ON THE CONTROL OF LINEAR SYSTEMS HAVING INTERNAL VARIATIONS, PART II—CONTROL

Moisés Bonilla Estrada * Michel Malabre **

* CINVESTAV-IPN, Control Automático. AP 14-740. México 07000, MÉXICO. mbonilla@enigma.red.cinvestav.mx.
** IRCyN, CNRS UMR 6597, B.P. 92101, 44321 NANTES, Cedex 03, FRANCE. Michel.Malabre@irccyn.ec-nantes.fr.

Abstract: In this paper we show how to embed the variable internal structure present in square implicit descriptions inside an (A, E, B) invariant subspace contained in the kernel of the output map. Thanks to this embedding, we make unobservable the variable internal structure, obtaining in this way a proper closed loop system with a controllable pre specified structure. Copyright © 2002 IFAC.

Keywords: implicit systems, linear systems, geometric approach.

1. INTRODUCTION

Given the implicit global description:

\[\Sigma^g : E \dot{x}(t) = H x(t) + B u(t) ; \quad y = C x(t) \]

\[E = \begin{bmatrix} E \\ 0 \end{bmatrix} ; \quad H = \begin{bmatrix} A \\ D \end{bmatrix} ; \quad B = \begin{bmatrix} B \\ 0 \end{bmatrix} \] (1)

where \(x(t), u(t), \) and \(y(t) \) are, respectively, the descriptor variable, the input, and the output. \(E : X \to \mathcal{K}_X, \) \(H : X \to \mathcal{K}_X, \) \(B : U \to \mathcal{K}_X, \) and \(C : X \to \mathcal{Y} \) are linear operators, such that:

\[\text{Im } A + B \subset E ; \quad \mathcal{E} \oplus \text{Im } D = \mathcal{K}_E \] (2)

We are interested in finding a P.D. feedback, \(u(t) = F_p x(t) + F_d \dot{x}(t), \) to solve the Problem stated in (Bonilla and Malabre 2002); namely for rendering unobservable the variation of structure, characterized by \(0 = D x(t), \) and assigning at will, for all the linear systems described by (1), the same external closed loop behaviour. The synthesis of the control law is based on the common internal structure, showed in (Bonilla and Malabre 2002), of the implicit system:

\[\Sigma^i : \quad E \dot{x}(t) = Ax(t) + Bu(t) ; \quad y(t) = C x(t) \] (3)

In Section 2 we show that the geometric condition

\[\dim (\text{Ker } E) \leq \dim (V^* \cap E^{-1} B) \] (4)

where: \(V^* = \sup \{ T \subset \mathcal{K}_X \mid AT \subset ET + \text{Im } B \}, \) guarantees the existence of a P.D. feedback which makes unobservable at the output the internal variation of structure. In Section 3, we show that:

\[\mathcal{R}_X = X \] (5)

where \(\mathcal{R}_X \) is the reachability subspace, computed by: \(\mathcal{R}_X = V_X \cap S_X, \) with: \(V_X = \sup \{ T \subset X \mid AT \subset ET + \text{Im } B \}, \) and \(S_X = \inf \{ T \subset X \mid T = E^{-1} (AT + \text{Im } B) \}, \) guarantees that the observable part of the closed loop system is controllable. And in Section 4 we conclude. For the notation concerning subspaces, and their associated algorithms, the reader is sent to Part I of this paper (Bonilla and Malabre 2002).

2. VARIABLE STRUCTURE REJECTION

In this Section we explore the usefulness of the \((A, E, B)\) invariant subspace contained in \(\mathcal{K}_X, \)

\[\mathcal{R}_X \]

We also write \(\mathcal{K}_X \) to denote the kernel of a given \(X. \)
Proof of Theorem 1 This proof is done in 7 steps. We are going to write E_F, and A_F, to
design $(E-BF^*_d)$ and $(A+BF^*_d)$, respectively.

1. Let us first decompose the space \mathcal{X} and the subspaces \mathcal{V}^*, $E^{-1}\mathcal{B}$ and K_E as follows:

\[
\begin{align*}
\mathcal{X} &= (\mathcal{V}^* + E^{-1}\mathcal{B}) \oplus \mathcal{X}_0 \\
\mathcal{V}^* &= \mathcal{V}^* \ominus (\mathcal{V}^* \cap E^{-1}\mathcal{B}) \\
E^{-1}\mathcal{B} &= ((\mathcal{V}^* \cap E^{-1}\mathcal{B}) + K_E) \oplus \mathcal{X}_3 \\
K_E &= (\mathcal{V}^* \cap K_E) \oplus \mathcal{X}_{KE}
\end{align*}
\]

where \mathcal{X}_0, \mathcal{X}_3, and \mathcal{X}_{KE} are any complementary subspaces. Now in view of (4), there then exist \mathcal{X}_1 and \mathcal{X}_2, both subspaces of $E^{-1}\mathcal{B}$, such that (recall (8.d)):

\[
\begin{align*}
\mathcal{V}^* \cap E^{-1}\mathcal{B} &= \mathcal{X}_1 \oplus \mathcal{X}_2 \oplus (\mathcal{V}^* \cap K_E) \\
\text{with:} & \quad \mathcal{X}_2 \approx \mathcal{X}_{KE}
\end{align*}
\]

