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Abstract: Wave-energy point absorbers can be defined as oscillators excited by ocean waves. Devices of 

this kind are meant to be deployed offshore for the production of renewable energy. As wave conditions 

at a given site can vary widely over time, advanced control strategies for point absorbers are required to 

guarantee good performance. This article presents a state-space control scheme for a point absorber, 

which builds on an approach outlined in an earlier article by the same authors. Strongly based on model 

predictive control (MPC), the control scheme makes use of an unusual form of the objective function, 

and aims at maximising the production of energy by the point absorber. The control scheme remedies 

some of the shortcomings of existing approaches to the control of a point absorber, such as reactive 

control and latching control, and is meant to be extendable to any point absorber that can be well 

described by a linear model. Results of numerical simulations of a heaving point absorber controlled with 

this scheme are presented and confirm the potential of this approach.  
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1. INTRODUCTION 

1.1 Control of wave-energy point absorbers  

Wave-energy capture is a much anticipated technology meant 

to produce renewable energy from ocean waves. Point 

absorbers (Falnes, 2002a) arguably figure among the most 

promising wave-energy concepts proposed so far. Point 

absorbers come in a variety of forms, but can generally be 

described as relatively small, linear, damped oscillators 

excited by ocean waves. Incident waves put the mass element 

of the system—which may consist of a floating or submerged 

body, or a water column oscillating within a plenum—into 

motion, motion which is resisted by some power take-off 

(PTO) machinery; useful energy can therefore be produced 

and transmitted to shore. Point absorbers are expected to be 

deployed offshore at the commercial stage, in arrays of 

several units known as wave farms. Control strategies that 

improve the capacity of point absorbers to extract energy 

from the waves are desirable, as passive control (using a 

fixed linear damping) typically yields poor performance. A 

point absorber must be able to adapt its behaviour to the wave 

climate, which may vary dramatically at a given site. Control 

of wave-energy converters has been the subject of numerous 

research articles since the 1970s; the reader may refer to 

Falnes (2002b) and Salter, Taylor and Caldwell (2002) for an 

overview of the field. Two of the most studied approaches to 

control of point absorbers are briefly reviewed here. 

Reactive control (Budal & Falnes, 1977) is, historically, the 

first approach to controlling point absorbers and is primarily 

based on hydrodynamic considerations. It stems from 

frequency-domain modelling of point-absorber dynamics and 

amounts to setting the value of the (mechanical) load so as to 

maximise absorption of mechanical energy by the system. It 

is the mechanical analogue to what is known as impedance 

matching in the context of linear electrical circuits. For this 

reason, and because the term reactive control can be 

misleading, the term impedance matching (or mechanical 

impedance matching, to avoid a dispute in terminology) 

should perhaps be preferred. Impedance matching can be 

articulated in the time domain (Naito & Nakamura, 1985), 

though information on the future wave excitation is required 

to apply it. Although it is meant to yield maximum energy 

absorption by the point absorber, impedance matching suffers 

from both theoretical and practical limitations. A theoretical 

limitation is that it may prescribe unrealistically large 

oscillations, and a practical limitation is that it may require 

prohibitively large amounts of energy flowing up and down 

the energy conversion chain.  

An alternative to impedance matching that has become 

known as latching control was proposed by Falnes & Budal 

(1978). Latching consists of an alternation of phases during 

which the oscillator is linearly damped by the PTO and 

phases during which it is locked into position (i.e. latched) by 

a mechanism of some description. Latching control, 

therefore, contrary to impedance matching, requires no 
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reversal of the energy flowing between the sea and the 

system. As with impedance matching, latching control also 

requires information on the future wave excitation. If the 

point absorber is latched and released in a timely fashion, an 

artificial resonance can be achieved, thereby greatly 

improving performance over merely using a fixed, linear 

damping. Originally developed for the case of sinusoidal 

wave excitation, latching control was extended to irregular 

waves by Hoskin (1988), who made use of Pontryagin’s 

Maximum Principle. The same technique was later applied by 

Babarit & Clément (2006), who used a state-space model for 

describing the wave radiation phenomenon. Eidsmoen (1998) 

modified the basic principle of latching with the intent of 

handling amplitude constraints. Falcão (2007) proposed an 

alternative on-off control strategy, which requires no 

knowledge of the future wave excitation, with a view to 

applying it to point absorbers equipped with a hydraulic PTO. 

