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Abstract: This paper introduces the concept of an ℓ0-system gain for discrete-time LTI systems.
It is shown that the ℓ0-gain is characterized by the number of non-zero entries in the impulse
response of the system and hence gives a natural extension of the notion of sparsity from signals
to systems. With this newly introduced system gain, we give a system theoretic explanation
of the sparse closed loop response of ℓ1-optimal controlled systems by showing that the ℓ1-
optimal control problem is the best convex relaxation (in the sense of Lagrangian duality) of an
appropriately defined ℓ0-optimal control problem.

1. INTRODUCTION

Sparse signal recovery has received a lot of attention in
the signal processing literature during the past five years.
A discrete-time signal is said to be sparse, if most of its
entries are zero, analog to a sparse vector, i.e. a vector
where most of its entries are zero. The ℓ0-norm quantifies
sparsity by counting the number of non-zero entries in
a vector or signal. Finding sparse vectors is important
in many applications such as in parameter estimation
or identification, signal processing or model reduction
(Peeters andWestra, 2004; Candes et al., 2006b). However,
finding sparse vectors, for example by minimizing the ℓ0-
norm, is a difficult non-convex problem. In compressive
sensing (Candes et al., 2006b,a; Donoho, 2006) sparse
signals are reconstructed from linear measurements by
replacing the ℓ0-minimization with an ℓ1-minimization.
Surprising about this replacement is the fact that it can
be theoretically justified to be effective, i.e., under suitable
assumptions, ℓ1-minimization solves the ℓ0-problem with
high probability. The ℓ1-norm can be considered as a
convex relaxation of the ℓ0-norm. In Fazel (2002) it was
shown via conjugate functions that the ℓ1-norm is the
convex envelope of the ℓ0-norm and therefore its best
convex relaxation (in the sense of Lagrangian duality).

Motivated by the success of compressive sensing in signal
processing, it is reasonable to ask if there is a meaningful
notion of sparsity in the context of systems theory and
how such a concept could look like. In this paper, a first
step in this direction is made. The idea is to introduce an
ℓ0-system gain for single input/single output systems in
the spirit of robust control for e.g. ℓ2- or ℓ∞-system gains.
The ℓ0-gain of a system is defined as the smallest ratio of
the number of non-zero entries in the output signal and
the input signals. Moreover, it is shown that the system
gain is characterized by the number of non-zero entries
of the impulse response. The second contribution of this
paper is motivated by the fact that in ℓ1-optimal control
(Dahleh and Khammash, 1993; Dahleh and Diaz-Bobillo,
1995) it was observed that ℓ1-optimal controllers produce
sparse optimal closed loop responses. From the view of
compressive sensing and ℓ1-minimization, this behavior
is reasonable but a systems theoretic explanation of this

problem seems to be not available in literature. The paper
establishes such a systems theoretic explanation of the
sparse response of ℓ1-optimal controllers by showing that
the ℓ1-optimal control problem is the best convex relax-
ation (in the sense of Lagrangian duality) of an appropriate
ℓ0-optimal control problem formulated with the help of the
newly introduced ℓ0-system gain. While our motivation to
introduce a notion of sparsity for systems is primarily of
theoretical interest, there are direct connections of the ℓ0-
gain to application areas, like the design of sparse finite
impulse response filters, sparse channels and system iden-
tification via Markov parameters .

The paper is organized as follows: Section 2 states mathe-
matical preliminaries. In Section 3 , the ℓ0-system gain is
introduced. In Section 4, the ℓ0-optimal control problem is
formulated and a convex relaxation as well as its relation to
the ℓ1-optimal control problem is established in Section 5.
Section 6 gives a review of the ℓ1-optimal control problem
and shows the connection to the previously introduced
ℓ0-optimal control problem. The paper concludes with a
summary and an outlook.

2. MATHEMATICAL PRELIMINARIES

A state-space realization of a transfer matrix G(z) is
written as

[
A B
C 0

]

:= C(zI −A)−1B = G(z).