From (8) and (9), \mathcal{X} can be decomposed as:

\[
\begin{align*}
\mathcal{X} &= \mathcal{X}_0 \oplus \mathcal{X}_1 \oplus \mathcal{X}_2 \oplus (\mathcal{V}^* \cap K_E) \oplus \mathcal{X}_{KE} \\
& \quad \oplus \mathcal{X}_3 \oplus \mathcal{X}_0 \\
\mathcal{V}^* &= \mathcal{V}^* \ominus \mathcal{X}_1 \oplus \mathcal{X}_2 \oplus (\mathcal{V}^* \cap K_E) \\
E^{-1}\mathcal{B} &= \mathcal{X}_1 \oplus \mathcal{X}_2 \oplus (\mathcal{V}^* \cap K_E) \oplus \mathcal{X}_{KE} \oplus \mathcal{X}_3
\end{align*}
\]

2. Let us next note that:

\[
\tilde{N} \mathcal{A} \mathcal{V}^* \subset \tilde{N} \mathcal{E} \mathcal{V}^*
\]

\[
\tilde{N} : \mathcal{X} \rightarrow \mathcal{E}/\mathcal{B} \text{ is the canonical projection}
\]

Indeed, for any $(F^*_p, F^*_d) \in \mathcal{F}(\mathcal{V}^*)$:

\[
\begin{align*}
P : \mathcal{E} \rightarrow \mathcal{B}, \text{ along } \mathcal{X}_0, \text{ such that: } PB = 1 \\
Q_p : \mathcal{X} \rightarrow \mathcal{V}^* ; \mathcal{X}_{KE} : \mathcal{X} \rightarrow \mathcal{X}_{KE} \\
Q_2 : \mathcal{X} \rightarrow \mathcal{X}_2 ; \mathcal{X}_{KE} : \mathcal{X} \rightarrow \mathcal{X}_{KE}
\end{align*}
\]

3 The natural projections Q_{X_i} are projected along the complementary subspaces of X_i, shown in (10).

the following insertion maps:

\[
\begin{align*}
&\begin{cases}
R_{\mathcal{V}^*} : \mathcal{V}^* \rightarrow \mathcal{X} ; \mathcal{X}_{X_{\mathcal{V}}} : \mathcal{V}^* \rightarrow \mathcal{X} \\
R_2 : \mathcal{X}_2 \rightarrow \mathcal{X} ; \mathcal{X}_{KE} : \mathcal{X}_{KE} \rightarrow \mathcal{X}
\end{cases}
\end{align*}
\]

such that $Q_{X_{i}} R_{X_{j}} = 1$, note that $Q_{X_{i}} R_{X_{j}} = 0$ for all $i \neq j$. Let us define the isomorphism

\[
T : \mathcal{X}_{KE} \leftrightarrow \mathcal{X}_2
\]

Let us then define the maps, $F^*_p : \mathcal{X} \rightarrow \mathcal{U}$ and

\[
\begin{align*}
F^*_d : \mathcal{X} \rightarrow \mathcal{U}, & \text{ as follows:} \\
F^*_p &= PE \left(R_{\mathcal{V}^*} T Q_{X_{KE}} (R_{X_{\mathcal{V}}} \mathcal{Q}_{X_{\mathcal{V}}} + R_{2} Q_{2}) \right) \\
F^*_d &= -P A R_{\mathcal{V}^*} Q_{\mathcal{V}^*}
\end{align*}
\]

Applying this P.D. control law, $u(t) = F^*_p x(t) + F^*_d \dot{x}(t) + v(t)$, to system (3), we get from (16), (13), (14), and (15):

\[
\begin{align*}
&\begin{cases}
P E_F \mid \mathcal{X}_{X_{\mathcal{V}}} = P E_F \mid \mathcal{X}_{X_{\mathcal{V}}} = 0 \\
P E_F \mid \mathcal{X}_3 = P E \mid \mathcal{X}_3 \\
P E_F \mid \mathcal{X}_{KE} = P E_F R_{X_{KE}} = (P E \mid \mathcal{X}_3) T \\
P E_F \mid \mathcal{X}_0 = P E \mid \mathcal{X}_0
\end{cases}
\end{align*}
\]

\[
\begin{align*}
&\begin{cases}
P A F_F \mid \mathcal{V}^* = PA F_F \mid \mathcal{V}^* = 0 \\
P A F_F \mid \mathcal{X}_i = PA \mid \mathcal{X}_i , \ i \in \{ \mathcal{X}_E, 3, 0 \}
\end{cases}
\end{align*}
\]

Let us note that (18) and (11) imply that $(F^*_p, F^*_d) \in \mathcal{F}(\mathcal{V}^*)$.