Despite its widespread popularity in the wave-energy 

literature, however, the latching approach has some key 

limitations. In particular, its suitability to point absorbers 

equipped with electrical PTO has not been assessed; 

moreover, latching control may prove inadequate for arrays 

of point absorbers, since the optimum phase condition on 

which it is founded does not hold if more than one oscillator 

are present (Falnes, 1980; Thomas & Evans, 1981). 

New control approaches are required. The development of 

better PTO systems for point absorbers, such as linear 

electrical generators and novel variable-displacement 

hydraulics (Payne et al., 2005), has opened the possibility of 

devising control strategies that would optimise the control 

force in real time, as advocated by Salter, Taylor & Caldwell 

(2002) and Molinas et al. (2007). Model predictive control 

(MPC) is an advanced control methodology (Maciejowski, 

2002; Rossiter, 2003) that lends itself well to that kind of 

approach.  

1.2 MPC applied to point absorbers 

The first foray in that direction was made by Gieske (2007). 

His numerical study focused on a point-absorber concept 

known as the Archimedes Wave Swing, of which a linearised 

model was used. Although Gieske modelled the action of 

wave radiation on the system rather simplistically, using a 

linear damper, he can be credited for proposing a number of 

novel ideas that would later be revisited by other wave-

energy researchers (Cretel et al., 2010; Fusco & Ringwood, 

2010; Hals, Falnes & Moan, 2011):   

x associating the objective function with the amount 

of energy produced by the point absorber over the 

prediction horizon; 

x estimating the wave-excitation force from the 

motion of the device (with the proviso that a 

sufficiently accurate model of the system be used in 

the control algorithm); 

x predicting the wave-excitation force over the 

horizon by fitting a linear static auto-regressive 

model to the sequence of excitation-force estimates 

and propagating that model forward in time. 

A later article by Hals, Falnes & Moan (2011) is of 

importance here. In that theoretical study, MPC was applied 

to a heaving, semi-submerged sphere constrained to oscillate 

over a finite stroke.  The model developed by Hals stems 

from linearised wave-structure interactions and includes a 

low-order linear state-space model dedicated to the wave-

radiation phenomenon; the PTO system is assumed ideal. 

Most peculiarly, the formulation of the objective function 

involves two different state-space systems; this is hardly 

necessary, though, as shown in the present paper. Besides, 

Hals uses the vector of predicted velocities as the 

optimisation variable, a questionable choice because the 

power-take-off force, not the oscillator’s velocity, is the 

controllable input to the system; optimising the trajectory 

with respect to the vector of predicted inputs, as in the 

present article, is more general. Hals considers two objective 

functions for his MPC algorithm: one corresponds to the 

difference between the energy entering the system and the 

energy radiated away from the system over the prediction 

horizon; the other corresponds to the power absorbed by the 

PTO system over the prediction horizon. Hals deems the first 

objective function preferable to the second one, which is 

reported to yield “inaccurate solutions”. It should be noted, 

however, that those two objective functions correspond to 

different optimisation problems: the second objective 

function penalizes the energy stored in the system, in 

potential and kinetic form, at the end of the prediction 

horizon, whereas the first one does not. The solutions to those 

two optimisation problems may, therefore, be different. Hals 

also reports unwanted, fast fluctuations in the “optimal” PTO 

force, which he suggests could be subsequently low-pass 

filtered, in practice. However, these numerical difficulties can 

simply be circumvented by the addition of regularization 

terms (Boyd & Vandenberghe, 2004) in the objective 

function. In Hals, Falnes & Moan (2011), information on the 

future wave-excitation force is obtained via a method 

reminiscent of that used by Budal AP�=Hä (1982). A nonlinear, 

time-varying system is used to model the wave-excitation 

process. State estimates of this system are derived by feeding 

measurements of the wave-excitation force to an extended 

Kalman filter, which is then used to obtain a multistep 

prediction of the wave excitation. Hals reports disappointing 

results in terms of prediction accuracy, using that technique, 

but other, arguably better, methods of time-series prediction 

can be used (Fusco & Ringwood, 2010). 

Bacelli, Gilloteaux & Ringwood (2009) also deserve 

mention, on account of the combination of MPC and dynamic 

programming (Bertsekas, 2005) they proposed for the control 

of a nonlinear point-absorber system dedicated to potable-

water production.  

