Guidance and Robust Gyromoment
Attitude Control of a Large-scale
Communication Satellite *

Ye. I. Somov ∗, G. P. Titov †, and Ye. N. Yakimov †

∗ Samara State Technical University,
Research Institute of Mechanical Systems
Reliability
244 Molodogvardeyskaya Str. Samara 443100 Russia
† JSC “Acad. Reshetnev Information Satellite Systems” Company
ISS Reshetnev), Russian Federal Space Agency (FSA)
52 Lenin Str., Zheleznogorsk 662972 Russia
(e-mail: titov@iss-reshetnev.ru)

Abstract: New approach for modelling a physical hysteresis damping the flexible spacecraft
structure oscillations, is developed. New results on communication satellite attitude guidance
and digital robust control with precise pointing the large-scale flexible antennas, are presented.

Keywords: communication satellite, attitude control, flexible antenna, pointing

1. INTRODUCTION

A correct mathematical description of physical hystere-
sis is a basic problem for an internal friction theory
(N. N. Davidenkov, 1938; A. Yu. Ishlinskii, 1944; W.
Prager, 1956; J. F. Besseling, 1958; Ye. S. Sorokin, 1960;
Ya. G. Panovko (1960); G. S. Pisarenko (1970); V. A. Pal-
mov (1976); L. F. Kochneva (1979) et al.) with regard
to the well-known elastico-plastic micro-deformations
of materials. Mathematical methods for qualitative analysis
of general hysteresis models are represented in a number of
research works (Krasnosel’skii and Pokrovskii, 1983).
Recently, new approach was developed for description of
physical hysteresis (Somov, 2000, 2004), which is based on
set-valued differential equation with discontinuous right-
side. The paper briefly presents new results on modelling
a hysteresis damping and their application to the attitude
guidance and robust digital control of large-scale commu-
nication spacecraft (SC) with precise pointing the flexible
weak-damping antennas.

2. MODEL OF PHYSICAL HYSTERESIS

Let $x(t)$ is a real piecewise-differentiated function for $t \in T_{t_0} \equiv [t_0, +\infty)$. Let there be the values $\bar{x}_\nu = x(t_\nu)$ of the function in the time moments t_ν, $\nu \in N_0 \equiv [0, 1, 2, \ldots)$, when the last changing of a speed $\dot{x}(t)$ sign was happened, e.g.

$$\bar{x}_\nu \equiv x(t_\nu)|_{t_\nu, \text{Sign}(\dot{x}(t_\nu+0)) \neq \text{Sign}(\dot{x}(t_\nu-0))}.$$

(1)

A local function $\bar{x}_\nu(t)$ on each a local time semi-interval $T_{\nu} \equiv [t_\nu, t_{\nu+1})$ is introduced as

$$\bar{x}_\nu(t) = x(t) - \bar{x}_\nu \quad \forall t \in T_{\nu},$$

(2)

and the functional $k_\nu(x(t)) \equiv k_\nu(k, p, \bar{p}, \bar{x}_\nu(t))$ of the hysteresis function shape is defined for $t \in T_{\nu}$ as

$$k_\nu(x(t)) = k(1 - (1 - p) \exp(-\bar{p} \bar{x}_\nu(t))),$$

(3)

where k, p and \bar{p} are constant positive parameters.

For a constant parameter $\alpha_h > 0$ and $x_0 \equiv x(t_0)$ a normed hysteresis function $r(t) = \text{Hst}(\cdot, x(t))$ with memory

$$r(t) = \text{Hst}(a_h, \alpha_h, k_\nu(x(t)), r_o, x(t));$$

$$r(t_0) = \text{Hst}(a_h, \alpha_h, k_\nu(x_0), r_o, x_0)$$

(4)

and restriction on its module by parameter $a_h > 0$, is defined as a right-sided solution of the equations

$$D^+_{x} = \begin{cases}
 k_\nu \ |r - a_h \text{Sign} \dot{x}(t)|^{\alpha_h} \dot{x}(t) & |r| < a_h, \\
 0 & |r| \geq a_h.
\end{cases}$$