4. From (10) we have that the map $P E \mid E^{-1}\mathcal{B} : E^{-1}\mathcal{B} \rightarrow \mathcal{B}$ is characterized by the following matrix:

\[
M = \begin{bmatrix}
X_1 & X_2 & 0 & 0 & X_3
\end{bmatrix}
\]

\[
X_1 = P E \mid \mathcal{X}_1 ; \quad X_2 = P E \mid \mathcal{X}_2 ; \quad X_3 = P E \mid \mathcal{X}_3
\]

The map $[X_1 \ X_2 \ X_3]$ is an isomorphism. Indeed, since $B \subset \mathcal{E}$, we get: $\text{Im } M = P E E^{-1}\mathcal{B} = P (\mathcal{E} \cap \mathcal{B}) = PB = \mathcal{B}$, which implies that M is epic, namely, so does $[X_1 \ X_2 \ X_3]$. On the other hand (recall (2.a) and (10)): $\text{dim } \mathcal{X}_M = \text{dim } E^{-1}\mathcal{B} - \text{dim } B = \text{dim } K_E + (\text{dim } \mathcal{B} \cap \mathcal{E}) - \text{dim } B = \text{dim } K_E = \text{dim } E^{-1}\mathcal{B} - (\text{dim } \mathcal{X}_1 + \text{dim } \mathcal{X}_2 + \text{dim } \mathcal{X}_3)$, and thus, the map $[X_1 \ X_2 \ X_3]$ is monic.

5. Noting that for any feedback $F_d : \mathcal{X} \rightarrow \mathcal{U}$:

\[
E^{-1}\mathcal{B} = (E-BF_{d})^{-1}\mathcal{B}
\]

We have that the operator $P E F_F \mid E^{-1}\mathcal{B} : E^{-1}\mathcal{B} \rightarrow \mathcal{B}$ is characterized by the following matrix (recall (10), (17), and (20)):

\[
M_F = \begin{bmatrix}
X_1 & 0 & 0 & X_2 & X_3
\end{bmatrix}
\]

Now, in view that (recall (13) and (21)):

\[
\begin{align*}
K_M &= E^{-1}\mathcal{B} \cap E^{-1}\mathcal{K}_p = \mathcal{K}_E \\
K_{M_F} &= E_{F_F}^{-1}\mathcal{B} \cap E_{F_F}^{-1}\mathcal{K}_p = \mathcal{K}_{E_F}
\end{align*}
\]

$
\mathcal{V}_{E_{C}, \Sigma_0}$, for making observable the variation of the internal structure in the input–output behaviour of the closed loop system. For this, in Theorem 1 we show that thanks to (4) we can embed the degree of freedom in $\mathcal{V}_{E_{C}, \Sigma_0}$ (see (7)). And in Theorem 2 we show that the quotient system, $\Sigma_{p_2}(\mathcal{E}_1, A_1, B_1, C_1)$ (see (24)), is actually strictly proper described by the state space description (27). In order to simplify the notation, in this Section we write \mathcal{V}^* in place of $\mathcal{V}_{E_{C}, \Sigma_0}$.

Theorem 1. If (2.a) and (4) hold, there then exists $(F^*_p, F^*_d) \in \mathcal{F}(\mathcal{V}^*)$ such that (recall (8.d)):

\[
\begin{align*}
\text{Ker } (E-BF^*_d) &\approx \mathcal{K}_E ; \quad \text{Im } (E-BF^*_d) = \mathcal{E} \\
\text{Ker } (E-BF^*_d) &\subset \mathcal{V}^*
\end{align*}
\]
from (19) and (22), we get: $\mathcal{K}_{E_F} \approx \mathcal{K}_E$.

6. From (2.a) and (6.a) we get (6.b).

7. In view of (22), (23.b), and (10), we get:

\[
\begin{align*}
\text{Ker } E_{F^*} &\subset V^*.
\end{align*}
\]

\begin{proof} of Theorem 2

\text{Proof in 4 steps:

1. (24) is satisfied. Since } (F_p^*, F_q^*) \in F(V^*), \text{ then } A_F \cdot V^* \subset E_F \cdot V^*, \text{ which implies: } A_F \cdot \mathcal{K}_F \subset \mathcal{K}_F \text{ and } E_F \cdot \mathcal{K}_F = \mathcal{K}_F.

2. E_1 is an epic map. From (6.b), (24) and (25) we get: $\text{Im } E_1 = E_1 \cdot \mathcal{Y}/V^* = E_1 \cdot \Phi \cdot \mathcal{X} = \Phi \cdot \mathcal{X} = \mathcal{E}/E_F \cdot V^*$.

