Distributed Model Predictive Control and Estimation of Large-Scale Multi-Rate Systems

Samira Roshany-Yamchi∗ Rudy R. Negenborn**
Marcin Cychowski∗ Bart De Schutter*** Joe Connell∗
Kieran Delaney∗

* NIMBUS Centre, Cork Institute of Technology, Cork, Ireland,
(e-mail: {samira.roshany,joe.connell,kieran.delaney}@cit.ie).
** Department of Marine and Transport Technology,
Delft University of Technology, Delft, The Netherlands,
(e-mail: r.r.negenborn@tudelft.nl).
*** Delft Center for Systems and Control,
Delft University of Technology, Delft, The Netherlands,
(e-mail: b.deschutter@tudelft.nl).

Abstract: In this paper, we propose a new method for control of large-scale multi-rate systems with linear dynamics that are coupled via inputs. These systems are multi-rate systems in the sense that either output measurements or input updates are not available at certain sampling times. Such systems can arise, e.g., when the number of sensors is less than the number of variables to be controlled, or when measurements of outputs cannot be completed simultaneously because of applicational limitations. The multi-rate nature gives rise to lack of information, which will cause uncertainty in the system’s performance. A distributed model predictive control (MPC) approach based on Nash game theory is proposed to control multi-agent multi-rate systems in which multiple control agents each determine actions for their own parts of the system. Via communication, the agents can in a cooperative way take one another’s actions into account. To compensate for the information loss due to the multi-rate nature of the systems under study, a distributed Kalman Filter is proposed to provide the optimal estimation of the missing information. Using simulation studies on a distillation column the added value of the proposed distributed MPC and Kalman Filter method is illustrated in comparison with a centralized MPC with centralized Kalman Filter, and a distributed MPC method with a fully decentralized (i.e., no communication) Kalman Filter.

Keywords: Distributed Control; Kalman Filter; Predictive Control; Nash Game.

1. INTRODUCTION

Economical and technological demands motivate the development of large-scale plants such as process plants, manufacturing systems, and satellite orbit formations with low complexity and high performance accuracy. Large-scale systems consist of many subsystems that interact. These systems have to be controlled typically. Model Predictive Control (MPC) is a well-established method that can handle constraints and is relatively easy to tune. However, centralized MPC is impractical for controlling large-scale systems including several interacting subsystems and requires significant computation. Many distributed MPC methods have been developed by researchers to cope with large-scale control problems. Examples include the work by Al-Gherwi et al. (2010); Li et al. (2005); Mukaidani et al. (2010). Architectures for distributed MPC have extensively been reviewed by Scattolini (2009). In this paper, we propose a novel control method for multi-rate sampled linear systems that uses distributed MPC. In multi-rate plants, either the measurements are available less frequently or the control moves are made at a lower rate. This kind of systems can be seen in many industrial applications. Scattolini and Schiavoni (1995); Embiru and Fontes (2006); Gopinath et al. (1994); Ohshima et al. (1994) illustrate practical situations in which measurements of process variables and input updates occur at different rates. For instance, they illustrate that in the process industry even when quality variables, such as, e.g., a product concentration or the average molecular
weight distribution of a polymerization process, are measured on-line, time delays involved in the measurements are significantly large when compared to other process measurements. On the other hand in some biomedical applications (Gopinath et al., 1994) the input injection rate is slower than the output measurement, e.g., in some drug infusion systems, the drug injection to the patient happens less frequently than the body symptom’s measurements such as blood pressure, body temperature, etc. Our aim is to develop a generalized scheme that covers both of these aspects for large-scale systems. Lee et al. (1992); Scattolini and Schiavoni (1995) developed a state space based multi-rate MPC scheme for the centralized case. In a distributed MPC architecture, the overall system is decomposed into a number of small subsystems. Each subsystem is controlled by a so-called agent, which solves its own, local optimization problem. We propose a new MPC control strategy for large-scale systems with multi-rateness in its subsystems. This means that each of the subsystems is multi-rate in inputs and/or outputs. The multi-rate control method that we have developed allows control moves to be made using state estimates from a distributed Kalman Filter. The efficiency of this method is illustrated by comparing it to other MPC schemes for high purity distillation column model developed by Skogestad et al. (1988).