(5)

Differential equation with the Dini derivative symbol D^+ in (5) has a discontinuous right side and ambiguously depends on forcing function $x(t)$ and its speed $\dot{x}(t)$, e.g. it depends on all own prehistory which is expressed by the functional $k_\nu(x)$ (3). At initial condition $y_0 \equiv y(t_0)$ for

$$x = x_0$$

the hysteresis function $y(t)$ is defined as follows

$y(t) = y(t_0)$ for $t = t_0$
y(t) ≡ Mst(αh, kρ, ro, x(t)); ro ≡ y0/m (6)
with a constant positive scale coefficient m > 0. In developed model (1) – (6) a parameter ˜p determines on the whole a degree of convergence for a trajectory y(t) = Fh(., x(t)) in the plane xOy on symmetric limiting static loop under a harmonic forcing function x(t) = A sin wt with fixed values A, ω and initial condition y0 = y0 with |y0|/m < αh. For this model all requirements are realized, including the famous requirements on a model vibro-correctness by M.A. Krasnosel’skii (Krasnosel’skii and Pokrovskii, 1983), and also on a frequency independence and a fine return on a main symmetric limiting hysteresis loop after a short-term passage on a displaced local hysteresis loop (Palmov, 1976; Kochneva, 1979). Last properties are verified in prearranged scale by Fig. 1 for the hysteresis model with parameters m = 1, αh = 1.5, αh = 200, k = 5.125 10^4, p = 2, ˜p = 0.75 10^{-3} with the forcing function having the form:

\[
x(t) = \begin{cases}
A \sin \omega t & (0 \leq t < T_1) / \frac{\partial \xi}{\partial \tau} (n \leq \tau < T_1);
B(1 + \sin \omega t) / \tau_1 \leq \tau < T_2,
A = 200; B = 40; \omega = 1; \omega_2 = 5; \tau_3 = 40;
\tau_1 \equiv 5\pi \times 10^{-3}; \tau_2 = 7\pi \times 10^{-3}; \tau^* \equiv 0.03415\pi.
\end{cases}
\]

3. MATHEMATICAL MODELS

We introduce the inertial reference frame (IRF) IΩ, the geodesic Greenwich reference frame (GRF) EΩ, and the geodesic horizon reference frame (HRF) EΩ. There are also standard defined the SC body reference frame (SBRF) B (Oxyz), the orbit reference frame (ORF) O (Ox0 y0 z0), and the antenna (sensor) reference frame (SRF) S (Sx0 y0 z0) with an origin S. The geodesic model with respect to the IRF IΩ is defined by quaternions Λ = (λ0, λ), Λ = (λ1, λ2, λ3), and with respect to the ORF – by column Φ = [φi, i = 1:3] of angles φ1 = ψ, φ2 = φ, φ3 = 0 in the sequence 132.

Let vectors ω(t) and v(t) are standard denotations of the SC body angular rate and its mass center velocity with respect to the IRF, respectively, and vector v0(t) presents the v(t) deviation with respect to nominal SC orbital motion at the Earth gravity field. Applied further symbols {}, x, {}, {} for vectors and [a ×], (.)^T for matrixes are conventional denotations (Somov, 2001, 2002). For a fixed simple motion of flexible structures on the SC body with some simplifying assumptions and t ∈ T0 = [t0, +∞) model of the SC spatial motion is appeared as follows:

\[
\begin{align*}
\dot{\Lambda} &= \Lambda \omega / 2; \quad A^\circ \{\dot{v}_0, \omega, \dot{q}, \dot{\beta}\} = \{F_\Omega^\circ, F^\circ, F^\circ, F^\circ\};
F_\Omega^\circ &= -m(\mathbf{w} \times \mathbf{v}_0) + \mathbf{w} \times (\mathbf{L} \times \omega - 2\mathbf{L}) + \mathbf{R}; \quad \mathbf{L} = \mathbf{M}_Q \mathbf{q};
F^\circ &= -L \times (\omega \times \mathbf{v}_0) + M^\circ - \omega \times \mathbf{G} + M^\circ; \quad \mathbf{M}^\circ = -A^\circ \dot{\beta};
F^\circ &= (-\Omega^\circ_s)^2 \mathbf{m}_s \mathbf{r}_j(t)\};
F^\circ &= A^\circ_0 \mathbf{w} + \mathbf{M}_f^\circ + M^\circ_f + M^\circ_s;
\end{align*}
\]