3. E_2 is a monic map. From previous item, (7) and (6.a), we get: $\dim \mathcal{K}_{E_2} = \dim \mathcal{X}/V^* - \text{Im } E_2 = \dim \mathcal{X}/V^* - \dim \mathcal{E}/E_F \cdot V^* = \dim \mathcal{K}_{E_2} = \dim (\mathcal{V}^* \cap \mathcal{K}_{E_F}) = \dim \mathcal{K}_{E_2} = \dim \mathcal{K}_{E_F} = 0.

4. Quotient System. Applying the control law (26) to system (3) we get (recall (24)):

\[
E_4 x = A_4 x + B_4 v \quad ; \quad y = C_4 x
\]

Let us define the monic maps, $\mathcal{T} : \mathcal{X}/V^* \rightarrow \mathcal{X}$ and $L_3 : \mathcal{E}/E_F\cdot V^* \rightarrow \mathcal{E}$, such that $\mathcal{X} = \mathcal{V}^* \oplus \mathcal{T}$ and $\mathcal{E} = E_F \cdot V^* \oplus L_3$. In these bases the matrix representation of the closed loop system, (1) fed back by (26), is:

\[
\begin{bmatrix}
Y_1 & Y_2 \\
0 & E_4 \\
0 & 0
\end{bmatrix}
\begin{bmatrix}
\dot{x}
\end{bmatrix}
= \begin{bmatrix}
X_1 & X_2 \\
0 & A_4 \\
D_1 & D_2
\end{bmatrix}
\begin{bmatrix}
\dot{x}
\end{bmatrix}
+ \begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix} u
\]

\[
y = \begin{bmatrix}
0 \\
0 \\
C_4
\end{bmatrix}
\begin{bmatrix}
\dot{x}
\end{bmatrix}
\]

which implies (27). This pencil is solvable since E_4 is an isomorphism and the maps $Y_1 = E_F \cdot V^* \mid E_F \cdot V^*$ and $D_4 : \mathcal{X} \rightarrow \mathcal{K}_D$ are epic. \end{proof}

3. CLOSED LOOP REACHABILITY

In this Section we show, in Theorem 3, that the reachability condition (5) implies the reachability of the closed loop system (27).

\begin{proof} of Lemma 4

1. Since $\mathcal{K}_{E_F} \approx \mathcal{K}_E$ implies $\text{Im } E_F = \mathcal{E}$, we get together with $\text{Im } A + B \subset \mathcal{E}$ that: $\text{Im } A_F + B \subset \text{Im } A + B \subset \mathcal{E} = \text{Im } E_F$. From \[7\] and (30), we get: $\mathcal{V}^*_{\mathcal{X}/\mathcal{E}} = \mathcal{X} \text{ and } \mathcal{V}^*_{\mathcal{X}/\mathcal{E}} = \mathcal{A}_F \text{ (Im } E_F + B \text{) is } \mathcal{X}$, which implies (31.a). Equation (31.b) directly follows from (31.a) and (10).

2. Let us note that: $E_F^{-1} (A_F S + B) = E_F^{-1} (A_S + B)$ (this is a standard result, see for instance Wonham 1985). Then, from [8], (2.a), and noting that $B + \text{Im } A \subset \mathcal{E}$ implies:

\[
E_F^{-1} (A_S + B) = E_F^{-1} A_S + E_F^{-1} B T
\]

5 We write $[\cdot]$ for the equation’s numbers which are in (Bonilla and Malabre 2002), Part I of this paper.
we have that the remaining steps, $i \geq 0$, of the algorithm to compute S^*_{X,X^*} are also equal to:

$$S^*_{X,X^*} = E^{-1}A S^*_{X,X^*} + E^{-1}B \quad (36)$$

Let us now note that (2.1a), [8], (36) and (35) imply that: $S^*_{X,X^*} = \mathcal{K}_{EP}$, $S^*_{X^*,X} = E^{-1}A \mathcal{K}_{EP} + E^{-1}B$, $S^2_{X,X^*} = (E^{-1}A)^2 \mathcal{K}_{EP} + (E^{-1}A) \mathcal{K}_{E} + E^{-1}B + E^{-1}B$, ..., $S^k_{X,X^*} = (E^{-1}A)^k \mathcal{K}_{EP} + (E^{-1}A)^k \mathcal{K}_{E} + E^{-1}B + S^k_{X^*,X}$. Equation (33) directly follows from [8], (30) and (35).