2. STATE-SPACE REPRESENTATION

Consider distributed MPC of plants with linear dynamics whose centralized nominal model is decomposed into m subsystems. Let t be the global discrete-time index for the system under control. The following augmented model can be derived for a distributed system with input coupling:

\[
x_i(t+1) = A_i x_i(t) + B_{ii} \Delta u_i(t) + D_i \nu_i(t) + \sum_{j=1 \atop j \neq i}^m B_{ij} \Delta u_j(t)
\]

where for each subsystem \(i\), \(x_i\) and \(y_i\) denote the state and output variables, respectively, \(\nu_i\) and \(z_i\) are the state and measurement noise sequences, respectively, and \(A_i, B_{ii}, B_{ij}, D_i\) and \(C_i\) are matrices of appropriate dimensions. Variable \(\Delta u_i(t)\) is the multi-rate input signal which is injected into the subsystems at each sampling time. As it can be seen in (1) subsystems are coupled through inputs only \((\Delta u_i(t))\), which restricts the use to linear plants with block diagonal matrix \(A_i\) when the plant under control is in continuous-time form. Assume that the sampling instants for the system vary as \(t = 1, 2, \ldots, T_f\), where \(T_f\) is the final sampling time. We follow a strategy similar to Scattolini and Schiavoni (1995) to implement multi-rate measurement or input updating mechanisms for subsystem \(i\). In a multi-rate output setting, the output vector \(y_i(t)\) of subsystem \(i\) can be measured every \(T_{u_i}\) units, where \(T_{u_i} > 0\). Define the output switching function for subsystems \(i\), \(\gamma_{ij}\), for \(j = 1, 2, \ldots, q_i\) with \(q_i\) being the number of outputs of subsystem \(i\), as follows:

\[
\gamma_{ij}(t) = \begin{cases} 1 & \text{if } t = \tau T_{u_j} \\ 0 & \text{otherwise} \end{cases}
\]

where \(\tau\) is an integer. The following multi-rate output vector \(\varphi_i(t)\) can now be defined:

\[
\varphi_i(t) = \Upsilon_i(t) y_i(t),
\]

where

\[
\Upsilon_i(t) = \text{diag}[\gamma_{i1}(t) \gamma_{i2}(t) \ldots \gamma_{iq_i}(t)].
\]

In a multi-rate input setting, the input vector \(u_i(t)\) of subsystem \(i\) is updated every \(T_{u_i}\) units, where \(T_{u_i} > 0\). Introduce the input switching function \(\mu_{ij}\) for \(j = 1, 2, \ldots, l_i\) with \(l_i\) being the number of inputs of subsystem \(i\). Define the inputs holding mechanism as:

\[
\mu_{ij}(t) = \begin{cases} 1 & \text{if } t = \tau T_{u_j} \\ 0 & \text{otherwise} \end{cases}
\]

where \(\tau\) is an integer. The following input matrix \(\Psi_i(t)\) for subsystem \(i\) can be defined:

\[
\Psi_i(t) = \text{diag}[\mu_{i1}(t) \mu_{i2}(t) \ldots \mu_{il_i}(t)].
\]

Now a new multi-rate control variable \(\theta_i(t)\) is introduced to implement the input administering mechanism:

\[
\Delta u_i(t) = \Psi_i(t) \theta_i(t).
\]

In fact the control input computed by the local MPC controller is \(\theta_i(t)\) and not \(\Delta u_i(t)\), however, in the multi-rate system the manipulated variables are defined as in (8) which includes both the computed inputs and the input updating matrix \(\Psi_i(t)\). After substituting (8) into (1) we get:

\[
x_i(t+1) = A_i x_i(t) + B_{ii} \Psi_i(t) \theta_i(t) + D_i \nu_i(t) + \sum_{j=1 \atop j \neq i}^m B_{ij} \Psi_j(t) \theta_j(t).
\]

As in multi-rate systems output measurements are made at specific sampling times, the output sampling mechanism needs to be included in the system’s model. To do that both sides of (2) are multiplied by the output sampling parameter \(\Upsilon_i(t)\):

\[
\Upsilon_i(t) y_i(t) = \Upsilon_i(t) C_i x_i(t) + \Upsilon_i(t) z_i(t).
\]

The left hand side of (10) can be replaced by (4), therefore:

\[
\varphi_i(t) = \Upsilon_i(t) C_i x_i(t) + \Upsilon_i(t) z_i(t).
\]

Equations (9) and (11) give the linear state-space representation of the distributed multi-rate system for \(i = 1, 2, \ldots, m\). Next, the distributed MPC problem will be formulated for such a system.

3. CONTROL PROBLEM FORMULATION

3.1 Nash-based Distributed MPC

In the distributed control structure, input coupling among subsystems is considered as given by (9). These subsystems communicate with one another to accomplish a global objective (see Fig. 1). One type of Distributed MPC based on Nash optimality has been investigated by Li et al. (2005); Al-Gherwi et al. (2010). In this approach, the agents communicate but they do not take a cooperative decision. The agents iterate to resolve their local optimization problem simultaneously and obtain their optimal solution (Li et al., 2005; Giovannini and Balderud, 2006). An initial guess for each agent is first given based on the solution found at the last sampling time. Then each agent checks if its terminal condition satisfies a user-defined threshold. This implies that the agents do not share information about the utility of each decision; agreement (Nash equilibrium)
among the agents is reached when neither of their solutions can be improved. The main advantage of this scheme is that the on-line optimization of a large-scale problem can be converted into several small-scale subproblems, thus reducing the computational complexity significantly while keeping satisfactory performance.