At standard linear modelling one can have

\[
F^\circ = \{-(\Omega^\circ_s)^2 \mathbf{q}_j + (\Omega^\circ_s)^2 \mathbf{q}_j\},
\]

where δp ∈ [−10^3, 10^−4] is decrement by j-tone of the SC structure flexible oscillations. The antenna’s flexibility results in additional angular deflection of the SRF S with respect to the SRF S, including its line-of-sight Sr. The deflection is presented by column δφ = [δφi, i = 1:3] of the angels δφi as follows

\[
\delta \mathbf{q} = \mathbf{Q}_q \mathbf{q},
\]

where matrix \(\mathbf{Q}_q \) is calculated by the antenna’s shape modes.

The torque column \(\mathbf{M}_f^\circ \) of physical and electro-magnetic damping is nonlinear continuous function, and column \(\mathbf{M}_p^\circ \) of the rolling friction torques in bearings on GD’s precession axes is discontinuous vector-function. The gyro moment cluster (GMC) control vector \(\mathbf{M}_g^\circ(t) = \{m^0_g(t)\} \) have components which are described by relation

\[
m^0_g(t) = a^0 \mathbf{Z}_h[\mathbf{S}(\mathbf{u}^0_{pk}, b_s), \mathbf{B}_u, \mathbf{T}_u]; k \in N_0,
\]

where \(N_0 = \{0, 1, 2, \ldots\} \), \(a^0 = \text{const} \), discrete functions \(\mathbf{u}^0_{pk} \equiv \mathbf{u}^0_{pk}(t_k) \) are outputs of nonlinear control law, and functions \(\mathbf{S}(x, a) \) and \(\mathbf{Q}_n(x, a) \) are general-usage ones, while the holder model with the period \(T_a \) is of the type:

\[
y(t) = \mathbf{Z}[x(t_k), T_a] = x_\beta(t_k) \quad \forall t \in (t_k, t_k + 1),
\]

Model (7) is applied then the GD driver have small gear ratio, e.g. for “soft” gyromoment control where the notation theory must be used.

For the GD driver gear with large transfer ratio the command \(\mathbf{u}^\circ_{pk} = \beta^\circ(t) \) and the true \(\beta_p(t) \) precession rates are close. Then the assumptions of the control moment gyro precession theory are satisfied, and the vector \(\mathbf{M}_g^\circ \equiv \{M^\circ_s\} \) of the GMC output control torque is presented by relation

\[
\mathbf{M}_g^\circ = -\mathbf{H} = -\mathbf{A}_h(\beta) \mathbf{u}^\circ(t); \quad \beta = \mathbf{u}(t) \equiv \{u^\circ_{pk}(t)\},
\]

where \(u^\circ_{pk}(t) = a^0 \mathbf{Z}[\mathbf{S}(\mathbf{u}^\circ_{pk}, b_s), \mathbf{B}_u, \mathbf{T}_u] \) with a constant \(a^0 \). Moreover matrix \(\mathbf{A}_h = 0 \), last vector equation in model (7) must be rejected and one can to obtain so-called “stiff” gyromoment control.

4. THE PROBLEM STATEMENT

Applied onboard measuring subsystem is based on a precise gyro unit corrected by the fine fixed-head star trackers. This subsystem is intended for precise determination of the SC BRF B angular position with respect to the IRF IΩ.
Fig. 3. The fault-tolerant 2-SPE scheme of the GMC

Applied contemporary filtering & alignment calibration algorithms and a discrete astatic observer give finally a fine discrete estimating the SC angular motion coordinates presented by the quaternion estimation \mathbf{A}_s, and the angular rate estimation $\hat{\omega}_s$, where $s \in \mathbb{N}_0$ and a measuring period $T_q = t_{s+1} - t_s \leq T_n$ is multiply with respect to a control period T_n.