Of particular interest here, however, is an earlier paper by 

Cretel et al. (2010), which introduced an MPC-based control 

methodology meant to maximise the energy capture by a 

point absorber. The approach put forth in that preliminary 

article allowed for the estimation, by soft sensing, and the 

short-term prediction of the wave-excitation force, prediction 

which could be used in the predictive control algorithm. The 

present article improves the methodology outlined in Cretel 

et al. (2010). The use of a triangle hold for the model inputs 

Preprints of the 18th IFAC World Congress
Milano (Italy) August 28 - September 2, 2011

3715



 

 

     

 

and a refinement of the objective function yield better results 

than those reported earlier. Moreover, the addition of penalty 

terms in the objective function alleviates the need for an 

excessive flow of mechanical reactive power associated with 

the control action, a problem which was noted by both Cretel 

et al. (2010) and Hals, Falnes & Moan (2011). The new 

control formulation is tested numerically on a heaving point 

absorber of cylindrical shape, excited by regular or irregular 

waves, and either free or subject to amplitude constraints. 

2. MATHEMATICAL MODEL  

2.1  Equation of motion 

Consider a floating body of structural mass I and 

constrained to oscillate in heave (i.e. in the vertical direction) 

only. Let V denote the vertical displacement of the float with 

respect to its position at rest (see figure 1). 

 

Fig. 1. Schematic view of the floating body and the forces exerted 

on it; the dotted cylinder corresponds to the float at rest, and the 

dotted line to the sea surface in calm water (no waves). 

Assume the chosen frame of reference to be inertial; the time-

domain equation of motion, according to Newton’s second 

law of motion, is 

IV7:P; L BÛ:P;E BØ:P;E Bå:P;E BÉÍÈ:P;,          (1) 

where P denotes time and BÉÍÈ the force exerted by the PTO 

system on the floating body. The other three forces, BÛ, BØ and 

Bå follow from linear wave theory (Newman, 1977), which is 

assumed throughout the article: 

- the hydrostatic restoring force BÛ, expressed in terms 

of the hydrostatic stiffness GÛ and V, reflects the 

spring-like effect of the fluid surrounding the body:  

BÛ:P; L FGÛV:P;;                            (2) 

- the wave-excitation force BØ reflects the interactions 

between incident waves and the body held fixed at 

its equilibrium position; 

- the radiation force Bå is associated with the waves 

radiated by the body oscillating in calm water. 

The radiation force accounts for two distinct effects that the 

water has on the floating body: it i) modifies the apparent 

inertia of the float and ii) damps the motion of the float.  The 

radiation force is usually expressed, according to Cummins 

(1962), as  

Bå:P; L FäV7:P;F ì Då:ì;V6:P F ì;@ìç

?¶
,          (3) 

where ä is the so-called added mass at infinity and Då is the 

so-called retardation function. The quantities GÛ and ä and 

the function Då can all be computed with codes dedicated to 

the analysis of wave interactions with floating bodies, such as 

WAMIT®, which was used for this study. 

Introducing the forces per unit mass 

QÖ:P; L � ÙÁÅÀ:ç;à>�
,                     (4) 

RÖ:P; L � ÙÐ:ç;à>�
 ,            (5) 

and combining (1-5) yields a new expression for the equation 

of motion: 

V7:P;E s

I E ä± Då:ì;V6:P F ì;@ìç

?¶

E GÛ

I E ä V:P; 
     L QÖ:P;E RÖ:P;.    (6) 

This differential equation describes a non-autonomous, linear 

time-invariant (LTI) system with two inputs: the control input 

Q and an uncontrollable input R which corresponds to the 

wave excitation. A state-space model of this continuous-time 

system is derived in the next subsection. 

2.2 State-space representation of the system 

Equation 6, being of an integro-differential form, must be 

modified before a state-space model of the point absorber can 

be derived. In particular, the integral term in (6) must be 

approximated. It corresponds to the output of a (causal) LTI 

system of impulse-response function (IRF) Då and which 

takes the velocity V6 as input; for convenience, this system 

will subsequently be referred to as the radiation subsystem in 

the present article. The function Då is related to the 

frequency-dependent added mass and radiation damping 

(Falnes, 2002a) and may be obtained from codes such as 

WAMIT®. These codes, however, cannot produce an 

analytical expression for Då, only sampled data of it; the 

radiation subsystem must therefore be identified on the basis 

of those sampled data. One identification technique 

applicable in that case is Prony’s method, which is meant to 

produce a rational transfer function closely fitting samples of 

the impulse response. The rational function may be either 

discrete-time, as in Hayes (1996), or continuous-time, as in 

Duclos, Clément & Chatry (2001). By applying Prony’s 

method to the sampled data of Då obtained via WAMIT®, an 

JçÛ-order, continuous-time, rational transfer-function model 

of the radiation subsystem is obtained: 

