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Abstract: This paper describes an autotuning procedure for single-loop model based predictive
controller with manipulated value constraints focused on applications in process control. It is
assumed that the controlled process is stable, linear and t-invariant FIR system described by
three-parameter model derived from a simple identification experiment. Controller parameters
are computed from the identified model. A single parameter intended for fine-tuning of the
controller is available. Exact intervals are given to vary this parameter within.
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1. INTRODUCTION

Automatic tuning is nowadays understood as a necessary
part of any control algorithm which attempts to succeed
in industrial practice. When user triggers a demand for
(re)tuning by pressing a button, the tuning experiment
is performed and the controller parameters are suggested.
This automatic tuning can be referred to as tuning on
demand or one-shot tuning (Åström et al., 1993).

This paper follows the authors’ work focused on creation
of a single-loop predictive controller with low memory
and computation power requirements in order to allow its
implementation in microcontrollers, compact controllers
and PLCs. Only when these prerequisities are fulfilled
it is possible to use the advantages of MPC also in the
lower (process) levels of control systems, where traditional
single-loop PID controllers dominate. In this paper, the
most emphasis is put on automatic tuning of the single-
loop pulse-step model predictive controller (Schlegel and
Sobota, 2008).

The approach described in this paper thus differs from the
most common use of MPC, where the optimization is per-
formed in the upper levels of hierarchical control systems
and the technology is optimized by feeding appropriate
signals to setpoints of single-loop controllers in the process
level (Maciejowski, 2002). The controller presented herein
is quite unique because the vast majority of papers focused
on automatic tuning of MPC controllers also follows the
upper-level use of MPC (Al-Ghazzawi et al., 2001).

The presented control algorithm with autotuning feature
is applicable to stable processes with monotonous step
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response, which are typical for process control. The most
common constraints in simple control loops are the satu-
ration limits on the control signal. These are considered
and successfully dealt with when the pulse-step model
predictive control algorithm is applied.

2. SIMPLE PREDICTIVE CONTROL WITH
CONSTRAINTS

Possibly the greatest advantage of MPC is its ability to
include constraints directly into the design procedure. On
the other hand, this ability implies the greatest disad-
vantage, which is the computation burden connected with
constrained MPC.

2.1 The pulse-step control sequence

The application of pulse-step control sequence in model
predictive control is an alternative to the well-known
approaches to complexity and computational cost reduc-
tion in MPC algorithms. The classic complexity-reducing
methods rely on the use of some blocking strategy (Tondel
and Johansen, 2002), for example constant manipulated
value or constant manipulated value differences over time
intervals of specified length. Another possibility is the so-
called functional predictive control (Richalet et al., 1987),
where the control sequence is restricted to a linear combi-
nation of suitable base functions. Significant attention is
also drawn by off-line explicit solution methods, where the
most demanding on-line optimization is avoided (Tondel
et al., 2003; Bemporad and Filippi, 2002; Kvasnica et al.,
2004).

In general, the pulse-step control is a well known aggressive
technique used for manual control in industrial practice.
It is well-suited for the case when saturation constraints
on the control signal must be dealt with. It results in

Preprints of the 18th IFAC World Congress
Milano (Italy) August 28 - September 2, 2011

Copyright by the
International Federation of Automatic Control (IFAC)

4915



n
1

n
2

H
C

n
1 H

C
n

2

u
+

u
∞

u
∞

u
−

u
+

u
−

p
0
=1

p
0
=0

Fig. 1. Example of ”pulse-step up” (p0 = 1) and ”pulse-
step down” (p0 = 0) control sequence

fast transitions when setpoint is changed, the manipulated
value constraints are kept but fully exploited. The proper-
ties of pulse-step feedforward control in combination with
the classical PID feedback control were first studied by
Wallén and Åström (2002). The idea was incorporated
into the MPC context by Schlegel and Sobota (2008), who
demonstrated the properties of pulse-step model predictive
controller (PSMPC) in detail.