Applied the 2-SPE scheme on 4 GDs with the AM vectors $H_{p,p} = 1 \div 4$ is presented in Fig. 3 (Somov et al., 2005b,a). Into canonical reference frame $O_e x_e^e y_e^e z_e^e$ of the gyro moment cluster (GMC) the AM projections of the first (GD-1 & GD-2) and the second (GD-3 & GD-4) pairs of the GDs always are summed up along the axis $O_e x_e^e$. Sometimes only 3 executive devices are used.

At the GMC Z-arrangement on the SC body, when the axis $O_e x_e^e$ is the same as the axis O_2 of the BRF, for $\sigma = \pi/6$ and $\beta_2 \in [-\pi/2, \pi/2]$ the following 4 efficient GMC configurations Z-I, I=1 $\div 4$ (GMC without GD-I) are possible on the basis of only 3 active GDs. These configurations are represented at nominal state in Fig. 3b (Z-4 or Z-3) and in Fig. 3c (Z-2 or Z-1). So, the GMC scheme in Fig. 3a is fault-tolerant under diagnostics of the faulted GD and the GMC reconfiguration by passages between configurations Z-I by some logic conditions.

When a spacecraft is moving at a distant part of the high-elliptical orbit (HEO) by Molniya type (with apogee 46370 km and perigee 7370 km, Fig. 4) there are fulfilled sequence of the angular motion modes:

1° the SC antenna pointing to a given point at the Earth surface and then the target tracking during given time interval $T_n \equiv [t_0^n, t_f^n]$;

2° the SC antenna guidance from any Earth point to next point during time $t \in T_p \equiv [t_0^p, t_f^p]$, $t_f^p \equiv t_0^p + T_p$, where T_p is given, see Fig. 4.

At the SC lifetime up to 15 years its structure inertial and flexible characteristics are slowly changed in wide boundaries, and the solar array panels (SAPs) are slowly rotated on the angle $\gamma(t) \in [0, 2\pi]$ with respect to the SC body for their tracking the Sun direction, see Fig. 5. Therefore at inertial matrix A^o and partial frequencies Ω_j^o of the SC structure are not complete certain. Problems consist in

- synthesis of the SC antenna guidance laws for calculating $A^o(t)$, angular rate $\omega^o(t)$ and acceleration $\dot{\omega}^o(t) = \varepsilon^o(t)$ vectors of the SC body programmed motion by tasks $1^o, 2^o$;

- dynamical design of simple and reliable GMC digital control law $u^s_k = \{u_{0,k}^s\}$ on discrete estimations $\hat{\mathbf{A}}_s, \hat{\omega}_s$ and the GMC state vector \mathbf{b}_k values when the SC structure characteristics are uncertain and its damping is very weak.

5. THE ANTENNA GUIDANCE LAWS

The analytic matching solution have been obtained for problem of the SC angular guidance at its antenna pointing to the Earth target and the same target tracking at time $t \in T_n$ with $t_f^n \equiv t_0^n + T_n$. Solution is based on a vector composition of all elemental motions in the GRF E_e.
using the HRF E^h_b, the SRF S and orthogonal matrix $C^e_h = C = \| \tilde{c}_{ij} \|$ which defines the SRF S orientation with respect to the HRF E^h_b.

Normed to the communication oblique range D vector v and the SC body programmed angular rate vector ω^p with respect the GRF E_b are presented in the SRF S as $v^e = \{v^e_i, \ i = 1 \pm 3\}$ and $\omega^p = \{\omega^p_i, \ i = 1 \pm 3\}$. Calculation of vector ω^p is carried out by explicit analytical relations

$$\omega^p_{e1} = \frac{-v^e_3(v^e_1 + v^e_2v^e_1)}{2v^e_1}; \ \omega^p_{e2} = -v^e_3; \ \omega^p_{e3} = v^e_2. \quad (12)$$

By numerical solution of the quaternion differential equation $\dot{\Lambda}^q = \Lambda^q \sigma^q_e / 2$ one can obtain values of vectors Λ^q_e for the discrete time moments $t_s \in T_n$ for the quaternion $\Lambda^q(t_0)$ is given.