*áå:O; L Õ-æ
Ù7->®>ÕÙ

æÙ>Ô-æ
Ù7->®>ÔÙ

,          (7) 

where *áå:O; is the Laplace transform of the approximation 

Dàå:P; based on the sequence of samples {Då:G;=Þ. A state-

space realization of this system is then adopted:  
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�6 �:P; L #å��:P;E $åV6:P;,     
ì Då:ì;V6:P F ì;@ìç

?¶
N %å��:P;, 

where �� Ð 9
á, #å Ð 9

áHá, $å Ð 9
áH5 and %å Ð 9

5Há. For 

this preliminary study, the (top-companion) control canonical 

form was chosen for the state-space realization. The order of 

the transfer-function model (7) should in practice be chosen 

large enough to obtain a good approximation of Då, but small 

enough not to compromise the real-time tractability of the 

control algorithm that is developed in the following.  

The state vector �� and output vector �� of the continuous-

time model representing the whole point-absorber system are 

defined as 

��� L e VV6
��

i Ð 9á>6, 

��� L BV
V6C Ð 96. 

The state vector �� of the radiation subsystem has been 

included in the state vector �� of the whole system, as it 

contains information on the state of the surrounding fluid. 

Both V and V6 are assumed to be measured, hence their 

inclusion in the output vector ��. The associated dynamics 

and output equations are: 

�6 �:P; L #Ö��:P;E $ÖkQÖ:P;E RÖ:P;o , 
��:P; L %Ö��:P; ,  

where 

#Ö L N r s Ù
?ÞÓ:à>�; r

?5:à>�;%å
Ù $å #å

O Ð 9:á>6;H:á>6; ,      

$Ö L ers
Ù

i Ð 9:á>6;H5 ,            

%Ö L Bs r Ù

r s Ù
C Ð 96H:á>6; . 

The symbol Ù denotes a zero matrix of required dimensions. 

This system is assumed stable and the dynamics matrix, #Ö, 

is assumed non-singular. A discretised version of this 

continuous-time system is now required for use in the control 

algorithm. 

2.3 Discretisation of the continuous-time system 

Introduce the update interval D P r and let ��, ��, Q× and R× 

denote the sampled versions of ��, ��, QÖ and RÖ. The state 

transition from time GD to time :G E s;D is given by  

��:G E s; L ö:D;��:G;E 

    ì ö:GD E D F ì;$ÖkQÖ:ì;E RÖ:ì;o@ìÞÛ>Û

ÞÛ
,     (8) 

where Ê�Pá ö:P; � AçºÎ. In an earlier article (Cretel et al., 

2010), a zero-order hold was used for the inter-sample 

behaviour of the inputs. A triangle hold (Franklin, Powell & 

Workman, 1990), whereby the inputs Q and R are continuous 

piecewise linear, is preferred here, for two reasons: i) it 

reduces the need for a short update interval D, thus decreasing 

the complexity of the optimization problem associated with 

the control algorithm, without compromising the length of 

the prediction horizon; ii) it is convenient for deriving an 

expression of the product Q×:G;V6:G;, which plays a key role 

in the formulation of the objective function. Only an 

approximation of this product was used in Cretel et al. 

(2010), whereas the exact expression is used here. Using a 

triangle hold for both inputs QÖ and RÖ means that   

Ê�G Ð 3á����Ê�P Ð >GDá :G E s;D?á���� 
QÖ:P; L Q×:G;E ç?ÞÛ

Û
¿Q:G E s;,          (9) 

RÖ:P; L R×:G;E ç?ÞÛ

Û
¿R:G E s;,        (10) 

where  ¿Q:G E s; � Q×:G E s;F Q×:G;,  
¿R:G E s; � R×:G E s;F R×:G;. 

After substitution of (9-10) in (8), the following triangle-hold 

equivalent of the continuous-time system is obtained:  

��:G E s; L ö:D;��:G;E ÁkQ×:G;E R×:G;o 
        EÉkÂQ:G E s;E ÂR:G E s;o,       (11) 

��:G; L %Ö��:G;,               (12) 

where  Á � #Ö
?5:ö:D;F +;$Ö Ð 9:á>6;H5, 

É � 5

Û
#Ö

?5:Á F D$Ö; Ð 9:JEt;Hs
. 

2.4 State and output augmentation 

The state vector of system (11-12) is then augmented by the 

two inputs, Q× and R×, while the output vector is augmented 

by Q× only; this augmentation facilitates the formulation of 

the objective function that is used in the proposed control 

scheme. The input increments ¿Q and ¿R thus play the role 

of inputs to the new system (13-14). Define the augmented 

state vector � and output vector � as 

� L e��Q×
R×

i Ð 9á>8, 

   � L B��Q×C Ð 97. 