The sign(x) of x ∈ R is defined as

sign(x) :=

{
−1 for x < 0
0 for x = 0
1 for x > 0.

The ℓ0-norm of a vector x ∈ R
n is defined as

‖x‖0 :=
n∑

i=1

|sign(xi)|.

The ℓ0-norm counts the non-zero entries in a vector.
Strictly speaking, it is not a norm, since homogeneity is
not fulfilled (‖αx‖0 = ‖x‖0 6= |α| · ‖x‖0), but nevertheless
the term is commonly used in literature. A vector is called
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Fig. 1. The ℓ1-ball for ‖[x y]‖1 ≤ 1.

sparse, if it has a small ℓ0-norm, i.e. if most of its entries
are zero. The ℓ1-norm of a vector x ∈ R

n is defined as

‖x‖1 :=

n∑

i=1

|xi|.

As mentioned before, it was shown that the ℓ1-norm is
the convex envelope of the ℓ0-norm (see Fazel, 2002). ℓ1-
minimization is known to lead to sparse solutions. An
interpretation why this is the case is shown in Figure 1.
If one minimizes the ℓ1-norm of a vector subject to linear
constraints, in most of the cases the solution lies on the
corner of the ℓ1-ball (Candes et al., 2008). In the following,
we denote vector norms by ‖ · ‖i and signal norms by
‖ · ‖ℓi , i = {0, 1}. Notice that this distinction between
ℓ0-vector and ℓ0-signal norm is not necessary but is done
here because of conceptual clarity.

The convolution of two discrete time signals f and g is
given by

(f ∗ g)(k) =

∞∑

i=0

f(i)g(k − i) =

∞∑

i=0

f(k − i)g(i).

Consider an infinite dimensional sequence x = {x(1), x(2),
. . . , }={x(k)}. Then the truncation operator PN is defined
by

PN(x) := {x(1), x(2), . . . , x(N), 0, 0, . . .}.

3. ℓ0-SYSTEM GAIN

In this section, the concept of an ℓ0-gain for discrete-time
LTI systems is introduced. Moreover, a characterization of
the ℓ0-gain in terms of the number on non-zero entries in
the impulse response of the system is derived.

3.1 Signal norm

We now consider x = {x(k)} ∈ ℓ0 being a discrete-time
signal with the norm

‖x‖ℓ0 :=

∞∑

k=0

|sign(x(k))|.

The discrete-time impulse signal is given by

δ(k) :=

{
1 for k = 0
0 else .

Note that the impulse signal δ fulfills ‖δ‖ℓ0 = 1.

3.2 Operator norm

Consider a discrete-time LTI system of the following form

x(k + 1) = Ax(k) +Bw(k) (1a)

z(k) = Cx(k) (1b)

with matrices A ∈ R
n×n, B ∈ R

n×1, and C ∈ R
1×n. For

the sake of simplicity, we restrict ourself to SISO systems.
It is expected that the multivariable case goes along similar
lines and is part of our future work. The impulse response
of this system is given in terms of its Markov parameters
as

g(k) =

{
0 for k ≤ 0
CAk−1B for k > 0.

(2)

With the previously introduced ℓ0-signal norm, we will
now define the ℓ0-gain of a system as the worst case ℓ0
output signal for all possible input signals w ∈ ℓ0.

Definition 1. The induced ℓ0-norm (or ℓ0-gain) of an op-
erator G : ℓ0 → ℓ0 is defined as

‖G‖ℓ0−ind : = sup
w 6=0

‖z‖ℓ0
‖w‖ℓ0

, w ∈ ℓ0

with z = Gw.

The above definition is exactly in the spirit of systems
gains known from robust control theory.

A nice fact about the newly introduced ℓ0-gain is that it
is characterized by the sparsity of the impulse response
of the system, as shown in the next theorem. Hence, this
characterization justifies that the introduced ℓ0-gain is a
meaningful notion for sparsity.

Theorem 2. The ℓ0-gain of the system (1) is the ℓ0-norm
of its impulse response, i.e.