Further solution is based on the elegant extrapolation of values $\sigma^q_e = \Lambda^q_e / (1 + \lambda^q_e)$ by the vector of Rodrigues’ modified parameters and values ω^q_e by the angular rate vector. The extrapolation is carried out by these two sets of ω^q_e coordinated 3-degree vector splines with analytical obtaining a high-precision approximation of the SRF S guidance motion with respect to the GRF E_b. Both on vector of angular acceleration and on vector of its local derivative. At last stage, required functions $\phi^q(t), \omega^q(t), \sigma^q(t)$ and $\epsilon^q(t) = \dot{\sigma}^q(t) + \omega^q(t) \times \epsilon^q(t)$ is calculated by explicit formulas.

Fast onboard algorithms for the SC antenna guidance by its rotation maneuver into given time interval $t \in T_p$ with restrictions to $\omega^q(t)$ and $\dot{\omega}^q(t)$ corresponding restrictions to $\h(\beta(t))$ and $\dot{\beta}(t)$ in a class of the SC angular motions, were elaborated. Here the boundary conditions on left ($t = t^b_0$) and right ($t = t^b_p$) trajectory ends are given as follows:

$$\Lambda^p(t^b_0) = \Lambda^p_0; \ \omega^p(t^b_0) = \omega^p_0; \ \epsilon^p(t^b_0) = \epsilon^p_0. \quad (13)$$

$$\Lambda^p(t^b_p) = \Lambda^p_f; \ \omega^p(t^b_p) \equiv \omega^p_f; \ \epsilon^p(t^b_p) = \epsilon^p_f. \quad (14)$$

Developed approach to the problem is based on necessary and sufficient condition for solvability of Darboux problem. Solution is obtained as result of composition by three simultaneously derived elementary rotations of embedded bases E_k, about units e_k, of Euler axes, $k = 1 \pm 3$, which position is defined by the boundary conditions (13) and (14) for initial spatial problem. For all 3 elementary rotations with respect to units e_k, the boundary conditions are analytically assigned. Into the IRF E_\parallel the quaternion $\Lambda^p(t)$ is defined by the production

$$\Lambda^p(t) = \Lambda^p_0 \circ \Lambda^p_k(t_0) \circ \Lambda^p_k(t), \quad (15)$$

where $\Lambda^p_k(t) = (\cos(\theta^p_k(t)/2), \sin(\theta^p_k(t)/2) e_k)$, e_k is unit of Euler axis by k's rotation, and functions $\theta^p_k(t)$ present the elementary rotation angles in analytical form. These functions were selected in class of splines by 5 degree. Explicit time functions $\Lambda^p(t), \omega^p(t)$ and $\epsilon^p(t)$ are applied at onboard computer for the time moments t_s by the SC antenna guidance at its both pointing ($t_s \in T_n$) and rotation maneuver ($t_s \in T_p$).

6. THE STRUCTURE OSCILLATIONS

Presented in Somov (2002) and applied here the distribution law $f_p(\beta) = 0$ of the GMC normed $A(\beta) = \Sigma h_1 \beta_2$ between GD’s pairs ensures its singular state only at separate time moments and bijectively connects the vector $M^g(t)$ with vectors $\beta(t)$ and $\beta(t) = u^g(t)$. Therefore for preliminary study it is rational to considerate the column $M^g(t) = [M^g_i]$ as control vector.

Applying the state vector $x = [\phi, v, \omega, q, q_i]$ and denotations $u(t) = M^g(t), \ y(t) = \phi(t)$ for a linearizing procedure of the SC model (7) at neighbourhood of the SC equilibrium in the ORF O one can obtain standard continuous model $x = Ax + Bu, \ y = Cx$. Comparison of linear (8) and hysteresis (7) modelling of the SC structure weak-damped oscillations was developed by numerical methods.
The SC open-loop pseudo-frequency characteristics on roll channel: - - - - - without discrete filter, —— with discrete filter.