The associated state-space equations are 

�:G E s; L #�:G;E $¿Q:G E s; E (¿R:G E s;,       (13)       

�:G; L %�:G;,           (14) 

where          

# L � eö:D; Á Á

r s r

r r s

i Ð 9:á>8;H:á>8;,        

$ L eÉs
r

i Ð 9:á>8;H5,          

( L eÉr
s

i Ð 9:á>8;H5,   
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% L es r r ® r r r

r s r ® r r r

r r r ® r s r

i Ð 97H:á>8;.       
 

3. CONTROL FORMULATION  

3.1 Observability and controllability 

The system is assumed observable. The state vector, �:G;, is 

assumed known here, but future work will focus on including 

a state estimator in the control scheme. An interesting 

consequence of the observability of system (13-14) is that the 

wave-excitation force per unit mass, R×, can be estimated by 

soft sensing. Moreover, a sequence of R× estimates could 

serve as a basis for predicting R× in the short term; this 

prediction could then be used in the control algorithm.  The 

controllability matrix has a rank deficiency of (at least) 1, as 

can be expected from the way matrices # and $ are 

constructed: input ¿Q does not affect state variable R×.  

3.2 MPC formulation 

Let 0 denote the length of the prediction horizon and 

introduce the prediction vector notation  

È:G; L eÈ:G E s�G;
È:G E0�G;i 

to represent the prediction of a (vector or scalar) variable È 

over the prediction horizon, based on information available at 

time G. 

The output prediction vector, �:G;, can therefore be written 

as a function of the current state and the future input 

increments: 

�:G; L ê�:G;E îè¿�:G;E îé¿�:G;,       (15) 

where  ê L f %#%#6


%#Ç

j Ð 97ÇH:á>8; , 
and where îè and îé are block Toeplitz matrices (refer to 

Maciejowski, 2002, or Rossiter, 2003): 

       îè L
Ï
Î
Î
Î
Í

%$ r r ®
%#$ %$ r ®
%#6$ %#$ %$ ®
   

%#Ç?5$ %#Ç?6$ %#Ç?7$ ®Ò
Ñ
Ñ
Ñ
Ð

Ð 97ÇHÇ, 

       îé L
Ï
Î
Î
Î
Í

%( r r ®
%#( %( r ®
%#6( %#( %( ®
   

%#Ç?5( %#Ç?6( %#Ç?7( ®Ò
Ñ
Ñ
Ñ
Ð

Ð 97ÇHÇ. 

3.3 Objective function 

In this preliminary study, the control objective is simply to 

maximise the energy produced by the point-absorber system 

over the prediction horizon, at each time step; the PTO 

machinery is assumed ideal, which implies that the absorbed 

mechanical energy coincides with the useful energy. 

Furthermore, the wave excitation over the horizon is assumed 

to be provided to the control algorithm; i.e., at any time G, 

vector ¿�:G; is assumed known. The quantity to be 

maximised can be written as 

'çáç>Í � F:I E ä;ì Q:ç>Í

ç
ì;V6:ì;@ì. 

where 6 is the length of the time horizon. By applying the 

trapezoidal rule of numerical integration with subinterval D, 

an approximation of this integral is obtained: 

'çáç>Í N F:I E ä;Dm5
6
Q×:G;V6:G;E Í Q×:E�G;V6:E�G;Þ>Ç?5

Ü@Þ>5

� 

           + 
5

6
Q×:G E 0�G;V6:G E 0�G;p.   (16) 

Objective function ,5 is then derived from (16), as 

,5:G; � Í Q×:E�G;V6:E�G;Þ>Ç?5

Ü@Þ>5

 

E 5

6
�Q×:G E 0�G;V6:G E 0�G;.       (17) 

Note that this objective function must be minimised, since the 

negative multiplying factor F:I E ä;D from the discrete 

approximation (16) has been omitted in the expression of ,5. 

Furthermore, ,5:G; is to be minimised at time G, after Q×:G; 
has been applied; the term s t¤ �Q×:G;V6:G;, which appears in 

(16), has therefore been discarded in the expression of the 

objective function (17). Note that the form of cost ,5:G; 
departs from that of “conventional” MPC, in which a set-

point trajectory is provided and the associated optimisation 

problem is a discrete least-squares problem. No set-point 

trajectory is available here; the trajectory yielding maximum 

absorption of energy is not known in advance and the 

objective function cannot, therefore, be expressed as the 

square of the 2-norm of a predicted tracking error. 