3. Let us first note that, $(F_p, F_d) \in \Phi(V_{K,C,5})$, implies that: $A_p \mathcal{V}_{K,C,5} \subseteq E \mathcal{V}_{K,C,5}$. Let us next note that: $\mathcal{K}_{EP} \subseteq \mathcal{V}_{K,C,5}$, implies that: $\mathcal{K}_{EP} \subseteq \mathcal{V}_{K,C,5}$, namely: $E^{-1}A_p \mathcal{K}_{EP} \subseteq E^{-1}A \mathcal{V}_{K,C,5} = \mathcal{V}_{K,C,5}$ and $\mathcal{K}_{EP} = \mathcal{V}_{K,C,5}$. And thus: $(E^{-1}A_p)^{k+1} \mathcal{K}_{EP} \subseteq \mathcal{V}_{K,C,5}$.

Proof of Theorem 3 Since $\mathcal{R}^*_{X,X^*} = \mathcal{X}$ and $\mathcal{R}^*_{X,X^*} = \mathcal{X}$ and $\mathcal{R}^*_{X,X^*} = \mathcal{Y}$, then: $S^*_{X,X^*} = \mathcal{X}$, and thus, equation (28) directly follows from (31.1) and (32). Equation (29) is proved in 4 steps:

1. Let us first show that:

$$\Phi E^{-1}_p \mathcal{S} \subseteq E^{-1} \mathcal{P} \mathcal{S} \quad (37)$$

Indeed, let $x \in \Phi E^{-1}_p \mathcal{S}$, then there exist $s \in \mathcal{S}$ and $z \in E^{-1} \mathcal{P} \mathcal{S}$ such that: $x = \Phi z$ and $E^{-1}_p z = s$, which imply (recall (24.1)): $E^{-1}_p x = E^{-1} \mathcal{P} = \Pi s$, namely: $x \in E^{-1}_p \Pi s$.

2. Let us first note that (34) and (25.b) imply:

$$\Phi (E^{-1}_p A^{-1}_p)^{n+1} \mathcal{K}_{EP} \subseteq \Phi \mathcal{V}_{K,C,5} = \{0\} \quad (38)$$

3. Let us now show that (37) and (24) imply:

$$\Phi (E^{-1}_p A^{-1}_p)(E^{-1}_p A^{-1}_p)(E^{-1}_p A^{-1}_p) \cdots (E^{-1}_p A^{-1}_p)(E^{-1}_p A^{-1}_p)(E^{-1}_p A^{-1}_p)(E^{-1}_p A^{-1}_p)(E^{-1}_p A^{-1}_p) \mathcal{B} \quad (39)$$

$$\subseteq E^{-1} \mathcal{P} \Pi A \mathcal{P}(E^{-1}_p A^{-1}_p)(E^{-1}_p A^{-1}_p)(E^{-1}_p A^{-1}_p)(E^{-1}_p A^{-1}_p)(E^{-1}_p A^{-1}_p) \cdots (E^{-1}_p A^{-1}_p)(E^{-1}_p A^{-1}_p)(E^{-1}_p A^{-1}_p)(E^{-1}_p A^{-1}_p) \mathcal{B} \quad (39)$$

4. Finally, (from (28), (31.1) (33) (25.b) (38) and (39) we have that: $\mathcal{X} = \mathcal{R}^*_{X,X^*} = (E^{-1}A_p)^{n+1} \mathcal{K}_{EP} + \sum_{j=0}^n (E^{-1}_p A^{-1}_p)^j \mathcal{B}$. Then, namely: $\mathcal{X} = \mathcal{X} \mathcal{V}_{K,C,5} = \mathcal{X} \mathcal{V}_{K,C,5} = \mathcal{X} \mathcal{V}_{K,C,5} = \mathcal{X} \mathcal{V}_{K,C,5}$. Namely: $\sum_{j=0}^n (E^{-1}_p A^{-1}_p)^j \mathcal{B} = \mathcal{X} \mathcal{V}_{K,C,5}$, which together with the Cayley-Hamilton Theorem, gives (29) (recall that we have also proved in Theorem 2 that the induced map E_* is an isomorphism). \(\square\)

Let us come back to the illustrative example [2]:

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

\(x(t) = \begin{bmatrix} 0 & 1 & -1 \\ 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} x(t) \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t) \)

\(y(t) = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} x(t) \end{bmatrix} \)

Let us note that: $\mathcal{V}^* = \mathcal{K}_C = \{e_1, e_2\}$, $\mathcal{K}_E = \{e_3\}$, and $E^{-1}\mathcal{B} = \{e_2, e_3\}$, then (see (8), (9) and (10): $\mathcal{X}_1 = \{e_1\}$, $\mathcal{X}_1 = \{e_2\}$, $\mathcal{V}^* \cap \mathcal{K}_E = \{0\}$, $\mathcal{X}_1 = \{e_3\} = \{0\} = \{0\}$. From (13), (14) and (15), we have: $P = [0, 1]$, $Q_{\mathcal{V}^*} = [1, 0, 0]$ and $Q_{\mathcal{V}^*} = [1, 0, 0]$. Then, $R_{\mathcal{V}^*} = [0, 1, 0]$, $R_{\mathcal{V}^*} = [0, 1, 0] = R_{\mathcal{V}^*}$, $Q_{\mathcal{V}^*} = [0, 1, 0]$. In view of Theorem 3, we can assign the dynamics of the strictly proper fractional system (27), so we choose: $F_{\mathcal{V}^*} = [0, 1, 0]$ and $F_{\mathcal{V}^*} = [0, 1, 0]$. And thus, $u = F_{\mathcal{V}^*}^0 \dot{x} + F_{\mathcal{V}^*}^0 x + R/\mathcal{P}_0$. The closed loop system is:

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \begin{bmatrix} x(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 & -1 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} x(t) \end{bmatrix} + \begin{bmatrix} 0 \end{bmatrix} \begin{bmatrix} 1/\mathcal{P}_0 \end{bmatrix} \begin{bmatrix} x(t) \end{bmatrix} + \begin{bmatrix} 0 \end{bmatrix} \begin{bmatrix} 1/\mathcal{P}_0 \end{bmatrix} \begin{bmatrix} x(t) \end{bmatrix}$$

And thus, the degree of freedom has been made unobservable, in other words, the variation of structure is no longer present at the output. The closed loop system behaves as: $\mathcal{G}(t) + \mathcal{U}(t) = \mathcal{R}(t)$, whatever be the active constraint: $0 = [\alpha, \beta, 1] \begin{bmatrix} x(t) \end{bmatrix}$. For details on the practical implementation of the proposed P.D. control law by a proper controller, see [Bonilla et al. 1993]. And for details on the synthesis of a descriptor variable reconstructor see [Bonilla et al. 2000].

4. CONCLUDING REMARKS

We have proposed here a synthesis procedure for giving the closed loop system an unique and pre specified external behaviour.

Our approach is based on the use of geometric tools (see Wonham 1985). Namely, our control law makes unobservable the degree of freedom which was initially present in the external behaviour of the system (see Theorems 1 and 2).

Moreover, under some controllability condition (which includes the effect of the degree of freedom), the strictly proper closed loop system obtained in that way not only has an unique behaviour, but also is completely controllable by its control input (see Theorem 3).

Our solution is based on the use of (P, D) feedbacks which are friends of the supremal (A, E, B) invariant subspace included in \mathcal{K}_C.

5. REFERENCES

Bonilla, M. and M. Malabre (2002). On the control of linear systems having internal varia-
On the implementation of some variable structure systems control laws (the case of
Adaptive structure detector for linear implicit systems. In: American Control Conference
Springer–Verlag, New York.

APPENDIX FOR PART I

PROOFS OF

(BONILLA AND MALABRE 2002)

Remember that [x] refers to equation’s number (x) in (Bonilla and Malabre 2002), Part I of this
paper.

Proof of Lemma 5 Proved in the 3 steps:

1. The internal properness is equivalent to:

\[\mathcal{V}_{K_D, \Sigma_0}^* \cap K_E = \mathcal{X} ; \quad \mathcal{S}_{K_D, \Sigma_0}^* = K_E \] \hspace{1cm} (A.1)

Let us first note that regularity implies:

\[\mathcal{X} = \mathcal{A}_{1, \Psi_0} + \mathcal{A}_{2, \Psi_0} \] \hspace{1cm} (A.2)

Let us now note that equality implies:

\[\mathcal{A}_{1, \Psi_0} = K_E. \] Indeed the absence of infinite zeros of order greater than one is equivalent to card([infinite elementary divisors of order \(\geq 2 \)]) = 0, which in turns is equivalent to

\[\dim \left(\frac{\mathcal{A}_{2, \Psi_0} + \mathcal{A}_{1, \Psi_0}}{\mathcal{A}_{2, \Psi_0} + \mathcal{A}_{1, \Psi_0}} \right) = 0 \] \hspace{1cm} (A.3)

Furthermore, in view that the geometric algorithm [13] is nondecreasing, i.e. \(\mathcal{A}_{1, \Psi_0} \subseteq \mathcal{A}_{1, \Psi_0} \),

(A.2) implies \(\mathcal{A}_{2, \Psi_0} + \mathcal{A}_{1, \Psi_0} = \mathcal{A}_{2, \Psi_0} + \mathcal{A}_{1, \Psi_0} \), which together with (A.3) imply:

\[\mathcal{A}_{1, \Psi_0} = \mathcal{A}_{2, \Psi_0} = \mathcal{A}_{1, \Psi_0} \] \hspace{1cm} (A.4)

Then, from [12] and (A.4) we get (recall [16]):

\(\mathcal{A}_{1, \Psi_0} = \mathcal{A}_{1, \Psi_0} = \mathcal{E}^{-1} \mathcal{H} \mathcal{A}_{1, \Psi_0} = \text{Ker} \ E = K_E. \)