The SC natural logarithmic frequency characteristics on the roll channel continuous open-loop are presented in Fig. 7 at linear modelling with decrement $\delta_s = 2 \cdot 10^{-3}$ for all tones. At hysteresis modelling the same "frequency characteristics" were also computed by numerical simulation for a set of input command amplitudes. Obtained results are close, but resonance and anti-resonance "peaks" have very narrow form for hysteresis modelling, these differences are significant only for small input amplitudes.

Fig. 8. The SC open-loop pseudo-frequency characteristics on roll channel: - - - - - without discrete filter, —— with discrete filtering (16), discrete control law (17), (18) and forming the GMC digital control

7. FILTERING AND DIGITAL CONTROL

The error quaternion is $\mathbf{E} = (e_0, \mathbf{e}) = \hat{\mathbf{A}}^\prime(t) \circ \mathbf{A}$, the Euler parameters’ vector $\mathbf{E} = (e_0, \mathbf{e})$, and the attitude error’s matrix is $\mathbf{C}_\varepsilon \equiv \mathbf{C}(\mathbf{E}) = \mathbf{I}_3 - 2[e \times]Q_\varepsilon^t$, where matrix $Q_\varepsilon \equiv Q(\mathbf{E}) = \mathbf{I}_3 e_0 + [e \times]$ with $\det(Q_\varepsilon) \equiv e_0 \neq 0$. Let the GMC’s required control torque vector \mathbf{M}_s^ε (11) is formed as $\mathbf{M}_s^\varepsilon = \omega \times \mathbf{G}_\varepsilon + J[C]^\varepsilon \omega^\varepsilon(t) - [\omega \times [\mathbf{C}_\varepsilon \omega^\varepsilon(t) + \mathbf{m}_s^\varepsilon]]$, where vector \mathbf{m}_s^ε is a stabilizing component.

At given digital control period T_u discrete frequency characteristics are computed via absolute pseudo-frequency $\lambda = 2t g(\omega T_u/2)/T_u$. For period’s multiple n_q and a filtering period $T_q = T_u/n_q$ applied filter have the discrete transfer function $W_f(z_q)$ is $(1 + b_1)/(1 + b_1 z_q)$, where coefficient $b_1 = -\exp(-T_q/T_u)$ and $z_q = \exp(s T_u)$.

By own absolute pseudo-frequency $\lambda_q = (2/T_u) g(\omega T_u/2)/n_q = (2/T_u) g(\arctg(\lambda T_u/2)/n_q)$ the discrete frequency characteristics $\hat{\mathbf{W}}_f(j \lambda_q)$ is presented as follows $\hat{\mathbf{W}}_f(j \lambda_q) = K_q^\varepsilon \hat{\mathbf{Q}}_q^\varepsilon = (j \lambda_q - q_0^\varepsilon)/(j \lambda_q - p_0^\varepsilon)$, where $K_q^\varepsilon = (1 + b_1)/(1 - b_1); q_0^\varepsilon = (-2/T_q) and \lambda_q = (2/T_q)$.

Discrete error quaternion and Euler parameters’ vector are $\mathbf{E}_s = (e_0, \mathbf{e}) = \hat{\mathbf{A}}^\prime(t) \circ \mathbf{A}_s$ and $\mathbf{E}_s = \{e_0, \mathbf{e}_s\}$, and the error filtering is executed by the relations

$$\hat{x}_{s+1} = \hat{\mathbf{A}} \hat{x}_s + \hat{\mathbf{B}} \mathbf{e}_s; \hat{\mathbf{e}}_{s+1} = \hat{\mathbf{C}} \hat{x}_s + \hat{\mathbf{D}} \mathbf{e}_s,$$

where matrices $\hat{\mathbf{A}}, \hat{\mathbf{B}}, \mathbf{C}$ and \mathbf{D} have diagonal form with $\hat{a}_i = -b_i; b_i = b_i^\prime; \hat{c}_i = -(1 + b_i^\prime)$ and $d_i = 1 + b_i^\prime$.

