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Abstract: This paper derives some necessary and sufficient conditions for linear time invariant
systems to have the negative imaginary property in both the single-input-single-output as well
as the multi-input-multi-output cases. The conditions for a system to be negative imaginary are
described in terms of spectral conditions obtained for a given transfer function matrix.
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1. INTRODUCTION

Positive real (PR) linear time invariant (LTI) systems and
passivity theory have been well researched in the control
theory literature; e.g., see Anderson and Vongpanitlerd
[1973], Brogliato et al. [2007]. However one of the draw-
backs of the PR theory is the requirement for the relative
degree of the system transfer function to be either zero
or one Brogliato et al. [2007]. This limits the application
of the positive real theory and it can not be applied to
applications such as those involving flexible structures
with collocated force actuators and position sensors; e.g.,
see Petersen and Lanzon [2010].

Lanzon and Petersen introduced a new class of linear sys-
tems in Lanzon and Petersen [2007, 2008] called negative
imaginary (NI) systems. In the single-input single-output
(SISO) case, such systems are defined by considering the
properties of the imaginary part of a transfer function
G(s) = D + C(sI − A)−1B, where G(s) belongs to the
set of real-rational stable transfer functions. This work
was extended by Xiong et. al. in Xiong et al. [2009a,b,
2010] by allowing for simple poles on the imaginary axis
of the complex plane except at the origin. Furthermore, NI
controller synthesis has also been discussed in Lanzon and
Petersen [2007, 2008]. A feature of NI systems is that they
do not have the same restrictions on the relative degree
as PR transfer function matrices and can be applied to a
different range of applications including flexible structures
with collocated force actuators and position sensors; e.g.,
see Petersen and Lanzon [2010].

⋆ This work was supported by the Australian Research Council.
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One topic of interest in the theory of PR systems has
been to test for the positive realness of a given transfer
function matrix; e.g., see Wen [1988], Bai and Freund
[2000], Gao and Zhou [2003], Shorten and Narendra [2003],
Shorten et al. [2008b]. An efficient method to test for
the positive realness of a proper transfer function matrix
G(s) = C(sI − A)−1B + D with D + DT > 0 is to check
the eigenvalues of its corresponding Hamiltonian matrix
Wen [1988], Bai and Freund [2000], Gao and Zhou [2003].
However, this method fails when D + DT is singular.
Shorten et. al., propose strict spectral conditions to test
the positive realness of a given transfer function matrix
in the case in which D + DT is singular for both the
SISO Shorten and King [2004] as well as multi-input
multi-output (MIMO) cases Shorten et al. [2008a]. In this
paper, we extend the ideas in Shorten et al. [2008a] to
test if a MIMO transfer function matrix is NI. This is
achieved by checking the eigenvalues of a Hamiltonian
matrix associated with the transfer function matrix under
consideration. We also present an alternative method to
check whether a given transfer function matrix is NI in
the SISO case, which is a modification of the spectral
method proposed in Shorten and King [2004] for PR
systems. These results may be useful in both the analysis
of NI systems, and in the synthesis of NI controllers using
optimization techniques.

The remainder of the paper is organized as follows: Section
2 introduces the concept of positive real and negative
imaginary systems and presents a relationship between
them. Section 3 describes the main results of the paper,
discusses the construction of the Hamiltonian matrix, and
provides conditions under which a given system transfer
function matrix is NI for both MIMO as well as SISO
systems. A numerical example is presented in Section 4
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and finally, the paper is concluded with remarks and future
work outlined in Section 5.

2. PRELIMINARIES

In this section, we introduce the concept of PR and
NI systems in terms of previously established definitions
and lemmas. We also present a lemma describing the
relationship between PR and NI systems which will be
used in deriving spectral conditions for NI systems in
Section 3.

2.1 Positive Real Systems

The definition of PR systems is motivated by the study
of linear electric circuits composed of resistors, capacitors,
and inductors. The same definition applies for analogous
mechanical and hydraulic systems. This idea can be ex-
tended to study electric circuits with nonlinear passive
components and magnetic couplings. Here, we present
definitions and a lemma describing PR systems in terms
of their transfer function matrix. For a detailed discussion
on PR systems, see Anderson and Vongpanitlerd [1973],
Brogliato et al. [2007] and references therein.