Nevertheless, it can be formulated as a quadratic function of 

the optimization variable ¿�. Consider first that the cost can 

be written in terms of the output prediction vector �:G;: 
,5:G; L 5

6
�Í:G;3�:G;,           (18) 

where 3 Ð 97ÇH7Ç is a block diagonal matrix defined as 

3 � f/ °
/

-

.
/

j, 
and   / � er r r

r r s

r s r

i. 
Substituting (15) in (18) then yields 

,5 L s

t
¿�Íîè

Í3îè¿�E ¿�ÍîèÍ3kê�E îé¿�o 
E 5

6
kê�E îé¿�oÍ3kê�E îé¿�o,       (19) 
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where time dependence has been omitted for lighter 

appearance. The Hessian of this objective function, îè
Í3îè, 

is assumed positive semi-definite; minimising ,5:G; therefore 

amounts to solving a convex quadratic programming (QP) 

problem (Boyd & Vandenberghe, 2004). Constraints on the 

oscillation amplitude or velocity (or both) of the point 

absorber may be specified by affine inequality constraints on 

¿�. Hard constraints on the PTO force can also be specified 

by affine inequality constraints on ¿� but may give rise to 

feasibility issues; no such constraints are considered herein. 

The corresponding constrained QP problem,  

���������,5:G; 
��������¿�:G; Ð & 

where & is the feasible set defined by the constraints, is 

therefore also convex. The last term in (19) does not depend 

on the optimization variable ¿� and can be discarded, which 

leads to the definition of a new objective function: 

,6 �
5

6
¿�Íîè

Í3îè¿�E ¿�ÍîèÍ3kê�E îé¿�o. 
Furthermore, a penalty term quadratic in ¿� is introduced 

here in order to limit the aggressiveness of the control: 

,7:G; � ,6:G;E ã.¿�:G;.66,         (20) 

where ã is a non-negative weight which has the dimension of 

a time. As ,5 is a convex function of ¿Q, ,7 is also convex. 

It may be desirable to add other terms to objective function ,7 

in order to reduce the reactive power—be it electrical, 

mechanical or otherwise—associated with the control. As 

will be shown in the next section (see figure 6), the control 

may give rise to large amounts of energy flowing in and out 

of the system. The time-average of the power produced by 

the point absorber may be positive, but the instantaneous 

power may undergo large excursions in both the positive 

direction and the negative direction. This large, reversing 

flow of energy is no cause for concern in theory, when the 

PTO system is assumed ideal, but it may be problematic in 

practice: some PTO systems are not able to work in all four 

quadrants, all real PTO systems have a limited power rating, 

and some resistive losses arise during their operation. Penalty 

terms reflecting those resistive losses can be added to the cost 

so as to obtain a better control, with the proviso that the 

addition of these terms not compromise the convexity of the 

objective function. To demonstrate this possibility, and 

although only an ideal PTO system has been considered 

herein, a penalty term quadratic in � is added to the cost ,7: 

,8:G; � ,7:G;E �ãñ.�:G;.66, 

where ãñ is a non-negative weight which, like ã, has the 

dimension of a time. Since  

�:G; L .¿�:G;E Q×:G;Ú, 

where . Ð ~ÇHÇ is a lower triangular matrix filled with 1’s 

and Ú is an 0-vector filled with 1’s, it can be shown that 

.�:G;.
6

6
 is a convex function of ¿�:G;; therefore, so is 

,8:G;. As in conventional MPC, the control algorithm 

consists in applying, at every time G, the first component of  

¿�Û:G; � ������
¿�:Þ;Ð½k,8:G;o 

which is obtained with some QP solver. 

4. SIMULATION RESULTS 

Numerical simulations were run for a semi-immersed float of 

cylindrical shape, of radius 5 m and draft 8 m, in deep water 

(Newman, 1977). A sampling time of 0.1 s was used. A fifth-

order model for the radiation subsystem was used, as it was 

found to give a good compromise between approximation 

accuracy and size of the model (see figure 2). The initial 

condition for T was chosen as Ù for all simulations. 

 
Fig. 2. Approximation of the radiation subsystem by a 5th-order 

transfer-function model. 

Cost ,8 was used in the control algorithm. Unless otherwise 

stated, the horizon length was set to 0 L xr and weight ãñ 

was set to 0 s; weight ã set to 2 s for all simulations.  