As shown in Fig. 1, the pulse-step control sequence u(k)
begins with n1 maximal (minimal) elements, followed by
n2 − n1 minimal (maximal) elements according to the
constraints u− ≤ u(k) ≤ u+. The remaining part of the
control sequence is constant, u(k) = u∞ for k ≥ n2. The
control horizon HC determines the limit for n1 and n2,
0 ≤ n1 ≤ n2 ≤ HC − 1 and of course u∞ is subject to
constraints u− ≤ u∞ ≤ u+. So the whole control sequence
is determined by only 4 variables p0, n1, n2, and u∞, where
the parameter p0 distinguishes between ”pulse-step up”
and ”pulse-step down” control sequences.

2.2 Computing the control sequence

The controller output is restricted to control sequences
in the pulse-step shape, the saturation constraints on
the manipulated variable are present. The computation
of the control signal to apply is based on the quadratic
optimization criterion

I =

N2
∑

i=N1

(ŷ(k + i∣k) + d− w)2 +

+ �

HC−1
∑

i=0

Δû(k + i∣k)2 → min (1)

where ŷ is the prediction of system output, d is the differ-
ence of the most current measurement and its predicted
value and w is the desired output value (setpoint). Thus
the optimized variables are p0, n1, n2, 0 ≤ n1 ≤ n2 ≤ HC ,
and u∞ ∈ ⟨u−;u+⟩, which precisely define the pulse-step
control sequence. The changes of the control signal Δû are
summed and penalized in the criterion. This penalization
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Fig. 2. Physical meaning of the characteristic numbers �,
�, and �2

is accented or attenuated by the � weighting coefficient.
The constants N1 and N2 define the coincidence interval
on which the output should follow the setpoint as precisely
as possible.

The disturbance d is presumed to be constant over the
whole prediction horizon. This presumption incorporates
integrator into the structure of the controller, which en-
sures total compensation of arbitrary constant disturbance
acting on the system. Unlike in the PID controllers, the
manipulated value constraints are included in the design
procedure and thus the integrator wind-up effect is avoided
directly.

The prediction ŷ employs a discrete step-response-model
of the controlled system, which will be discussed later.

The algorithm used for solving the optimization task (1)
combines brute force and the least squares method. The
value u∞ is determined using the least squares method
for all admissible combinations of p0, n1, and n2 and
the optimal control sequence is selected afterwards. The
computational cost is proportional to HC

2. The selected
sequence in the pulse-step shape is optimal in the open-
loop sense. To convert from open-loop to closed-loop
control strategy, only the first element of the computed
control sequence is applied and the whole optimization
procedure is repeated in the next sampling instant.

It is important to mention that the parameters N1, N2,
HC , and � in the criterion (1) take the role of design
parameters and significantly influence the closed loop
characteristics. These parameters are the ones that should
be tuned to obtain the required closed-loop performance.

2.3 The controlled process model

Apart from the controller parameters, the controlled sys-
tem model is an essential part of each predictive controller.
In the approach presented in this paper, the discrete step
response is used. For stable, linear and t-invariant FIR
systems with monotonous step response it is possible to
use the moment model set approach (Schlegel and Večerek,
2005) and describe the system by only 3 characteristic
numbers �, �, and �2.

As shown in Fig. 2, the characteristic numbers have a clear
physical meaning, so it is possible to adjust them manually
to fit the step response of the real system if necessary. The
characteristic number � is static gain, the number � is
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known as resident time constant (it shifts the maximum
of the impulse response along the time axis), and the
parameter �2 changes the slope of the step response.

The characteristic numbers �, �, and �2 of the system in
the form

P (s) =
K

l
∏

i=1

(�is+ 1)

⋅ e−Ds (2)

are defined as

� = K, � = D +

l
∑

i=1

�i, �2 =

l
∑

i=1

�2i . (3)

For details see (Schlegel and Večerek, 2005). Note that the
transfer function in the form (2) can describe the most
common systems in process control (temperature, flow,
concentration, etc.).

In order to obtain the discrete step response of the con-
trolled system, it is possible to approximate the system by
first-order plus dead-time system

PFOPDT (s) =
K

�s+ 1
⋅ e−Ds, (4)

� = K, � = � +D, �2 = �2

or second-order plus dead-time system

PSOPDT (s) =
K

(�s + 1)2
⋅ e−Ds, (5)

� = K, � = 2� +D, �2 = 2�2

with the same characteristic numbers. The discrete step re-
sponse to be used in the MPC controller is then generated
from one of these transfer functions. But the modeling
of the controlled system is by no means limited to the
FOPDT and SOPDT systems, an arbitrary step response
can be used if it is available.