Definition 1. A transfer function f(s) is said to be positive
real if:

1. f(s) is analytic in Re[s] > 0.
2. Re(f(s)) ≥ 0 for all Re[s] > 0.
3. f(s) is real for positive real s.

Definition 2. A square transfer function matrix F (s) is
positive real if:

1. F (s) has no pole in Re[s] > 0.
2. F (s) is real for all positive real s.
3. F (s) + F (s)∗ ≥ 0 for all Re [s] > 0.

Here F (s)∗ denotes the complex conjugate transpose of
F (s).

The Hamiltonian matrix provides a convenient method for
checking whether or not a given transfer function matrix
is PR Shorten et al. [2008b]. The following lemma describe
the relationship between the transfer function matrix F (s)
and the corresponding Hamiltonian matrix N . Consider an
LTI system with the state-space representation,

ẋ(t) = Ax(t) + Bu(t), (1)

y(t) = Cx(t) + Du(t), (2)

where A ∈ R
n×n, B ∈ R

n×m, C ∈ R
m×n,D ∈ R

m×m. The
corresponding Hamiltonian matrix is given by,

N =

[
−A + BV −1C BV −1BT

−CT V −1C AT − CT V −1BT

]
,

where V = D + DT is assumed to be non-singular.

Lemma 1. Let Ω be the distinct set of frequencies for
which det [F (jω) + F (jω)∗] = 0, with the elements of
Ω = {ω1, ω2, . . . , ωk} listed in strictly increasing order.
These frequencies are the eigenvalues of the Hamiltonian
matrix N that are on the imaginary axis. Then F (s) is PR
if and only if:

1. N has no eigenvalues on the imaginary axis with odd
multiplicity.

2. F (jηi)+F (jηi)
∗ has only positive real eigenvalues for

all ηi = (ωi+ωi+1)
2 , i ∈ {1, k − 1}.

Proof. See Shorten et al. [2008b].

�

2.2 Negative Imaginary Systems

Definition 3. Lanzon and Petersen [2007, 2008], Xiong
et al. [2009a] A square transfer function matrix G(s) is
NI if the following conditions are satisfied:

1. G(s) has no pole at the origin and in Re[s] > 0.
2. For all ω > 0, such that jω is not a pole of G(s), and

j (G(jω) − G(jω)∗) ≥ 0.
3. If jω0, is a pole of G(jω), it is at most a simple pole

and the residue matrix K0 = lims→jω0
(s− jω0)sG(s)

is positive semidefinite Hermitian.

2.3 Relationship between Negative Imaginary and Positive
Real Systems

Since the theory of PR systems is well-researched, it is
useful to establish a relationship between PR and NI
systems to further develop the theory for NI systems.
The following lemma Xiong et al. [2009a] provides one
such relationship which will be used to derive the spectral
conditions for NI systems in Section 3.

Lemma 2. Given a real rational strictly proper transfer
function matrix G(s) with minimal state space realization[

A B

C D

]
and, define the transfer function matrix G̃(s) =

G(s) − D. The transfer function matrix G(s) is negative
imaginary if and only if,

(1) G(s) has no poles at the origin.

(2) The transfer function matrix F (s) = sG̃(s) is positive
real.

Proof. See Xiong et al. [2009a].

�

Remark 1. The first condition in Lemma 2 is required to
avoid a pole zero cancellation.

3. MAIN RESULTS

As mentioned earlier, the Hamiltonian matrix provides a
convenient method for checking whether or not a given
transfer function matrix is PR. In this section, we use
the Hamiltonian matrix to determine spectral conditions
for the NI property in the MIMO case. Indeed, this
Hamiltonian method can be employed in the SISO case
as well. However, as an alternative approach, we modify
the results in Shorten and King [2004] for PR systems to
determine spectral conditions for the NI property of SISO
LTI systems.

3.1 MIMO Systems

Theorem 1. Consider an LTI system with minimal state-
space realization (1)-(2). Also, suppose A is a Hurwitz
matrix, Q = CB + BT CT > 0, and D = DT .
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The transfer function matrix G(s) = C(sI − A)−1B + D
is NI if and only if the following conditions are satisfied:

1. The Hamiltonian matrix,

N =

[
−A + BQ−1CA BQ−1BT

−AT CT Q−1CA AT − AT CT Q−1BT

]
(3)

has no pure imaginary eigenvalues with odd multi-
plicity.