From [12] and [16], we get by simple induction:

\(\mathcal{A}_{1, \Psi_0} = \mathcal{S}_{K_D, \Sigma_0}^*. \) Finally from [13] and [7], we get by simple induction

\(\mathcal{A}_{2, \Psi_0} = \mathcal{A}_{2, \Psi_0} = \mathcal{Y}_{K_D, \Sigma_0}^*. \)

2. We next show that \(K_D \cap K_E \subseteq \mathcal{V}_{K_D, \Sigma_0}^* \). Indeed, the limit of [8] satisfies \(\mathcal{S}_{K_D, \Sigma_0}^* = \mathcal{E}^{-1} \mathcal{A}(K_D \cap K_E) = K_E \), which implies: \(\mathcal{E} \cap \mathcal{A}(K_D \cap K_E) = \{0\} \), and, due to [17.a]: \(A(K_D \cap K_E) = \{0\} \).

3. We are now in position to prove that properness implies [18]:

Let us first note that (A.1.a) implies:

\[\mathcal{E}_{V_{K_D, \Sigma_0}^*} = \mathcal{E} ; \quad \mathcal{V}_{K_D, \Sigma_0}^* \cap K_E = \{0\} \] \hspace{1cm} (A.5)

Let us next show that:

\[\mathcal{V}_{K_D, \Sigma_0}^* = \mathcal{A}K_D ; \quad \mathcal{A}K_D + \mathcal{A}E = \text{Im} \ A \] \hspace{1cm} (A.6)

Indeed, the limit of [7] satisfies \(\mathcal{V}_{K_D, \Sigma_0}^* = \mathcal{K}_D \cap \mathcal{A}^{-1} \mathcal{V}_{K_D, \Sigma_0}^* \), which together with (A.5) implies:

\[\mathcal{V}_{K_D, \Sigma_0}^* = \mathcal{K}_D \cap \mathcal{A}^{-1} \mathcal{E} \]

\[\mathcal{K}_E \cap \mathcal{K}_D \cap \mathcal{A}^{-1} \mathcal{E} = \{0\} \] \hspace{1cm} (A.7)

From (A.7.a) and [17.a] we have: \(\mathcal{V}_{K_D, \Sigma_0}^* = \mathcal{A}K_D \cap \text{Im} \ A \cap \mathcal{E} = \mathcal{K}_D \cap \text{Im} \ A = \mathcal{K}_D \). Applying the operator \(\mathcal{A} \) to equality (A.1.a) and taking into account (A.6.a), we get (A.6.b).

Now, in view of the definition of \(\mathcal{V}_{K_D, \Sigma_0}^* \) and taking into account (A.6.a), we get:

\[\mathcal{A}K_D = \mathcal{V}_{K_D, \Sigma_0}^* \subseteq \mathcal{E}_{V_{K_D, \Sigma_0}^*}(\mathcal{A}(K_D, E, 0)) \subseteq \mathcal{E}_{K_D} \]

Hence, \(K_D \) is an \((A, E, 0) \) invariant subspace contained in \(K_D \) and from the supremality of \(\mathcal{V}_{K_D, \Sigma_0}^* \), we get: \(K_D \subseteq \mathcal{V}_{K_D, \Sigma_0}^* \), namely \(\mathcal{V}_{K_D, \Sigma_0}^* = K_D \). □

Proof of Proposition 8 Proved in 4 steps:

1. Let us first prove that, if \(\text{Im} \ A + \mathcal{B} \subseteq \mathcal{E} \) then:

\[\mathcal{V}_{X, \Sigma_X}^* = \mathcal{K}_D \] \hspace{1cm} (A.8)

Indeed, from algorithm [7] we have for the first step (recall [17.a]):

\[\mathcal{V}_{X, \Sigma_X}^* = \left[\begin{array}{c} A \\ D \end{array} \right]^{-1} \left[\begin{array}{c} E \\ 0 \end{array} \right] \mathcal{V}_{X, \Sigma_X}^* + \left[\begin{array}{c} B \\ 0 \end{array} \right] \mathcal{U} = \left[\begin{array}{c} A \\ D \end{array} \right]^{-1} \left[\begin{array}{c} E \\ 0 \end{array} \right] \mathcal{X} + \left[\begin{array}{c} B \\ 0 \end{array} \right] \mathcal{U} = \left[\begin{array}{c} A \\ D \end{array} \right]^{-1} \text{Im} \left[\begin{array}{c} E \\ 0 \end{array} \right] = \mathcal{K}_D. \] Now, since (recall [18]):

\[\mathcal{V}_{X, \Sigma_X}^* = \mathcal{E}_{K_D} = \mathcal{E} = \mathcal{X} = \mathcal{V}_{X, \Sigma_X}^*, \]

we get:

\[\mathcal{V}_{X, \Sigma_X}^* = \mathcal{V}_{X, \Sigma_X}^* = \mathcal{V}_{X, \Sigma_X}^* \]

2. From Proposition 7, [18], [17.a] and (A.8), we get that the non algebraic redundant part of the global system, \(X^* \), is restricted to \(K_D \) in the domain and to \(E_{K_D} \) in the codomain.