Applied stabilizing component \mathbf{m}_s^ε is formed as follows:

$$\mathbf{e}_s = -2b_k^\varepsilon \mathbf{g}_s + \mathbf{B} \mathbf{g}_k + \mathbf{C} \mathbf{e}_k; \mathbf{m}_s^\varepsilon = \mathbf{K}_s^\varepsilon (\mathbf{g}_s + \mathbf{P} \mathbf{e}_s). \quad (17)$$

Here matrices $\mathbf{B}, \mathbf{C}, \mathbf{P}$ and \mathbf{K}_s^ε have diagonal form with

$$a_i = [(2/T_u) \tau_{1i} - 1]/[(2/T_u) \tau_{1i} + 1];$$

$$b_i = [(2/T_u) \tau_{2i} - 1]/[(2/T_u) \tau_{2i} + 1];$$

$$c_i = p_i (b_i - a_i),$$

where τ_{1i}, τ_{2i} and k_s^ε are pseudo-constant parameters which are selected and then turning (in progress of Somov (2001) and Somov (2007)) for ensuring the robust properties of gyromoment attitude control system by the flexible weak damping spacecraft. Only the SC attitude \mathbf{e}_k^ε filtered error vector is applied for forming the stabilizing component \mathbf{m}_s^ε (17).

The GMC’s control torque is digitally formed by relation

$$\mathbf{M}_s^\varepsilon = \hat{\mathbf{A}}_k^\varepsilon \hat{\mathbf{G}}_s^\varepsilon + \mathbf{J} [(\mathbf{C} \hat{\mathbf{e}}_s^\varepsilon - \hat{\mathbf{A}}_s^\varepsilon \hat{\mathbf{Q}}_s^\varepsilon \hat{\mathbf{x}}_s^\varepsilon) \hat{\mathbf{Q}}_s^\varepsilon \mathbf{m}_s^\varepsilon], \quad (18)$$

where $\hat{\mathbf{G}}_s^\varepsilon = \hat{\mathbf{J}} \hat{\mathbf{w}}_k + \mathbf{H}(\beta_k), \mathbf{C} \hat{\mathbf{e}}_s^\varepsilon = \mathbf{C}(\mathbf{E}_s^\varepsilon), \mathbf{e}_s^\varepsilon = \hat{\mathbf{w}}^\varepsilon(t_k)$ and $\hat{\mathbf{w}}^\varepsilon(t_k)$ is applied from conditions

$$\mathbf{A}_k^\varepsilon(\beta_k) \mathbf{u}_k^\varepsilon = -\mathbf{M}^\varepsilon_k; \quad (\partial f_{s,k}(\beta_k) / \partial \beta, \mathbf{u}_k^\varepsilon) = 0. \quad (19)$$

The filtering efficiency is demonstrated by pseudo-frequency characteristics in Fig. 8 for same the SC roll channel but by open-loop with digital control, when the control period $T_u = 4$ s, the filtering period $T_q = 1$ s and the time constant $T_f = 2$ s. By Nyquist criterion it is obvious that the close-loop channel have not stability without the discrete filter (16).

8. COMPUTER SIMULATION

A software system was applied for computer simulation and dynamic analysis of the flexible SC antenna pointing model (7) and (8) with discrete filtering (16), discrete control law (17), (18) and forming the GMC digital control
9. CONCLUSIONS

New approach for modelling a physical hysteresis was developed and its application for digital gyromoment attitude control of a flexible spacecraft structure was considered. New results on the SC antennas' guidance, a robust gyromoment spacecraft attitude control with fine pointing of the large-scale flexible antennas, were presented.

For small amplitude of the SC structure oscillations there is needed to apply a hysteresis modelling of a weak structure damping. Elaborated algorithms of multiple discrete filtering and digital control laws with turning the pseudo-constant parameters \(\tau_1, \tau_2 \) and \(k_\phi^i \) effectively ensure the robust properties of gyromoment attitude control system for the flexible weak damping spacecraft.

REFERENCES