Figure 3 shows that the results are in accordance with those 

obtained by applying mechanical impedance matching (i.e. 

reactive control): the velocity and the wave-excitation force 

are approximately in phase (refer to Falnes, 2002a). 

 
Fig. 3. Wave-excitation force associated with a sinusoidal wave 

(amplitude: 1 m; period: 7 s) and velocity of the unconstrained point 

absorber. 
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Fig. 4. Mean rate of energy absorbed by an unconstrained point 

absorber against angular frequency of sinusoidal wave excitation. 

The data points were obtained by running the control algorithm for 

different wave-excitation frequencies and horizon length; the post-

transient mean absorbed power was computed for each case. Power 

curves corresponding to mechanical impedance matching and 

optimal linear damping have been included for comparison. 

Figure 4 seems to corroborate the proposition that longer 

prediction horizons yield better performance. It appears to be 

the case here, in the low-frequency range in particular, which 

is in accordance with intuition. This observation should be 

treated with caution, though: Bertsekas (2005) provides a 

generic counterexample in which a longer horizon actually 

leads to poorer performance. It is unclear, at this stage, how 

the length of the prediction horizon ought to be set, but figure 

4 indicates that using a time horizon as long as the “time 

span” of the impulse-response function may be well-advised. 

In this connection, a theoretical study by Price, Forehand & 

Wallace (2009), which investigates how far into the future 

the wave excitation should ideally be predicted, may be of 

interest to the reader. 

The simulations reported by figures 5-7 were 1024 s long, 

and involved a point absorber excited by irregular waves 

(Bretschneider spectrum; significant wave height: 3 m; zero-

upcrossing period: 8 s), whose float was constrained to 

oscillate in heave between -5 m and +5 m. 

 
Fig. 5. Irregular wave elevation and displacement of the constrained 

point absorber.  

 

Fig. 6. Power signal obtained for the constrained point absorber 

excited by irregular waves (ãñ L r�O). 

 

Fig. 7. Power signal obtained for the constrained point absorber 

excited by irregular waves (ãñ L t��). 

Figure 5 indicates that the control algorithm is effective in 

keeping the system within the specified amplitude 

constraints. Figure 6 illustrates the reactive-power problem 

mentioned at the end of the preceding section, and figure 7 

shows how setting ãñ to some positive value (2 s, here) solves 

that problem by compelling the point absorber to almost 

strictly absorb energy, without returning any to the sea. 

5. CONCLUSION 

A control scheme based on MPC and meant to maximise the 

energy capture of a wave-energy point absorber has been 

presented. The departure from conventional MPC is twofold: 

- A triangle hold, instead of the usual zero-order hold, 

is used for discretising the continuous-time system; 

- A non-standard form of objective function is 

adopted, that does not involve any set-point 

trajectory. 

The control scheme, as shown by numerical simulations, is 

promising on several accounts: 
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- It is applicable to any point absorber that can be well 

described by a linear model; 

- It can handle constraints on oscillation amplitude 

and velocity; 

- Observability of the system allows for the estimation 

of the wave-excitation force by soft sensing; 

- The sequence of wave-excitation estimates could be 

extrapolated to obtain a prediction of the wave 

excitation, which could be used in the MPC 

algorithm; 

- Resistive losses such as those associated with energy 

conversion can be accounted for by the objective 

function in order to obtain better performance. 

Further improvement of this control scheme for wave-energy 

point absorbers is the subject of current research. 

ACKNOWLEDGMENTS 

The first author is a research fellow funded by the Marie 

Curie Actions WaveTrain 2 training network and is a member 

of the International Network on Offshore Renewable Energy 

(INORE). 

REFERENCES 

Babarit A. & Clément A.H. 2006. Optimal latching control of 

a wave energy device in regular and irregular waves. 

Applied Ocean Research, 28(2), 77-91. 

Bacelli G., Gilloteaux J.C. & Ringwood J. 2009. A predictive 

controller for a heaving buoy producing potable water. In 

Proc. of the European Control Conference 2009. August 

23-26. Budapest, Hungary. 

Bertsekas D.P. 2005. Dynamic programming and optimal 

control, vol. 1. Athena Scientific, 3rd edition. 

Boyd S. & Vandenberghe L. 2004. Convex optimization. 

Cambridge University Press. 

Budal K. & Falnes J. 1977. Optimum operation of improved 

wave-power converter. Marine Science Communications, 

3(2), 133-150. 

Budal K. et al. 1982. The Norwegian wave-power buoy 

project. In Proc. of the Second Symposium on Wave & 

Tidal Energy Utilization, 323-344, Trondheim, Norway.  