‖G‖ℓ0−ind = ‖g‖ℓ0.

Proof. Suppose w is an arbitrary input signal with
‖w‖ℓ0 = N . Then two cases can be distinguished:

(1) If G has an infinite impulse response, then the ℓ0-gain
of (1) is infinity.

(2) If G has a finite impulse response, say ‖g‖ℓ0 :=
‖Gδ‖ℓ0 = M , then

‖z‖ℓ0
‖w‖ℓ0

≤
MN

N
=

‖Gδ‖ℓ0
‖δ‖ℓ0

= ‖g‖ℓ0.

The first inequality follows from the linearity of G,
i.e. any output signal z is a superposition of scaled
impulse responses (see Figure 2)

z(k) =

k∑

i=0

g(k − i)w(i)

with g(k) = 0, for k > n. Consequently, since w is
arbitrary and ‖G‖ℓ0−ind ≤ M , δ is an input signal
such that ‖G‖ℓ0−ind = M . 2

Theorem 2 gives a direct link to finite impulse response
filter, i.e. system (1) has a finite ℓ0-gain if and only if
it is a finite impulse response (FIR) filter. With the now
defined ℓ0-gain of a system, we want to design controllers/
filters K such that the closed loop system gain is minimal
in terms of its ℓ0-norm.

Preprints of the 18th IFAC World Congress
Milano (Italy) August 28 - September 2, 2011

9231



w1 w2 w

z
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Fig. 3. Closed loop interconnection.

4. THE ℓ0-OPTIMAL CONTROL PROBLEM

Consider the closed loop interconnection as depicted in
Figure 3, where P is the generalized plant including all
weighting functions and K is the controller to be designed,
u is the controller output and y the measured output. The
closed loop is given by T (K) = Fl(P,K), where Fl denotes
the lower fractional transformation. We can reformulate
this closed loop in terms of its Youla Parameterization
(Youla et al., 1976)

T (Q) = H − UQV, (3)

where H , U , V are transfer functions which are derived
from the state space representation of the system and Q
is a free, but stable transfer function. The controller K is
then given by K = Fl(J,Q), where J can be computed
from the state space description of the generalized plant
P . We can now formulate the problem of finding a transfer
function Q, such that the induced norm of the closed loop
system is optimal in terms of the ℓ0-gain:

µ0 := inf
Q

‖T (Q)‖ℓ0−ind

= inf
q∈ℓ0

‖h− u ∗ q ∗ v‖ℓ0 , (4)

where ∗ denotes the convolution operator. In other words,
in the ℓ0-optimal control problem, we search for an FIR
filter Q such that the impulse response of the closed loop
is sparse.

Following the ideas in Khammash (2000) we will refor-
mulate the convolution terms. Let p ∈ ℓ0 be defined by
p := u ∗ v, and define pk as

pk := {p(k), . . . , p(0), 0, . . .}.

Since the convolution operation is associative and commu-
tative it holds

u ∗ q ∗ v = u ∗ (q ∗ v)

= (u ∗ v) ∗ q

= p ∗ q.

From this equation follows

(u ∗ q ∗ v)(k) =(p ∗ q)(k)

=〈pk, q〉,

where 〈·, ·〉 denotes the standard inner product between
vectors (ℓ0-signals).

With this reformulation of the convolution terms, (4) can
be written as

µ0 = inf
q∈ℓ0

‖{h(k)− 〈pk, q〉}‖ℓ0 . (5)

This problem is an infinite dimensional optimization prob-
lem which is non-convex and difficult to solve.

If the ℓ0-norm of a signal x is finite, then there exists an
element x(m) of the sequence which is the last non-zero
element of x. It then holds

‖x‖ℓ0 = ‖PN(x)‖ℓ0 , for N ≥ m.