3.2 Computation

Consider a linear multi-rate system consisting of m subsystems and m control agents (9),(11). In Nash-based distributed MPC each control agent calculates the manipulated variable $\dot{\theta}_i(t)$ by minimizing its local cost function as follows:

$$
\min_{\theta_i(t), \theta_i(t+2), \ldots, \theta_i(t+N_c-1)} J_i(t) = \sum_{k=1}^{N_p} \| y_i(t+k) - y_i^0(t+k) \|^2_{Q_i} + \sum_{k=0}^{N_c-1} \| \theta_i(t+k) \|^2_{R_i},
$$

subject to $\theta_{i,\min} \leq \theta_i(t) \leq \theta_{i,\max}$, (13)

where $\theta_{i,\min}$ and $\theta_{i,\max}$ are the lower and upper limits for the inputs, respectively. Variable $y_i^0(t+k)$ is the reference value to be tracked by the predicted outputs. $Q_i \geq 0$ and $R_i > 0$ denote the weighting matrices and N_p and N_c are the prediction and control horizons, respectively. In order to solve the problem (12)–(13), first we substitute (9) into (11). Based on (9)–(11), the future state variables are calculated using the set of future control parameters. The matrices obtained can be written in a compact form as

$$
\dot{\theta}_i(t) = F_i \dot{x}_i(t) + \phi_i(t) \theta_i(t) + \Gamma_i \zeta_i(t) + \sum_{j=1}^{m} \phi_{ij}(t) \theta_j(t),
$$

with

$$
\dot{y}_i(t) = [y_i(t+1), \ldots, y_i(t+N_p)]^T,
\dot{\theta}_i(t) = [\theta_i(t), \theta_i(t+1), \ldots, \theta_i(t+N_c-1)]^T,
\zeta_i(t) = [v_i(t), v_i(t+1), \ldots, v_i(t+N_c-1)]^T,
F_i = [C_i A_i, C_i A_i^2, \ldots, C_i A_i^{N_c}]^T,
$$

$$
\phi_{ij}(t) = \begin{bmatrix}
C_i B_{ij} \Psi_j(t) & 0 & \cdots & 0 \\
C_i A_i B_{ij} \Psi_j(t) & \cdots & \cdots & \cdots \\
\vdots & \vdots & \ddots & \vdots \\
C_i A_i^{N_c-1} B_{ij} \Psi_j(t) + C_i A_i^{N_c-1} B_{ij} \Psi_j(t+N_c-1) & \cdots & \cdots & 0
\end{bmatrix},
$$

$$
\Gamma_i = \begin{bmatrix}
C_i D_i & 0 & \cdots & 0 \\
C_i A_i D_i & C_i D_i & \cdots & \cdots \\
\vdots & \vdots & \ddots & \vdots \\
C_i A_i^{N_c-1} D_i & C_i A_i^{N_c-2} D_i & \cdots & C_i A_i^{N_c-1} D_i
\end{bmatrix},
$$

Note that in (14), $\dot{\theta}_i(t)$ is used as the control input and the input sampling matrix $\Psi_j(t)$ is embedded in (16). In practice, the current state $x_i(t)$ is usually not available from measurements and a state observer needs to be used to reconstruct the full state vector. In this case, we replace $x_i(t)$ by its estimate $\hat{x}_i(t)$, hence

$$
\dot{\hat{y}}_i(t) = F_i \hat{x}_i(t) + \phi_i(t) \theta_i(t) + \Gamma_i \zeta_i(t) + \sum_{j=1}^{m} \phi_{ij}(t) \theta_j(t).
$$

If $y_i^0(t) = [y_i^0(t+1), y_i^0(t+2), \ldots, y_i^0(t+N_p)]^T$, the local optimization problem (12) for agent i can be reformulated as:

$$
\min_{\theta_i(t)} J_i(t) = \| \dot{y}_i(t) - y_i^0(t) \|^2_{Q_i} + \| \theta_i(t) \|^2_{R_i},
$$

subject to $\theta_{i,\min} \leq \theta_i(t) \leq \theta_{i,\max}$, (20)

where $\theta_{i,\min}$ and $\theta_{i,\max}$ are the lower and upper bounds for the inputs, respectively. Problem (19)–(20) is a quadratic programming problem which can be solved efficiently and reliably using standard off-the-shelf solvers. The Nash-based MPC algorithm for solving the control problem proceeds by allowing each subsystem/agent to optimise its objective function using its own control decision $\dot{\theta}_i(t)$ assuming that other subsystem’s solutions $\dot{\theta}_j(t)$ are known. Let $\theta_i^n(t)$ define the computed control input for subsystem i at iteration n $(n \geq 0)$. At each sampling time each agent makes an initial guess of its decision variables over the control horizon and broadcasts that to other agents:

$$
\theta_i^n(t) = [\theta_i^n(t), \theta_i^n(t+1), \ldots, \theta_i^n(t+N_c-1)]^T.
$$