Cretel J., Lewis A.W., Lightbody G. & Thomas G.P. 2010. 

An application of model predictive control to a wave 

energy point absorber. In Proc. of the IFAC conference 

on Control Methodologies and Technology for Energy 

Efficiency, March 29-31, Vilamoura, Portugal. 

Cummins W.E. 1962. The impulse response function and 

ship motions. Schiffstechnik, 9, 101-109. 

Duclos G., Clément A.H. & Chatry G. 2001. Absorption of 

outgoing waves in a numerical wave tank using a self-

adaptive boundary condition. International Journal of 

Offshore and Polar Engineering, 11(2), 104-111. 

Eidsmoen H. 1998. Tight-moored amplitude-limited heaving 

buoy wave energy converter with phase control. Applied 

Ocean Research, 20(3), 157-161. 

Falcão A.F. de O. 2007. Phase control through load control of 

oscillating-body wave energy converters with hydraulic 

PTO system. In Proc. 7th European Wave and Tidal 

Energy Conference, Porto, Portugal. 

Falnes J. 1980. Radiation impedance matrix and optimum 

power absorption for interacting oscillators in surface 

waves. Applied Ocean Research, 2(2), 75-80. 

Falnes J. 2002a. Ocean waves and oscillating systems: linear 

interaction including wave-energy extraction. 

Cambridge University Press.  

Falnes J. 2002b. Optimum control of oscillation of wave-

energy converters. International Journal of Offshore and 

Polar Engineering, 12(2), 147-155. 

Falnes J. & Budal K. 1978. Wave-power absorption by point 

absorbers. Norwegian Maritime Research, 6(4), 2-11. 

Franklin G.F., Powell J.D. & Workman M.L. 1990. Digital 

control of dynamic systems. Addison-Wesley, 2nd edition. 

Ch. 4. 

Fusco, F. & Ringwood, J.V. 2010. Short-term wave 

forecasting for real-time control of wave energy 

converters. IEEE Transactions on Sustainable Energy, 

1(2), 99-106. 

Gieske P. 2007. Model predictive control of a wave energy 

converter: Archimedes Wave Swing. M.Sc. thesis, Delft 

University of Technology, the Netherlands. 

Hals J., Falnes J. and Moan, T. 2011. Constrained optimal 

control of a heaving buoy wave-energy converter. 

Journal of Offshore Mechanics and Arctic Engineering, 

ASME, 133, 011401. 

Hayes M.H. 1996. Statistical digital signal processing and 

modelling. Wiley. Ch. 4. 

Hoskin R.E. 1988. Optimal control techniques for water 

power generation. Ph.D. thesis, University of Reading, 

UK. 

Maciejowski J.M. 2002. Predictive control with constraints. 

Prentice Hall. 

Molinas M. et al. 2007. Power electronics as grid interface 

for actively controlled wave energy converters. 

International Conference on Clean Electrical Power, 

Capri, Italy. 

Naito S. & Nakamura S. 1985. Wave energy absorption in 

irregular waves by feed-forward control system. In 

Hydrodynamics of ocean wave-energy utilization, ed. by 

D.V.Evans & A.F. de O. Falcão, 269-280. IUTAM 

Symposium, Lisbon. Springer-Verlag, Berlin. 

Newman J.N. 1977. Marine Hydrodynamics. MIT Press. 

Payne G.S. et al. 2005. Potential of digital displacement™ 

hydraulics for wave energy conversion. In Proc. of the 

6th European Wave and Tidal Energy Conference, 

August 29 – September 2, Glasgow, UK. 

Price A.A.E., Forehand D.I.M. & Wallace A.R. 2009. Time-

span of future information necessary for theoretical 

acausal optimal control of wave energy converters. In 

Proc. of the European Control Conference 2009. August 

23-26. Budapest, Hungary.  

Rossiter J.A. 2003. Model-based predictive control: a 

practical approach. CRC Press. Ch.3. 

Salter S.H., Taylor J.R.M. & Caldwell N.J. 2002. Power 

conversion mechanisms for wave energy. Proc. of the 

Institution of Mechanical Engineers, Part M—Journal of 

Engineering for the Maritime Environment, 216, 1-27. 

Thomas G.P. & Evans D.V. 1981. Arrays of three-

dimensional wave-energy absorbers. Journal of Fluid 

Mechanics, 108, 67-88. 

Preprints of the 18th IFAC World Congress
Milano (Italy) August 28 - September 2, 2011

3721


