2} P_2 \Theta_2^{T/2} \right)^{-1} \Theta_1^{T/2} P_2 \]
\[\Omega_2 = \Phi_2^T \tilde{C} + A \Phi_2 \tilde{C}^T \left(I - \Theta_1^{T/2} P_2 \Theta_2^{T/2} \right)^{-1} \Theta_1^{T/2} P_2 \]
\[-P_2 + \Gamma_1 \Phi_1 P_2' + D_1 P_2' + (\epsilon_2 + \epsilon_3) M_1 M_1' \]
\[-S_2' R_2'' S_2 + \epsilon_1' I \]

(33)

The following theorem provides the theoretical basis for achieving the desired design goal.

Theorem 1. Let $\delta_1 > 0$ and $\delta_2 > 0$ be sufficiently small numbers, and let the matrices Φ_1, Φ_2, Θ_1, Θ_2, Γ_1, S_1, R_1, S_2, and R_2 be defined as in (22)-(31). Suppose there exist positive scalars ϵ_1, ϵ_2, and ϵ_3, an invertible matrix $E_\epsilon \in R^{oo}$, and a matrix $E_\eta \in R^{oo}$ such that the following Riccati-type matrix equations

\[
\begin{align*}
AP_1 A' - P_1 + A P_2 \Theta_1^{1/2} (I - \Theta_1^{1/2} P_2 \Theta_2^{1/2})^{-1} \Theta_2^{1/2} P_2 A' & \ + D_1' (P_2 + (\epsilon_2' + \epsilon_3') M_1 M_1' - S_2' R_2'' S_2) \\
& \ + E_\epsilon E_\epsilon' + (\epsilon_1' + \delta_1') I = 0
\end{align*}
\]

(34)

\[
\begin{align*}
\bar{A}P_2 \bar{A}' - P_2 + \bar{A} P_2 \Theta_2^{1/2} (I - \Theta_2^{1/2} P_2 \Theta_2^{1/2})^{-1} \Theta_2^{1/2} P_2 \bar{A}' & \ + \Gamma_1 \Phi_1 P_2' + D_1' (\epsilon_2' + \epsilon_3') M_1 M_1' - S_2' R_2'' S_2 \\
& \ + E_\eta E_\eta' + (\epsilon_1' + \delta_2') I = 0
\end{align*}
\]

(35)

along with the corresponding matrix inequality constraints

\[
P_1 + \epsilon_1 A_2 A_2' - \epsilon_2 N_1' N_1 - \epsilon_3 N_2' N_2 > 0 \quad (36)
\]

\[
P_2 + \gamma^2 L' L - \epsilon_1 A_2 A_2' > 0 \quad (37)
\]

have symmetric positive-definite solutions P_1 and P_2 respectively.

Under these conditions, if G, K_a, and K_e are gain matrices which for some chosen orthogonal matrices $U_\epsilon \in R^{oo}$ ($U_\epsilon \bar{U}_\epsilon = I$) and $U_\eta \in R^{oo}$ ($U_\eta \bar{U}_\eta = I$), satisfy:

\[
\begin{align*}
BK_e &= S_1' R_1'' + E_\epsilon U_\epsilon R_1^{1/2} \\
K_a &= S_2' R_2'' + E_\eta U_\eta R_2^{1/2} \\
G &= \bar{A} - K_e C
\end{align*}
\]

(38)

(39)

then the resulting output feedback system using G, K_a, and K_e will be such that, for all admissible parameter uncertainties ΔA, ΔA_a and ΔC, and for all positive integer time-delay values d, (11) the augmented state-delayed system (10) and (15) is asymptotically stable.

(2) $\|H_{m}(z)\| \leq \gamma$.

