THE H_∞ CONTROL PROBLEM FOR NEUTRAL SYSTEMS WITH MULTIPLE DELAYS

Ulviye Başer

Department of Mathematics, Istanbul Technical University, 80626 Maslak, Istanbul, Turkey.
e-mail: baser@itu.edu.tr

Abstract: This paper presents the H_∞ control problem for linear neutral systems with unknown constant multiple delays, in delay independent case. A sufficient condition for the existence of an H_∞ controller of any order is given in terms of three linear matrix inequalities, when the coefficient D_{12} of the input in the controlled output is zero.

Keywords: Neutral systems, output feedback, H_∞-control.

1. INTRODUCTION

In this paper we consider the H_∞ control problem for linear neutral systems with unknown constant multiple delays in delay independent case. H_∞ control problem is defined as finding a controller such that the H_∞-norm of the closed-loop transfer function is strictly less than an arbitrarily given real $\gamma > 0$. This problem is examined mainly by two approaches: the algebraic Riccati equations (AREs) and the linear matrix inequalities (LMIs). In the literature, various related works for linear systems have been reported, see (e.g. Zhou and Khagonekar (1988); Doyle et. al. (1989), for ARE and Iwasaki and Skelton (1994); Gahinet and Apkarian (1994), for LMI). H_∞ control problem for systems with time-delay has rarely been considered. Recently, the state feedback H_∞-control problem, for linear neutral systems is examined in Mahmoud (2000a,b). The output feedback H_∞ controller design for linear time-delay systems by LMI approach is also achieved in Choi and Chung (1997). But, at the knowledge of the author no paper treats output feedback H_∞-control problem for linear neutral systems.

Consider the n^{th} order linear time-invariant generalized neutral systems Σ described by the following equation:

$$\dot{x}(t) - E\dot{x}(t - \tau) = Ax(t) + \sum_{i=1}^{k} A_{di}x(t - d_i) + B_1w(t) + B_2u(t) (1)$$

$$z(t) = C_1x(t) + D_{11}w(t) + D_{12}u(t) (2)$$

$$y(t) = C_2x(t) + D_{21}w(t) + D_{22}u(t) (3)$$

$$x(t_0 + \theta) = \phi(\theta), \ \forall \theta \in [-\max(\tau, d_i), 0], (4)$$

where $i \in \{1, 2, ..., k\}$, $x \in \mathbb{R}^n$ is the plant state, $w \in \mathbb{R}^q$ is any exogenous input, including plant disturbances, measurement noise, etc., $u \in \mathbb{R}^m$ is the control input, $z \in \mathbb{R}^p$ is the regulated output and $y \in \mathbb{R}^k$ is the measured output, $A, A_{di}, B_1, B_2 C_1, C_2$ and D_{ij}, for $i, j = 1, 2$ are known real constant matrices of the apropriate dimensions. $\tau > 0$ and all $d_i > 0$'s are unknown constant delays, $\phi \in \mathcal{C}_{\tau,n}$, where $\mathcal{C}_{\tau,n} = \mathcal{C}([-\tau, 0], \mathbb{R}^n)$ be the space of continuous functions taking $[-\tau, 0]$ into \mathbb{R}^n. It is assumed that $D_{22} = 0$. It should be noted that this assumption involve no loss of generality, while considerably simplifying algebraic manipu-
where the controller Σ_c is given by Assumption 1.1. The triple (A, B_2, C_2) is stabilizable and detectable.

Assumption 1.2. $\lambda |E| < 1$.

We remark that Σ is a continuous-time model for which Assumption 1 is quite standard. However, Assumption 2 gives a condition in the discrete-time sense and its role will be clarified in the subsequent analysis.

Consider the n_cth order linear time-invariant dynamic $(n_c > 0)$ and static $(n_c = 0)$ controllers

$$\dot{x}_c(t) = K_{21}y(t) + K_{22}x_c(t)$$

$$u(t) = K_{11}y(t) + K_{12}x_c(t)$$

where $x_c \in \mathbb{R}^{n_c}$ is the controller state, K_{11}, K_{12}, K_{21} and K_{22} have appropriate dimensions. We shall denote the class of controllers by Σ_c.

Let $x_c(t) = [x^T(t) \ x_c^T(t)]^T$. Then, the closed-loop system, Σ_{cl} is the following;

$$\dot{x}_c(t) = EF\dot{x}_c(t - \tau)$$

$$A\dot{x}_c(t) + \sum_{i=1}^k \bar{A}_i F x_c(t - d_i) + Bw(t)$$

$$z(t) = \bar{C} x_c(t) + Dw(t)$$

where

$$\bar{A} = \bar{A} + \bar{B}_2 K \bar{C}_2, \quad \bar{B} = \bar{B}_1 + \bar{B}_2 K \bar{D}_21,$$

$$\bar{C} = \bar{C}_1 + \bar{D}_1 K \bar{C}_2, \quad \bar{D} = \bar{D}_11 + \bar{D}_1 K \bar{D}_21$$