2. jηi (G(jηi) − G(jηi)
∗) has only positive real eigen-

values for all ηi = (ωi+ωi+1)
2 , i ∈ {1, k − 1}, where

ωi ∈ Ω, and Ω = {ω1, ω2, . . . , ωk} is the set of fre-
quencies listed in strictly increasing order, such that
det [F (jωi) + F (jωi)

∗] = 0. Here, F (s) is defined as
in Lemma 2.

Proof. Suppose G(s) =

[
A B

C D

]
is NI. Then

G̃(s) = G(s) − D =

[
A B

C 0

]
(4)

is also NI (e.g., see Lanzon and Petersen [2007, 2008]). As

in Lemma 2, F (s) = sG̃(s). Then a state space realization

of F (s) is given by

[
A B

C̃ D̃

]
, where,

C̃ = CA, D̃ = CB (5)

and it follows from Lemma 2 that F (s) is PR with

D̃ + D̃T > 0. Also Lemma 1 implies that the following
conditions are satisfied:

(i) The Hamiltonian matrix,

N =

[
−A + B(D̃ + D̃T )−1C̃ B(D̃ + D̃T )−1BT

−C̃T (D̃ + D̃T )−1C̃ AT − C̃T (D̃ + D̃T )−1BT

]

has no pure imaginary eigenvalues with odd multiplicity.
(ii) F (jηi)+F (jηi)

∗ has only positive real eigenvalues for

all ηi = (ωi+ωi+1)
2 , i ∈ {1, k − 1}.

By substituting for C̃ and D̃ from (5) into the Hamiltonian
(6) we get,

N =

[
−A + BQ−1CA BQ−1BT

−AT CT Q−1CA AT − AT CT Q−1BT

]

which has no pure imaginary eigenvalues with odd multi-
plicity. Also, from condition (ii) it follows that F (jηi) +
F (jηi)

∗ = jηi (G(jηi) − G(jηi)
∗), has only positive real

eigenvalues for all ηi = (wi+wi+1)
2 , i ∈ {1, k − 1}. This

proves the necessity part of the theorem.

In order to prove the sufficiency part of the theorem, sup-
pose N has no pure imaginary eigenvalues with odd multi-
plicity. Also, suppose A is Hurwitz, jηi (G(jηi) − G(jηi)

∗)

has only positive real eigenvalues for all ηi = (ωi+ωi+1)
2 ,

i ∈ {1, k−1}, and CB +BT CT > 0. Then using Lemma 1

it follows that F (s) = sG̃(s) is PR, where G̃(s) is defined
as in (4). Furthermore, Lemma 2 implies G(s) is NI. This
completes the proof.

�

Special Case: Now, consider the case in which CB +
BT CT is singular. Here, the Hamiltonian method needs

to be modified in order to give the spectral conditions for
the NI property. To this effect, we consider the following
result and observation from Shorten et al. [2008a].

Lemma 3. Consider the transfer function matrix F (s) =

C̃(sI − A)−1B + D̃ with D̃ + D̃T singular and F (0) +
F (0)∗ > 0. Then the transfer function matrix F (s) is PR
if and only if the following conditions are satisfied:

1. The Hamiltonian matrix

N1 =

[
−A1 + B1V

−1
1 C̃1 B1V

−1
1 BT

1

−C̃T
1 V −1

1 C̃1 AT
1 − C̃T

1 V −1
1 BT

1

]

has no pure imaginary eigenvalues with odd multi-
plicity.

2. F (jηi)+F (jηi)
∗ has only positive real eigenvalues for

all ηi = (ωi+ωi+1)
2 , i ∈ {1, k − 1}.

Here A1 = A−1, B1 = −A−1B, C̃1 = C̃A−1, D̃1 = D̃ −
C̃A−1B and V1 = D̃1 + D̃T

1 .

Proof. This result follows from Theorem 3 and Theorem
4 in Shorten et al. [2008a].