Proof. By virtue of Lemma 1, the validity of (18) and (19) needs to be shown. To this end, defining:

\[
P \triangleq \begin{bmatrix} P_1 & 0 \\ 0 & P_2 \end{bmatrix} > 0 \quad (41)
\]

and considering the definitions (9)-(13) and (22)-(31), it is easy to see that inequality (18) follows from inequalities (36) and (37). Also, for simplicity of notation, define the left-hand side of (19) by Σ, where

\[
\Sigma \triangleq \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{12}' & \Sigma_{22} \end{bmatrix}
\]

(42)

Substituting (41) yields:

\[
\begin{align*}
\Sigma_{11} &= (A + BK_e) (A + BK_e)' + BK_e \Phi_1 (BK_e)'
\end{align*}
\]

(43)

\[
\begin{align*}
\Sigma_{12} &= (A + BK_e) (A - K_e C - G)' - BK_e \Phi_2 G'
\end{align*}
\]

(44)

\[
\begin{align*}
\Sigma_{21} &= (A - K_e C - G) \Phi_1 (A - K_e C - G)' + G \Phi_2 G'
\end{align*}
\]

(45)

It follows from the matrix inversion Lemma,

\[
\begin{align*}
(A_{11} + A_{12} A_{22}' A_{21})^{-1} = A_{11}^{-1} + A_{11}^{-1} A_{12} \left(A_{22} - A_{21} A_{11}^{-1} A_{11} \right) - A_{21} A_{11}^{-1}
\end{align*}
\]

and the definitions of Θ_1 and Θ_2 given in (28), that

\[
\begin{align*}
\Phi_1 &= P_1 + P_1 \Theta_1^{1/2} (I - \Theta_1^{1/2} P_2 \Theta_2^{1/2})^{-1} \Theta_2^{1/2} P_2
\end{align*}
\]

(46)

\[
\begin{align*}
\Phi_2 &= P_2 + P_2 \Theta_2^{1/2} (I - \Theta_2^{1/2} P_2 \Theta_2^{1/2})^{-1} \Theta_2^{1/2} P_2
\end{align*}
\]

(47)

Re-writing Σ_{11} as,

\[
\begin{align*}
\Sigma_{11} &= BK_e (\Phi_1 + \Phi_2) (BK_e)' + BK_e (\Phi_1 A')
\end{align*}
\]

(48)

(49)

and using the definitions of R_ϵ and S_ϵ in (29), while noting that R_ϵ is invertible because Φ_1 and Φ_2 are positive-definite (due to (36) and (37)),

\[
\begin{align*}
\Sigma_{11} &= \left(BK_e R_\epsilon^{1/2} - S_\epsilon' R_\epsilon^{1/2} \right) (BK_e R_\epsilon^{1/2} - S_\epsilon' R_\epsilon^{1/2})'
\end{align*}
\]

(50)

(51)

Using the definition of BK_e in (38),

\[
\begin{align*}
\Sigma_{11} &= \Phi_1 A' - P_1 + D_1' P_1 + (\epsilon_2' + \epsilon_3') M_1 M_1'
\end{align*}
\]

so that by (46),

\[
\begin{align*}
\Sigma_{11} &= AP_1 A' + A P_2 \Theta_1^{1/2} (I - \Theta_1^{1/2} P_1 \Theta_1^{1/2})^{-1} \Theta_2^{1/2} P_2 A'
\end{align*}
\]

(52)

From (34), $\Sigma_{11} = -\delta' I < 0$.

Similarly, \(\Sigma_{22} \) of (45) can be re-written as,
\[
\Sigma_{22} = (A - K_o C - \bar{A} + K_o \bar{C}) \Phi_1 (A - K_o C - \bar{A} + K_o \bar{C})^T + (\bar{A} - K_o \bar{C}) \Phi_2 (\bar{A} - K_o \bar{C})^T + (D_1 - K_o D_2)(D_1 - K_o D_2)^T - P_2 + \varepsilon_i^2 I + \varepsilon_i^1 (M_1 - K_o M_2)(M_1 - K_o M_2)^T + \varepsilon_i^1 M_i M_i^T
\]
where \(G \) has been replaced by its expression (40).