$$F^T = \begin{bmatrix} I \\ 0 \end{bmatrix}, E = \begin{bmatrix} E \\ 0 \end{bmatrix}, \bar{A} = \begin{bmatrix} A \\ 0 \end{bmatrix}$$

$$\bar{A}_i = \begin{bmatrix} \bar{A}_i \\ 0 \end{bmatrix}, \bar{B}_i = \begin{bmatrix} \bar{B}_i \\ 0 \end{bmatrix}, \bar{B}_2 = \begin{bmatrix} B_2 \\ 0 \end{bmatrix}$$

$$K = \begin{bmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{bmatrix}, \bar{C}_2 = \begin{bmatrix} C_2 \\ 0 \end{bmatrix}, \bar{D}_21 = \begin{bmatrix} D_{21} \\ 0 \end{bmatrix}$$

$$\bar{C}_1 = \begin{bmatrix} C_1 \\ 0 \end{bmatrix}, \bar{D}_12 = \begin{bmatrix} D_{12} \\ 0 \end{bmatrix}$$

The closed-loop transfer matrix $T_{zw}(s)$ from w to z is given by

$$T_{zw}(s) = \bar{D} + \bar{C} \left(sI - EF e^{-st} \right)^{-1} \bar{A} - \sum_{i=1}^k \bar{A}_i F e^{-sd_i} \right)^{-1} \bar{B}$$

Definition 1.3. Given a scalar $\gamma > 0$. The controller Σ_c is said to be an H_{∞}-controller if the following two conditions hold:

(i) \bar{A} is asymptotically stable,

(ii) $\| T_{zw} \|_\infty < \gamma$.

Lemma 1.4. (Schur complement). Given constant matrices Ω_1, Ω_2 and Ω_3 where $0 < \Omega_1 = \Omega_1^T$ and $0 < \Omega_2 = \Omega_2^T$ then $\Omega_1 + \Omega_2 \Omega_3^{-1} \Omega_3 < 0$ if and only if

$$\left[\begin{array}{cc} \Omega_1 & \Omega_3^T \\ \Omega_3 & -\Omega_2 \end{array} \right] < 0.$$

Lemma 1.5. Given a symmetric matrix Ω and two matrices Γ and Σ with appropriate dimensions. The inequality

$$\Omega + \Sigma \Gamma + (\Sigma \Gamma)^T < 0$$

is solvable for K if and only if

$$\bar{\Gamma}^T \Omega \bar{\Gamma} < 0, \quad \Sigma \Omega \Sigma^T < 0$$

where $\bar{\Gamma}$ and $\bar{\Sigma}$ denote the orthogonal complements of Γ and Σ, respectively.

2. THE MAIN RESULTS

Define

$$W = \bar{A}^T P + P \bar{A} + \bar{Q} + \sum_{i=1}^k \bar{S}_i + \bar{C}^T \bar{C}$$

$$+ (P \bar{B} + \bar{B}^T \bar{D}) \Phi^{-1} (P \bar{B} + \bar{C}^T \bar{D})^T$$

$$+ \Psi \Phi^{-1} \Phi^T \Psi + \sum_{i=1}^k \bar{P} \bar{A}_i \bar{S}_i^{-1} \bar{A}_i^T \bar{P}$$

$$\Phi = \gamma^2 I - D^T D$$

$$\bar{R} = Q - E^T (\bar{C}^T \bar{C} + Q + \sum_{i=1}^k \bar{S}_i + \bar{C}^T \bar{C}) E,$$

$$\Psi = P \bar{A} + \bar{Q} + \sum_{i=1}^k \bar{S}_i + \bar{C}^T \bar{C}$$

$$+ (P \bar{B} + \bar{C}^T \bar{D}) \Phi^{-1} \Phi^T \Phi \bar{C}$$

where $\bar{S}_i = F^T S_i F$ and $\bar{Q} = F^T Q F$.

Theorem 2.1. Subject to Assumptions 1 and 2 the closed-loop neutral systems Σ_{cl} with multiple delay is asymptotically stable independent of delay and the H_{∞} performance bound constraint $\| T_{zw} \|_\infty < \gamma$ holds for a given $\gamma > 0$, if there exist matrices $0 < P_T = P_0 < Q_T = Q$ and $0 < S_i^T = S_i$ for $i = 1, 2, ..., k$ satisfying