Consequently, if (5) has a solution q∗ ∈ l0 (the infimum is
attained), then it is equivalent to

min
q∈ℓ0

‖PN({h(k)− 〈pk, q〉})‖0 (6)

with N sufficiently large. With this, we have derived an
equivalent formulation of the optimization problem, which
is now a finite-dimensional optimization problem. Com-
pared to ℓ1-optimal control, no relaxation is necessary to
transform the infinite dimensional optimization problem
into a finite one assuming that the infimum is attained
(Khammash, 2000). In the next section, Lagrangian du-
ality is applied to obtain a convex relaxation of the ℓ0-
optimal control problem.

5. LAGRANGIAN RELAXATION OF THE
ℓ0-OPTIMAL CONTROL PROBLEM

In this section, we want to show that the Lagrangian
relaxation of the ℓ0-problem is the ℓ1-problem. We do this
by showing that both, the ℓ1-problem and the ℓ0-problem
have the same dual optimization problem. Since we know
that the ℓ1-problem is bi-dual, we can prove that the ℓ1-
problem is the bi-dual of the ℓ0-problem and therefore
its convex relaxation. Problem (6) can be written as a
standard linear program of the form

min
x

‖z‖0 (7a)

s.t. h−Ax = z, (7b)

where h = [h(k)], Ax = [〈pk, q〉] and x = q. Before we
solve the problem stated in (7), we consider two auxiliary
problems that will lead to the solution of the original
problem.

The idea is to augment the original optimization problem
by a new term and then show that the augmented problem
leads to the same solution as the original problem. We will
first consider a standard ℓ1-minimization problem to show
the ideas. Afterwards we will again consider the previous
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stated ℓ1-optimal control problem. The dual optimization
problem of the ℓ1-minimization

min
x

‖x‖1 (8a)

s.t. Ax = b, (8b)
is given by

max
ν

νT b (9a)

s.t. ‖AT ν‖∞ ≤ 1. (9b)
A proof of this can be found for example in Boyd and Van-
denberghe (2004). Consider first the optimization problem

min
x

‖x‖0 (10a)

s.t. Ax = b, (10b)

for given x ∈ R
n, b ∈ R

n and A ∈ R
m×n, with m < n

and with optimal solution x∗. In Fazel (2002), it was
shown that the ℓ1-norm is the bi-conjugate of the ℓ0-
norm and therefore its convex envelope. However, this
only holds when x is restricted to a bounded domain,
i.e C = {x|‖x‖∞ < 1}. Otherwise, the convex envelope
is identically zero. Since we do not want to restrict the
domain of x, we will present an alternative approach here.
Consider the optimization problem

min
x

c‖x‖0 + ‖x‖1 (11a)

s.t. Ax = b (11b)

with optimal solution x̃∗ and c ∈ R
+ is a positive constant.

This scaled optimization problem is easier to analyze
and has the important property that the ℓ0-norm of the
optimal solution of (11) coincide with the solution of (10),
for a sufficiently large constant c. The next lemma shows
that both problems have the same optimal solution in
terms of the ℓ0-norm for sufficiently large constant c.

Lemma 3. Let x∗, x̃∗ be the solutions of (10) and (11),
respectively. Then for sufficiently large c it holds

‖x∗‖0 = ‖x̃∗‖0.

The proof is given in the appendix.
Lemma 3 allows us to search for sparse vectors by solving
Problem (11) instead of Problem (10). Moreover, the ad-
vantage of (11) over (10) is, that its Lagrangian relaxation
is not degenerated. To see this, we dualize Problem (11).

Lemma 4. The Lagrange dual of (11) is given by
max

ν
νT b

s.t. ‖AT ν‖∞ ≤ 1.

The proof is given in the appendix.
Lemma 4 shows that the ℓ1-minimization problem (8)
and the augmented ℓ0-optimization problem (11) have the
same dual. Therefore the ℓ1-minimization problem is the
closest convex relaxation (in terms of Lagrangian duality)
of the augmented ℓ0-optimization problem.

After considering this two auxiliary problems, we can solve
the problem originally stated in (6) and in its equivalent
standard form (7). With

ξ =

[
z
x

]

, Ã = [I A] , and D = [I 0] ,

the minimization problem (7) can be rewritten as
min
ξ

‖Dξ‖0

s.t. Ãξ = h.