Grouping the terms with respect to \(K_o \),
\[
\Sigma_{22} = K_o \left[\Gamma_1 \Phi_1 \Gamma_1^T + \bar{C} \Phi_1 \bar{C}^T + D_2 D_1' + \varepsilon_i^1 M_i M_i^T \right] K_o^T - K_o \left[\Gamma_2 \Phi_2 \Gamma_2^T + \bar{C} \Phi_2 \bar{C}^T + D_2 D_1' + \varepsilon_i^1 M_i M_i^T \right] + \left[\Gamma_2 \Phi_2 \Gamma_2^T + \bar{C} \Phi_2 \bar{C}^T + D_2 D_1' + \varepsilon_i^1 M_i M_i^T \right] K_o^T + \left(\varepsilon_i^1 + \varepsilon_i^1 \right) M_i M_i^T + \varepsilon_i^1 I
\]

From (30) and (31),
\[
\Sigma_{22} = K_o R_o K_o^T - S_o K_o - S_o^T K_o + \Gamma_1 \Phi_1 \Gamma_1^T + \bar{A} \Phi_2 \bar{A}^T - P_2 + D_2 D_1' + \left(\varepsilon_i^1 + \varepsilon_i^1 \right) M_i M_i^T + \varepsilon_i^1 I
\]
Assumption 1 implies that the matrix \(R_o \) defined in (30) is positive-definite and hence invertible, thus
\[
\Delta \Sigma_{22} = \left(K_o R_o^{1/2} - S_o^{1/2} \right) \left(K_o R_o^{1/2} - S_o^{1/2} \right)^T
\]
\[
= S_o^{1/2} R_o^{1/2} S_o + \Gamma_1 \Phi_1 \Gamma_1^T + \bar{A} \Phi_2 \bar{A}^T - P_2 + D_2 D_1' + \left(\varepsilon_i^1 + \varepsilon_i^1 \right) M_i M_i^T + \varepsilon_i^1 I
\]
and by (47),
\[
\Delta \Sigma_{22} = \Delta P_2 \bar{A}^T + \bar{A} \Delta P_2 \bar{A}^T - P_2 + \Gamma_1 \Phi_1 \Gamma_1^T + D_2 D_1' + \left(\varepsilon_i^1 + \varepsilon_i^1 \right) M_i M_i^T + \varepsilon_i^1 I
\]
From (35), \(\Sigma_{22} = -\bar{\Delta} I < 0 \).

Finally,
\[
\Sigma_{12} = (A + B K_o \Phi_1 (A - K_o C - G))^T - B K_o \Phi_2 G^T + D_2 (D_1 - K_o D_2)^T + \varepsilon_i^1 M_i (M_1 - K_o M_2)^T + \varepsilon_i^1 M_i M_i^T
\]
Grouping the terms with respect to \(G^T \),
\[
\Sigma_{12} = -(A \Phi_1 + B K_o \Phi_1 + B K_o \Phi_2) G^T + A \Phi_1 (A - K_o C)^T + B K_o \Phi_1 (A - K_o C)^T + D_2 (D_1 - K_o D_2)^T + \varepsilon_i^1 M_i (M_1 - K_o M_2)^T + \varepsilon_i^1 M_i M_i^T
\]
Replacing \(B K_o \) by its expression (38) and grouping the terms with respect to \(K_o \),
\[
\Sigma_{12} = -E_\iota U_\iota (\Phi_1 + \Phi_2)^{1/2} G^T
\]
\[
+ \left[A \Phi_1 (\Phi_1 + \Phi_2)^{1/2} \Phi_1 C^T - A \Phi_1 C^T \right] \left[A \Phi_1 (\Phi_1 + \Phi_2)^{1/2} \Phi_1 C^T + B K_o \Phi_1 (A - K_o C)^T + B K_o \Phi_1 (A - K_o C)^T + D_2 (D_1 - K_o D_2)^T + \varepsilon_i^1 M_i (M_1 - K_o M_2)^T + \varepsilon_i^1 M_i M_i^T \right] K_o^T
\]
Noting that \((\Phi_1 + \Phi_2)^{-1} = \Phi_2^{-1} (\Phi_1 + \Phi_2)^{-1} \Phi_1^{-1} - \Phi_1^{-1} (\Phi_1 + \Phi_2)^{-1} \Phi_1^{-1} \), the following is obtained:
\[
\Sigma_{12} = -E_\iota U_\iota (\Phi_1 + \Phi_2)^{1/2} G^T
\]
\[
- \left[A (\Phi_1^{-1} + \Phi_2^{-1}) C^T + E_\iota U_\iota (\Phi_1 + \Phi_2)^{-1/2} \Phi_1 C^T + D_2 D_1' + \varepsilon_i^1 M_i M_i^T \right] K_o^T
\]
Replacing \(G \), \(\bar{A} \) and \(\bar{C} \) by their expressions in (40), (25) and (27) respectively and subsequently \(\Gamma_1 \) and \(\Gamma_2 \) by their expressions in (24) and (26) respectively, it then implies that \(\Sigma_{12} = 0 \) and so,
\[
\Delta = \begin{bmatrix} \Sigma_{11} & 0 \\ 0 & \Sigma_{22} \end{bmatrix} < 0 \quad (48)
\]
as \(\Sigma_{11} < 0 \) and \(\Sigma_{22} < 0 \) as shown above. By virtue of Lemma 1, the output feedback system (14) and (15) is robustly asymptotically stable and
\[
\|H_{nm}(z)\| \leq \gamma \quad \text{for all values of positive integer time-delay } d \quad \text{and all uncertainties (3).} \quad \text{QED}
\]