$$W < 0$$

while

$$\Phi > 0, \quad R > 0$$
Proof 2.2. Let a Lyapunov-Krasovskii functional
\[V(x_i) = [x_e(t) - \bar{E}F_i x_e(t) - \tau]^T \Phi \]
and denote the term (18) by \(\Omega \). By using the expressions (9), (10) we can rewrite (20) as follows:
\[\Omega + \Sigma \Gamma + (\Sigma \Gamma)^T < 0 \]
\[
\begin{bmatrix}
\Theta_Y X & B_1 & X C_T X & E \psi X & A_d & X s_q \\
B_1^T & -\gamma I & D_{11}^T & 0 & 0 & 0 \\
C_1 X & D_{11} & -\gamma I & 0 & 0 & 0 \\
E^T \Psi X & 0 & 0 & -R & 0 & 0 \\
A_d & 0 & 0 & 0 & -\Delta_s & 0 \\
X s_q & 0 & 0 & 0 & 0 & \Delta_{s_q}^{-1}
\end{bmatrix}
\]

where \(\Theta_Y := A Y + Y A + Q + \sum_{i=1}^{n} S_i Y + \Theta_X := X A^T + A X, \Psi_Y := Y A + Q + \sum_{i=1}^{n} S_i Y + C_1 Y C_1 + (Y B_1 + C_T D_{11}) \Phi^{-1} D_{11}^T C_1, \Psi_X := A + B_1 \Phi^{-1} D_{11}^T C_1 + X Q + \sum_{i=1}^{n} S_i X + C_1 Y C_1 + C_T D_{11} \Phi^{-1} D_{11}^T C_1), \ A_d := [A_{d_1}, A_{d_2}, \ldots, A_{d_k}], X s_q := [X, X, \ldots X] \text{ and } \Delta_{s_q} := \text{diag}(Q^{-1}, S_1^{-1}, \ldots, S_k^{-1}).

Along similar lines to Gahinet and Apkarian (1994), The inequality (21) is equivalent to
\[
\begin{bmatrix}
X & I \\
I & Y
\end{bmatrix} \geq 0.
\tag{27}
\]

where \(\tilde{I} := \begin{bmatrix} V_1 & 0 & 0 & 0 & 0 & 0 \\
V_2 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & I & 0 & 0 & 0 \\
0 & 0 & 0 & I & 0 & 0 \\
0 & 0 & 0 & 0 & I & 0 \\
0 & 0 & 0 & 0 & 0 & I
\end{bmatrix}, \ \tilde{\Sigma} := \begin{bmatrix} W & 0 \\
0 & 0 & I
\end{bmatrix},
\]

\[
[V_1 \ V_2 \ V_3]^T \text{ and } W \text{ denote any of the basis of the null spaces of }
\begin{bmatrix}
C_2 \ D_{21} (C_1 D_{21} + D_{21} \Phi^{-1} D_{11}^T C_1) E \\
B_2^T
\end{bmatrix}
\]

respectively.

Remark 3.1. In summary, we can say that there exist a positive definite matrix \(P \) and a control gain matrix \(K \), satisfying (20) if and only if there exist symmetric matrices \(X \) and \(Y \) satisfying (26) and (27). So, the solution depends on the existence of \(X \) and \(Y \). Moreover, if rank \((I - X Y) = k < n \) for solution matrices \(X \) and \(Y \) then there exist a reduced order \(H_\infty \)-controller of order \(k \).

In order to construct an \(H_\infty \)-controller, we first compute some solution \((X, Y) \) of the LMI’s (26) and (27) by using a convex optimization algorithm for some \(\gamma \) and the positive matrices \(Q, R, S_i \)’s.

As it is noted in Choi and Chung (1997) that if \(k = \text{rank}(I - X Y) = 0 \) then we set \(P = Y \), otherwise, using the matrices \(M \) and \(N \) which are of full column rank such that \(M N^T = I - X Y \), we obtain the unique solution \(P \) to the equation
\[
\begin{bmatrix}
Y & I \\
N^T & 0
\end{bmatrix} = P \begin{bmatrix}
I & X \\
0 & M^T
\end{bmatrix}.
\tag{28}
\]

An explicit description of all solutions of LMI in (21) can be given as follows in state space:
\[
K = -\rho \bar{\Sigma} \bar{\Xi} \bar{\Xi}^T (\bar{\Xi} \bar{\Xi}^T)^{-1} + U^2 L (\bar{\Xi} \bar{\Xi}^T)^{-1}
\]

where \(\rho \) and \(L \) are free parameters subject to
\[
\Xi := (\Sigma \Sigma^T - I / \rho \Omega)^{-1} > 0, \quad \|L\| \leq \rho
\]

and the matrix \(U \) is defined by
\[
U := I - \Sigma^T \Xi - \Xi \Xi^T (\Xi \Xi^T)^{-1} \Xi \Xi \Omega.
\]

4. CONCLUSIONS

The problem of designing output feedback \(H_\infty \) controllers for linear neutral systems with multiple time-delay has been considered in delay independent case based on the linear matrix inequality (LMI) approach. A necessary and sufficient condition for the existence of \(H_\infty \) controllers of any order is given in terms of three LMIs, when the coefficient \(D_{12} \) of the input in the controlled output is zero. Output feedback \(H_\infty \)-control problem for the same systems in delay dependent case is the subject of further research.

REFERENCES