�

Observation 1. Shorten et al. [2008a] Let Σ denote the
locus of eigenvalues of the matrix (F (jω) + F (jω)∗), for
ω ∈ [−∞,∞], and let ΣT denote the locus of eigenvalues

of the matrix
(
F̃ (jδ) + F̃ (jδ)∗

)
for δ ∈ [−∞,∞], with

δ = ω − ω0, and F̃ (jδ) = F (jδ + jω0). Then Σ and ΣT

coincide.

Note that,

F̃ (jδ) = F (jδ + jω0) = C̃((jδ + jω0) I − A)−1B + D̃,

= C̃(jδI − Ã)−1B + D̃,

where Ã = A − jω0I.

Now consider the following result:

Theorem 2. Consider an LTI system with minimal state-
space realization (1)-(2). Also, suppose A is a Hurwitz ma-
trix, CB+BT CT = 0, D = DT and det[F (jω) + F (jω)∗] 6=
0 for some ω ∈ R.

Then, the transfer function matrix G(s) = C(sI−A)−1B+
D is NI if and only if the following conditions are satisfied:

(1) The Hamiltonian matrix

Ñ =

[
−Ã1 + B1V

−1
2 C̃1 B1V

−1
2 BT

1

−C̃T
1 V −1

2 C̃1 ÃT
1 − C̃T

1 V −1
2 BT

1

]

has no pure imaginary eigenvalues with odd multi-
plicity. Here D̃2 = D̃ − C̃Ã−1B, V2 = D̃2 + D̃T

2 and

Ã1 = Ã−1.
(2) jηi (G(jηi) − G(jηi)

∗) has only positive real eigen-

values for all ηi = (ωi+ωi+1)
2 , i ∈ {1, k − 1}, where

ωi ∈ Ω, and Ω = {ω1, ω2, . . . , ωk} is the set of fre-
quencies listed in strictly increasing order, such that
det [F (jωi) + F (jωi)

∗] = 0. Here F (s) is defined as in
Lemma 2.

Proof. Suppose that G(s) is NI. It follows from Lemma
2 that F (s) is PR which implies from Observation 1 that

F̃ (s) is PR. Also, the case that det [F (jω) + F (jω)∗] 6= 0
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for some ω ∈ R, means that there must exist an ω0 ∈ R

such that,
F (jω0) + F (jω0)

∗ > 0

and it follows from the definition of F̃ (jδ) that F̃ (0) +

F̃ (0)∗ > 0.

Now, since F̃ (s) is PR with F̃ (0) + F̃ (0)∗ > 0 it follows
from Lemma 3 that the following conditions are satisfied:

1. The Hamiltonian matrix

Ñ =

[
−Ã1 + B1V

−1
2 C̃1 B1V

−1
2 BT

1

−C̃T
1 V −1

2 C̃1 ÃT
1 − C̃T

1 V −1
2 BT

1

]

has no pure imaginary eigenvalues with odd multi-
plicity.

2. jηi (G(jηi) − G(jηi)
∗) has only positive real eigenval-

ues for all ηi = (ωi+ωi+1)
2 , i ∈ {1, k − 1}.

On the other hand, suppose that conditions 1 and 2 are

satisfied, it follows from Lemma 3 that F̃ (s) is PR, which
implies from Observation 1 that F (s) is PR. Hence, by
using Lemma 2 we conclude that G(s) is NI.

�

3.2 SISO systems

In this section, we consider spectral conditions for the NI
property in the case of SISO systems.

Assumption 1. Let A ∈ R
n×n, B ∈ R

n×1, C ∈ R
1×n,D ∈

R, and suppose the transfer function G(s) = C(sI −
A)−1B + D has all of its poles and zeros in the closed left
half of the complex plane excluding poles at the origin.
Also, any pole on the imaginary axis is assumed to be
simple.

Theorem 3. The SISO transfer function G(s) = C(sI −

A)−1B + D with

[
A B

C D

]
be a minimal state space real-

ization, CB > 0, and satisfying Assumption 1 is NI if and
only if the following conditions are satisfied:

1. The matrix (I − 1
CB

BC)A2 has no eigenvalues of odd
(algebraic) multiplicity on the open negative real axis.