This problem is similar to (10) and the same conclusions
hold.

Corresponding to Lemma 4, we have the following theo-
rem.

Theorem 5. The Lagrange relaxation of the optimization
problem

min
x

c‖z‖0 + ‖z‖1 (13a)

s.t. h−Ax = z (13b)
is given by

max
ν

νTh

s.t. ‖ν‖∞ ≤ 1

AT ν = 0.

Before we can prove this theorem, we state a Lemma
similar to Lemma 3.

Lemma 6. Let ξ∗, ξ̃∗ be the solutions of (7) and (13),
respectively. Then for sufficiently large c it holds

‖ξ∗‖0 = ‖ξ̃∗‖0.

The proof of the theorem is similar to the proof of Lemma 3
and is omitted here.

Proof. [Theorem 5] The proof goes along the lines of the

proof of Lemma 4. With ξ, Ã and D as defined before, the
minimization problem can be rewritten as

min
ξ

c‖Dξ‖0 + ‖Dξ‖1

s.t. Ãξ = h.

The Lagrangian of this problem is given by
L(ξ, ν) = c‖Dξ‖0 + ‖Dξ‖1 + νT (h− Ãξ)

= c

2n∑

i=1

dii|sign(ξi)|+
2n∑

i=1

dii|ξi|+ νTh− νT Ãξ

=

2n∑

i=1

dii (c|sign(ξi)|+ |ξi|) + νTh− νT Ãξ

and dii = 0 for i > n. With ãi being the ith column of Ã,
it follows

g(ν) =min
ξ

L(ξ, ν)

=min
ξ

(

2n∑

i=1

(
dii (c|sign(ξi)|+ |ξi|)− (νT ãi)ξi

)

+ νTh)

=

{
−∞ for |νT ãi| > dii for some i

νTh for |νT ãi| ≤ dii for all i.

This is due to the fact, that if |νT ãi| ≤ dii then
α(xi) = dii (c|sign(xi)|+ |xi|)− (νT ãi)xi

is positive definite (α(0) = 0, α(xi) ≥ 0), and if |νT ãi| >
dii, then α(ρ(νT ãi)) → −∞ for ρ → ∞.

The dual problem can now be written as
max
ν

νTh

s.t. |νT ãi| ≤ dii
with dii = 1 for i = 1 . . . n and dii = 0 for i = (n+1) . . .2n.
This can be rewritten as

max
ν

νTh

s.t. ‖νT ‖∞ ≤ 1

AT ν = 0. 2

In the next section, we summarize the results obtained
so far and establish the connection between the ℓ0- and
ℓ1-optimal control problem.
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6. THE ℓ1-OPTIMAL CONTROL PROBLEM

In Khammash (2000) the ℓ1-optimal control problem is
formulated as follows

µ1 = inf
q∈ℓ1

‖h− u ∗ q ∗ v‖1.

This problem has the same structure as Problem (4),
with the only difference that the minimization takes place
in ℓ1. Reordering the convolution terms as shown in
(Khammash, 2000) leads to the optimization problem

µ1 = inf
q∈ℓ1

‖{h(k)− 〈pk, q〉}‖ℓ1, (15)

which has the same structure as (5). In the same way as
shown for the ℓ0-optimal control problem, this problem
can also be rewritten as

min
x

‖z‖1 (16a)

s.t. h−Ax = z, (16b)

where h = [h(k)], Ax = [〈pk, q〉] and x = q. For finite k the
results of Section 5 apply and consequently the proposed
ℓ0-optimal control problem is related to the ℓ1-optimal
control problem by Lagrangian duality. Summarizing, this
explains why ℓ1-optimal controlled systems have sparse
impulse responses.