The characteristic numbers can be further normalized
in gain and time and then the system is described by
characteristic numbers

�̄ = 1, �̄ = 1, �̄2 =
�2

�2
, (6)

which in fact means that the system dynamics is described
by only one number �̄2. The sampling period must be
normalized as well, T̄S = TS

�
.

Denormalization is very easy, the time constants, time
delay and sampling period must be multiplied by �.
Therefore only normalized systems with � = 1, � = 1
can be considered without the loss of generality.

The dynamics of typical systems in process control can be
described by �̄2 ∈ ⟨0.2; 0.95⟩.

3. CONTROLLER PARAMETERS

As was already mentioned, the controller parameters are
N1, N2, HC , and �.

The control horizon HC should be naturally as long as
possible with respect to the computational power avail-
able. Therefore it is not a tuning parameter in the common
sense.

The controller parameters N1, N2 and � are to some
extent redundant. Increasing the N1 parameter makes
the controller more conservative because the coincidence
points are more distant and this results in smoother and
slower control action. From the controller perspective, it
is not necessary to generate any rapid actions, there is
enough time to reach the coincidence points. On the other
hand, decreasing the N2 parameter excludes the distant
coincidence points from the criterion, putting more em-
phasis on the immediate future (again from the controller
perspective), resulting in a swift and aggressive control
action. But the conservativeness can also be influenced
by the � parameter, which penalizes the changes in the
control signal. The problem is that unlike in the N1 and
N2 parameters, there are no limits nor guidelines on how
to adjust the � coefficient, except that it is positive and
that the greater the � is, the more conservative control we
get.

The agresivity of the pulse-step controller can be described
by its tendency to use the limit values. The limits should
be exploited to reach the setpoint or suppress disturbances
faster, but they must be used sensibly. Too aggressive
controller might run into an endless limit-limit cycle as a
result of noise or discrepancy between the model and the
real controlled system. On the other hand, too conservative
pulse-step controller would always work in its linear mode,
leaving its most powerful ability underused.

In the latter, the N1 parameter will always be set to the
first non-zero element of the discrete step response of the
controlled system model and the N2 parameter will be set
to the first element reaching 95 % of the controlled system
static gain. The main target will be the � parameter and
the goal will be to find such values of �, which would result
in a closed-loop with similar characteristics regardless of
the controlled system dynamics (�̄2) or sampling period
(TS). In other words, the � parameter must be normalized.

3.1 Normalization of the � weighting coefficient

The normalization procedure is based on an inverse opti-
mization problem. The knowledge of the controlled system
characteristic numbers and the pulse-step restriction on
control sequences is used to estimate the optimal control
sequence resulting from (1). Afterwards the parameter �
which leads to the particular estimated control sequence is
found. Two methods for estimation of the optimal control
sequence are presented further.

Normalization by degraded pulse-step control sequence
The first method to estimate the optimal control signal
is based on t-optimal constrained control of a FOPDT
system, which is depicted in Fig. 3. When a transition
of a FOPDT system to the setpoint u∞ (0.8 in Fig. 3)
is needed, the control signal is at its maximum until
time TR and then skips to the value u∞ (remember, only
systems with K = 1 are considered). The time TR can
be determined easily from the analytic formula for the
FOPDT system step-response. Such control signal is in
fact a degraded pulse-step control sequence where n1 = n2.

Now we can define auxiliary optimization problem:
We omit the constraints on the input signal, we use
setpoint w = 1 and assume zero disturbance (d = 0)
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Fig. 3. Time-optimal control of a first order system
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Fig. 4. Step responses and control signals for various
setpoint step changes

and zero initial state and we find a control signal in
the shape shown in Fig. 3 which minimizes the criterion
(1). The width TR is fixed, it is computed from the
dynamics of the system and rounded to the nearest integer
multiple of the sampling period. Therefore there are only 2
variables to optimize: umax and u∞. The ratio between the
optimal values of the variables (umax

u∞
) corresponds with

the agresivity of the controller, it rises when the parameter
� is decreased.