Remark 1. It is important to point out that, as opposed to the observer design case procedure of Wang, et al. (1999), the output feedback design procedure proposed in this paper applies to systems which can be open loop unstable. For the observer design alone, i.e. when \(K_o = 0 \), the Riccati equation (34) is solvable in terms of a positive-definite matrix \(P_2 \) only if \(A \) is stable, see (Wang, et al., 1999) to confirm this restrictive assumption. However, in the output feedback case, when \(K_o \) is given by (38), equation (34) reads as,
\[
\Sigma_{11} + \bar{\Delta} I = 0 \quad (49)
\]
with \(\Sigma_{11} \) as in (43) in which \(K_o \) is no longer a zero matrix. Again, for the existence of solutions to (34),
only the stability of $\mathbf{A} + \mathbf{BK}_c$ is needed, which does not necessitate a priori stability of \mathbf{A}. Also, the invertibility of \mathbf{A} required in Wang, et al. (1999) is not necessary in this paper.

Remark 2. the numerical solutions to (34) and (35) are easiest obtained by solving two auxiliary Riccati-type inequalities as explained in Haurani, et al. (2001).

Remark 3. The presented robust H_∞ output feedback control design procedure still offers much additional design freedom. This freedom is reflected by the arbitrary choice of the free gains parameters $\mathbf{E}_c \left(\mathbf{E}_c \in R^{ncx} \right)$ and $\mathbf{E}_o \left(\mathbf{E}_o \in R^{nop} \right)$, and the orthogonal matrices $\mathbf{U}_c \in R^{ncx}$ and $\mathbf{U}_o \in R^{nop}$. Introducing additional performance constraints into the problem formulation (1) and (2) of Theorem 1, which would exploit this design freedom is currently under investigation.

4. CONCLUSION

This paper presents, in what is believed to be the first approach to robust, delay-independent, discrete-time H_∞ output feedback control design procedure. Specifically, the conditions for solvability of the robust H_∞ output feedback control problem is characterized in terms of the existence of solutions of two algebraic Riccati inequalities. The analytical expressions for the resulting observer and controller gains are given.

Ongoing work is concerned with the incorporation of further performance constraints into the output feedback problem which can be accommodated by exploiting the additional freedom in the choice of design parameters.

Future research will aim at the extension of the above presented results to the more general case in which a penalty on the control input is incorporated.

ACKNOWLEDGEMENTS

The work of the first author was supported by Nexfor Technology of Canada.

REFERENCES