In contrast to the ℓ0-optimal control problem, Problem
(15) is a infinite dimensional problem and cannot be trans-
formed into an equivalent finite dimensional problem. To
tackle this numerically, the scaled q-method was intro-
duced in Khammash (2000). Therefore, first the problem
is rewritten as

min
q∈ℓ1

max{‖h− r‖1, α‖q‖1}

s.t. r = u ∗ q ∗ v,

and lower and upper bounds can be computed.
A lower bound for µ

N
(α):

µ
N
(α) = min

q∈ℓ1
max{‖h− r‖1, α‖q‖1}

s.t. PN(r) = PN (u ∗ q ∗ v)

A upper upper bound for µ̄N (α):

µ̄N (α) = min
q∈ℓ1

max{‖h− r‖1, α‖q‖1}

s.t. r = u ∗ PN (q) ∗ v

This allows to compute ℓ1-optimal controllers and delivers
the convex relaxation for suboptimal ℓ0-controllers in
terms of Lagrangian duality.

7. CONCLUSIONS

We introduced the ℓ0-system gain for discrete-time LTI
systems as a natural extension of the notion of sparsity
from signals to systems. We could show that the ℓ0-
system gain is characterized by the number of non-zero
entries of the impulse response. It was also shown that
the ℓ1-optimal control problem is the convex Lagrangian
relaxation of the ℓ0-optimal control problem. With this
the observation of sparse optimal closed loop responses
in ℓ1-optimal control can be explained. While this work
is motivated by the attempt to introduce a notion of
sparsity for systems and by explaining the sparse response
of ℓ1-optimal controllers, it is hoped that an ℓ0-system
gain may also lead to new approaches in systems analysis

and controller design. Ongoing research deals with the
design of finite impulse response filters with minimum
number of elements in the impulse response and the
construction of sparse channels. Especially in network
controlled systems ℓ0-optimal control might be of interest
since sparse signals often translate in low data rates. On
the more theoretical side, future work should include the
extension to multivariable systems as well as robustness
issues.

Appendix A. PROOFS

Proof. [Lemma 3] The proof is given by contradiction.
The solution set of (10) and the solution set of

min
x

c‖x‖0, c > 0 (A.1a)

s.t. Ax = b. (A.1b)

are identical. Let x∗ be an optimal solution of (10) and
x̃∗ be an optimal solution of (11) with ‖x∗‖0 < ‖x̃∗‖0. By
optimality it follows

c‖x∗‖0 + ‖x∗‖1 > c‖x̃∗‖0 + ‖x̃∗‖1 (A.2a)

‖x∗‖1 > c(‖x̃∗‖0 − ‖x∗‖0
︸ ︷︷ ︸

≥1

) + ‖x̃∗‖1. (A.2b)

Since x∗ is finite and independent of c, i.e. x∗ is a solution
of (10) (and (A.1)) we obtain a contradiction in (A.2b) for
c sufficiently large. Finally, ‖x∗‖0 > ‖x̃∗‖0 contradicts the
assumption of optimality, since then, ‖x̃∗‖0 would be the
optimal solution to (10). Therefore ‖x∗‖0 = ‖x̃∗‖0. 2

Proof. [Lemma 4] Let ai denote the ith column of A. The
Lagrangian is given by

L(x, ν) = c‖x‖0 + ‖x‖1 + νT (b −Ax)

= c

n∑

i=1

|sign(xi)|+
n∑

i=1

|xi|+ νT b−
n∑

i=1

(νTai)xi

=

n∑

i=1

(
c|sign(xi)|+ |xi| − (νT ai)xi

)
+ νT b.

The Lagrange function is

g(ν) = min
x

L(x, ν)

=

{
−∞ for |νTai| > 1 for some i

νT b for |νTai| ≤ 1 for all i.

This follows from the fact that if |νT ai| ≤ 1 then

α(xi) = c|sign(xi)|+ |xi| − (νT ai)xi

is positive definite (α(0) = 0, α(xi) ≥ 0), and if |νT ai| > 1,
then α(ρ(νT ai)) → −∞ for ρ → ∞. The dual problem is
then as follows

max
ν

νT b

s.t. ‖νTA‖∞ ≤ 1. 2
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