And we define inverse optimization problem:
We want to find such �, which will result in umax and u∞

having a given ratio when solving the previous optimiza-
tion problem.

Such a value of � can be found using the least squares
method and we can use it as a parameter for the
PSMPC controller. For example if we find � resulting
in umax/u

∞ = 3, we in fact tell the PSMPC algorithm
to use the saturation limits only when the setpoint step
change is bigger than 1/3 (the ratio u+/u∞ must be at
most 3). This is depicted in Fig. 4. For smaller values of
u+/u∞ we get higher �, resulting in a more conservative
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Fig. 5. Values of � resulting from normalization based on
degraded pulse-step control sequence; top-down: �C ,
�M , �A, �AA

controller, which uses the saturation limit only for even
bigger setpoint changes. In this way, we can normalize the
agresivity of the PSMPC controller in the sense that it
has the same tendency to use the limit values of the con-
trol signal regardless of the system dynamics or sampling
period. Suitable values for normalization are displayed in
Table 1 along with the notation used further.

Table 1. Normalization by u+

u∞
ratio

u
+

u∞
1.5 2.0 2.5 3.0

Controller conservative medium aggressive very
agresivity aggressive

Notation
for �C �M �A �AA

resulting �

By computing the � parameters for each combination of
sampling frequency (T−1

S ) and system dynamics (�̄2), we

get surfaces in the T−1

S –�̄2–� space, which are depicted in
Fig. 5.

But even for the most conservative �C , the controller
might be too aggressive in some cases (due to noise or
model discrepancies) and in such a case another normal-
ization method must be used.

Normalization by constant control sequence In order
to obtain the values of � for even more conservative
controllers, we use similar approach. The difference is that
we omit the nonlinear part of pulse-step control (n1 =
n2 = 0) and we simply find a value of � resulting in a
constant control signal of given amplitude u∞. Suitable
values for normalization are displayed in Table 2 along
with the notation used further. Controllers resulting from
the use of �C1 to �C4 are conservative and thus robust and
noise-insensitive. Again, the values of � can be displayed
in the T−1

S –�̄2–� space, see Fig. 6.

It is evident from Fig. 5 and 6 that the ranges within
which the � parameter should be tuned differ enormously
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Fig. 6. Values of � resulting from normalization based on
constant control sequence; top-down: �C4, �C3, �C2,
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for various sampling frequencies and system dynamics as
was mentioned in Section 3.

Explicit formulas for the � parameter The computed
penalization coefficients � lead to very good closed-loop
performance but for implementation in simple devices, it
is necessary to derive explicit formulas to compute the �
parameter from. Thus the surfaces displayed in Fig. 5 and
6 must be interpolated by an appropriate function.

For each fixed �̄2, � is a linear function of sampling
frequency T−1

S . The slope of such linear dependence is
a quadratic function of the �̄2 parameter. Therefore the
relation between �, T−1

S , and �̄2 can be approximated by

� =
k1

(

�̄2
)2

+ k2�̄
2 + k3

Ts

+ q (7)

Table 3 shows the coefficients for various levels of controller
agresivity. The approximating functions are displayed in
Fig. 5 and 6 in red color.

For implementation in target device it is sufficient to
incorporate 8 formulas (7) into the controller and the
intervals to vary the � penalizing coefficient within can
be computed as soon as the controlled system model is
known. It is also possible to perform some mapping of the
interval ⟨−1; 1⟩ to the interval given by ⟨�AA;�C4⟩, so that
the user can tune the controller from the most conservative
(1, i.e. �C4) to the most aggressive (−1, i.e. �AA).

For systems with static gain different from 1, the �
parameter must be denormalized in gain by multiplying
by �2. Denormalization in time is not necessary.

Table 2. Normalization by constant control
signal

u∞ 1.25 1.0 0.75 0.5

Controller low medium high very high
conservativeness

Notation
for �C1 �C2 �C3 �C4

resulting �

4. AUTOMATIC TUNING OF CONTROLLER
PARAMETERS

The methods described so far can be used to create an au-
totuning procedure for the PSMPC controller, which can
be used in typical process control applications, where the
controlled processes are monotonous and can be described
by a transfer function in the form of (2) with satisfactory
precision.