3. Let us now prove that, the pair of induced maps \(\mathcal{E} : X/\mathcal{V}_{X, \Sigma_X}^* \rightarrow \mathcal{X}_0/(\mathcal{E} \mathcal{V}_{X, \Sigma_X}^* + \text{Im} \mathcal{B}) \) and \(\mathcal{H} : X/\mathcal{V}_{X, \Sigma_X}^* \rightarrow \mathcal{X}_0/(\mathcal{E} \mathcal{V}_{X, \Sigma_X}^* + \text{Im} \mathcal{B}) \) satisfy: \(\left(\mathcal{E}, \mathcal{H} \right) = (0, 1) \).

Indeed, noting first that [19] implies that \(X/\mathcal{V}_{X, \Sigma_X}^* \approx \mathcal{K}_D \) and \(\mathcal{A}_{X, \Sigma_X}^*/(\mathcal{E} \mathcal{V}_{X, \Sigma_X}^* + \text{Im} \mathcal{B}) \approx \mathcal{E}_{K_D} \), defining next the following pair of maps:

\[Q : X \rightarrow K_E, \text{ natural projection along } K_D \]

\[Q : X_0 \rightarrow D_{K_E}, \text{ natural projection along } E_{K_D} \]
Indeed, taking into account [17.a] in [7] we get (A.9.a). And from [17.a] and [29] we get: \(a_F \subseteq \text{Im } A_F \subseteq \mathcal{E} \).
2. Let us next note that (A.9) imply that

\[
E_F A^*_F \psi_p = A_F A^*_F \psi_p \tag{A.10}
\]

Indeed, from (A.9.b) and [12] we get: \(E_F A^*_F \psi_p = E_F E_F^{-1} A_F A^*_F \psi_p = \text{Im } E_F \cap A_F A^*_F \psi_p = A_F A^*_F \psi_p \).
3. Let us then prove that the solution \(y \) of the closed loop system \(\Sigma_F \) is unique if and only if

\[
A^*_F \psi_p \subseteq \mathcal{V}^* \tag{A.11}
\]

Proof of Theorem 12 In view of Theorem 11 (and its proof) we only need to prove that [30] and [31] imply \(A^*_F \psi_p \subseteq \mathcal{V}^* \).
Indeed, from algorithm [12] and [30] we get \(A^*_F \psi_p = \text{Ker } E_F \subseteq \mathcal{V}^* \). Let us now suppose that \(A^*_F \psi_p \subseteq \mathcal{V}^* \), we then have from [12] and [30]:

\[
A^*_F \psi_p = E_F^{-1} A_F A^*_F \psi_p \subseteq E_F^{-1} A_F \mathcal{V}^* \subseteq E_F^{-1} \mathcal{V}^* = \mathcal{V}^* + K_E \subseteq \mathcal{V}^*.
\]

Proof of Theorem 14 Let us first prove [35.a]. From [7], [25], [26], and Fig. 1, we get (recall that \(\mathcal{E} = EK_D \) and that \(B \subseteq \mathcal{E} \)): \(V^0_{K_D} \mathcal{E} = K_D \) and

\[
V^0_{K_D, \mathcal{E}} = K_D \cap (\mathcal{E} \langle -1 \rangle)^{-1} (K_D \cap \mathcal{E} \langle -1 \rangle) B = K_D \cap (E K_D + B) = K_D \cap (E \langle -1 \rangle \mathcal{E}) \subseteq K_D \cap (E \langle -1 \rangle \mathcal{E}) = K_D \cap (E \langle -1 \rangle \mathcal{E}) = K_D, \]

which implies: \(V^0_{K_D} \mathcal{E} = K_D \). Let us next prove [35.b]. From algorithm [7] we have for the first step (recall that \(A \subseteq \mathcal{E} \)): \(X \subseteq V^0_{X, \mathcal{E}} = A^{-1} (E \langle -1 \rangle \mathcal{E}) \subseteq A^{-1} (E \langle -1 \rangle \mathcal{E}) = X \).

Hence, \(V^0_{X, \mathcal{E}} = V^0_{X, \mathcal{E}} = X \). Let us finally prove [35.c]. The assumption \(A \subseteq \mathcal{E} \) and the algorithm [7] imply:

\[
V^0_{X, \mathcal{E}} = X \quad \text{and} \quad V^0_{X, \mathcal{E}} = A^{-1} (\text{Im } A \cap \mathcal{E}) = A^{-1} \text{Im } A = A^{-1} A \mathcal{X} = X + K_A = X.
\]