2. All residues of F (s) = s (G(s) − D) corresponding to
poles on the imaginary axis are positive.

Proof. Suppose G(s) is NI, then it follows from Lemma
2 that F (s) is PR. Also, we have:

2 Re [F (jω)]

= (F (jω) + F (jω)∗),

= CA (jωI − A)
−1

B + CA (−jωI − A)
−1

B + 2CB,

= CA((jωI − A)
−1

+ (−jωI − A)
−1

)B + 2CB,

= 2CB − 2CA2
(
ω2I + A2

)
−1

B,

= 2CB

(
1 −

1

CB
CA2

(
ω2I + A2

)
−1

B

)
. (6)

Furthermore,

( jωI − A)−1 + (−jωI − A)
−1

= (jωI − A)
−1

[I + (jωI − A) (−jωI − A)
−1

],

= (jωI − A)
−1

[(−jωI − A) + (jωI − A)] (−jωI − A)
−1

,

= (jωI − A)
−1

[−2A] (−jωI − A)
−1

,

= [−2A] (jωI − A)
−1

(−jωI − A)
−1

,

= [−2A] [(jωI − A) (−jωI − A)]
−1

,

= [−2A]
[(
−j2w2I + A2

)]
−1

,

= [−2A]
[(

ω2I + A2
)]

−1
.

By defining vT = −1
CB

CA2, u =
(
ω2I + A2

)
−1

B and using

the identity det[I +uvT ] = 1+vT u Kailath [1980], we get,

Re [F (jω)] = CB det

(
1 −

1

CB
CA2

(
ω2I + A2

)
−1

B

)

= CB
det

[
w2I +

(
I − 1

CB
BC

)
A2

]

det[w2I + A2]
≥ 0. (7)

Indeed, det[ω2I + A2] = |det[jωI + A]|2 ≥ 0, which
implies det

[
ω2I +

(
I − 1

CB
BC

)
A2

]
can change sign if and

only if −ω2 is an eigenvalue of
(
I − 1

CB
BC

)
A2 with odd

(algebraic) multiplicity. This proves Condition 1 in the
theorem. Since G(s) is NI, it follows from Lemma 2 that
F (s) is PR and hence Condition 2 is satisfied.

On the other hand, if Conditions 1 and 2 in the theorem
are satisfied, this implies that Re [F (jω)] does not change
sign along the imaginary axis and is positive. This means
F (s) is PR which from Lemma 2 implies that G(s) is NI.

�

4. NUMERICAL EXAMPLE

Consider a system with transfer function

G(s) =
s3 + 3s2 + 8s + 10

2s4 + 7s3 + 17s2 + 2s + 1
(8)

whose minimal state-space realization is given by the
matrices ,

A =




−3.500 −2.125 −0.2500 −0.25000

4.000 0 0 0

0 1.000 0 0

0 0 0.500 0


 ; B =




2

0

0

0




C = [0.2500 0.18750 0.500 1.2500] ; D = 0. (9)

For the transfer function in (8) to be NI, it should satisfy
Conditions 1 and 2 from Theorem 1. The Hamiltonian
matrix of the above state-space system computed using
(3) has the following eigenvalues,

[1.1254 ± 2.08836j,−1.1254 ± 2.08836j,±0.4352455, 0, 0],

none of which are pure imaginary eigenvalues with odd
multiplicity. Thus Condition 1 in Theorem 1 is satisfied.

In order to prove Condition 2 in Theorem 1, we compute
the distinct set of frequencies Ω at which det[F (jω) +
F (jω)∗] = 0. For F (s) = sG(s), this gives Ω = {}. Hence,

jη (G(jη) − G(jη)∗) > 0, (10)

for all η ∈ (0,∞). This implies G(s) in (8) is NI. To verify
this fact, a plot of the imaginary part of G(jω) is shown
in Fig. 1 which verifies that G(s) is NI.

5. CONCLUSION

In this paper some necessary and sufficient conditions were
presented to check for the negative imaginary property of
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Fig. 1. Plot of the imaginary part of the transfer function
G(jω) for example 2.

an LTI system. Results were presented for both SISO as
well as MIMO cases, by extending to negative imaginary
systems the results concerning spectral conditions for
positive real systems proposed by Shorten et. al.,. A
numerical example was provided to support the results
in the paper. As a note for future work, the results in the
paper can be used in the synthesis of NI controllers for a
given strictly NI plant.
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