4.1 Process identification

The characteristic numbers �, � and �2 can be obtained
easily from a very short and simple experiment. The
controlled process is excited by a rectangular pulse and the
characteristic numbers are computed from the measured
response. This identification technique has been widely
accepted in industrial practice for PID controllers tuning
purposes (Schlegel et al., 2003).

4.2 Controller parameters

As soon as the characteristic numbers �, � and �2 are mea-
sured, the FOPDT or SOPDT approximation is computed.
It is up to the user to determine which model suits the
controlled system best. The corresponding discrete step
response can be generated afterwards and the � parameter
is evaluated as described above. Analysis of the linear
part of the PSMPC controller, simulations and practical
experiments show that �C is a safe and robust starting
point. The agresivity can be increased manually if the noise
is not the issue and the model fits the real system well.

5. EXAMPLE

The properties of the pulse-step model predictive con-
troller will be illustrated here. Consider the controlled
system described by the transfer function

P (s) =
1

(0.2s+ 1)5
(8)

and manipulated value constraint u ∈ ⟨0, 1⟩.

The sampling period of TS = 0.02 s is used. The controlled
system is approximated by the SOPDT system

P (s) =
1

(0.3162s+ 1)2
⋅ e−0.3675s (9)

whose discrete step response is used for predicting the
system output. The other parameters of the PSMPC
controller are HC = 10, N1 = 21, N2 = 92.

Table 3. Coefficients for explicit computation
of the � parameter

Agresivity level k1 k2 k3 q

�AA -0.0012 0.0042 0.0012 0.0085

�A -0.0028 0.0099 0.0026 0.0010

�M -0.0055 0.0194 0.0052 -0.0117

�C -0.0110 0.0389 0.0104 -0.0383

�CC1 -0.0179 0.0501 0.0092 0.1507

�CC2 -0.1399 0.4720 0.1171 -0.0559

�CC3 -0.3433 1.1753 0.2969 -0.4003

�CC4 -0.7500 2.5819 0.6565 -1.0892
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Fig. 7. Comparison of aggressive PSMPC, conservative
PSMPC and 2DOF PID

Fig. 7 compares the behavior of pulse-step predictive
controller to the classical PID controller. A setpoint step
change of 0.3 occurs at time t = 0 and a constant
load disturbance of −0.4 acts on the system from time
t = 5s onward. One response belongs to the aggressive
PSMPC controller (� = �AA), the other is conservative
(� = �C) and the third response is a 2DOF PID control
loop as a benchmark. The PID controller was tuned
in the virtual PID laboratory www.pidlab.com (Čech
and Schlegel, 2006) with respect to the following design
specifications: gain margin Gm = 2, phase margin Pm =
60∘, and restriction on the peak of the sensitivity function
MS < 1.4. The step response reaches the setpoint faster
with the predictive controller. On the other hand, small
but acceptable overshoot occurs. Notice the pulse-step
shape of the control sequence of the aggressive controller.
The manipulated value constraints are kept and fully
exploited when setpoint changes. The input disturbance
is also rejected faster by the predictive controller. The
aggressive one uses the limit values and thus returns to the
desired value significantly faster. On the other hand, the
most aggressive controller might be too aggressive when
measurement noise is present. In such a case, the more
conservative (and thus robust) parameters must be used.

6. CONCLUSION

The described autotuning method for the pulse-step model
predictive controller was successfully implemented into
compact controllers and PLCs. Along with the quality of
the control loop, the autotuning feature is supposed to
catalyze the spreading of MPC in the lower levels of control
systems.

Thanks to the autotuner, the comissioning of the PSMPC
controller is straightforward. The controller parameters
are computed from a simple experiment and the resulting
closed-loop performance is very high for the typical pro-
cesses. But there is still a room for a human expert, who
can easily adjust the controller parameters (which all have

a clear physical meaning) and even improve the overall
performance of the control loop.

The PSMPC controller is a part of the Matlab/Simulink
compatible RexLib function block library, which is avail-
able for open public and whose general description was
published by Balda et al. (2005).
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ence. VŠB - Technická univerzita, Ostrava.

Kvasnica, M., Grieder, P., and Baotić, M. (2004). Multi-
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