Then, each agent solves its optimization problem (19)–(20) and gets its optimal solution $\theta_i^{n+1}(t)$. Next, all the agents compare the new solution $\theta_i^{n+1}(t)$ with the solution obtained at the previous iteration $\theta_i^n(t)$ and check the convergence condition:

$$
\| \theta_i^{n+1}(t) - \theta_i^n(t) \| \leq \epsilon,
$$

in which ϵ is the error accuracy. If the Nash optimal solution has been achieved, each subsystem does not change its decision $\theta_i(t)$ because it has achieved an equilibrium point of the coupling decision process (Giovannini and Baldered, 2006); otherwise the local cost function $J_i(t)$ will degrade. In the following section, a novel distributed Kalman Filter algorithm is proposed to provide optimal estimation $\hat{x}_i(t)$ of the state vector $x_i(t)$ while compensating for the inter-sampling information loss due to the multi-rate nature of the systems under study.
4. DISTRIBUTED KALMAN FILTER

Consider the linear model in (9)–(11). We want to use the available measurements \(\varphi_i \) to estimate the state of the system \(x_i \). We propose a linear optimal filter which is based on Kalman Filter for distributed systems. To understand the distributed Kalman Filter equations, let us consider the process noise \(v_i(t) \) to be discrete-time white noise for each subsystem \(i \). The following covariance matrix for each agent can hence be defined:

\[
E\{v_i(t)v_i^T(t)\} = S_{p_i}(t)
\]

where \(E[\cdot] \) denotes the expectation operator, \(S_{p_i}(t) \) represents the covariance matrix of the process noise. Consider measurement noise \(z_i(t) \) in (11) to be discrete-time white noise. The following covariance matrix for the measurement noise \(S_{m_i}(t) \) can be defined similarly:

\[
E\{z_i(t)z_i^T(t)\} = S_{m_i}(t).
\]

Let the states estimated by the distributed Kalman Filter for a multi-rate system be given by:

\[
\hat{x}_i(t + 1|t) = A_i\hat{x}_i(t|t) + B_i\Delta u_i(t) + L_i(t)[\varphi_i(t) - T_j(t)C_i\hat{x}_i(t|t - 1)] + \sum_{j=1 \atop j \neq i}^m [B_{ij}\Delta u_j(t)]
\]

\[
+ L_j(t)[\varphi_j(t) - T_j(t)C_j\hat{x}_j(t|t - 1)],
\]

where the terms \(L_i(t) \) and \(L_j(t) \) are referred to as the Kalman Gains. Variable \(L_i(t) \) is the Kalman gain which is made by neighbouring agents and can be different from \(\hat{L}_i(t) \). From (25) it is clear that local estimators share their gains and also estimated states to accomplish their estimation task. Substituting (11) into (25) and subtracting that from (9) we proceed to the next step to obtain the estimation error \(e_i(t + 1|t) = \hat{x}_i(t + 1|t) - \hat{x}_i(t + 1|t) \) at sampling time \(t \). The index \((t + 1|t)\) refers to the information at sampling time \(t \) given knowledge of the process prior to sampling time \(t \). Therefore,

\[
e_i(t + 1|t) = x_i(t + 1|t) - \hat{x}_i(t + 1|t) = \left[A_i - L_i(t)T_j(t)C_i \right]e_j(t) + \sum_{j=1 \atop j \neq i}^m \left[L_j(t)T_j(t)C_j \right]e_j(t)\]

\[
+ L_j(t)\left(T_j(t)x_j(t) - \hat{x}_j(t) \right).
\]

(26)

Now to initialize the estimator algorithm, consider \(E[x_i(0|0)] = \hat{x}_i(0|0) \) then \(E[e_i(t|t - 1)] = 0, \forall t \). This means we assume that the mean of the estimates should be equal to the mean of the expected value in the Kalman Filter design. In order to develop the Kalman Filter for the multi-rate and distributed case we define a covariance matrix \(S_i(t) \) where,

\[
S_i(t + 1) = E\{e_i(t + 1|t)e_i^T(t + 1|t)\}.
\]

By the properties of the vector covariance and expansion of the terms (Lee et al., 1992) we obtain the final form of the multi-rate distributed Kalman Filter as:

\[
S_i(t + 1) = A_iS_i(t)A_i^T + D_iS_{p_i}(t)D_i^T - A_iS_i(t)C_i^T\Omega_i^{-1}(t)T_i(t)C_iS_i(t)A_i^T
\]

\[
+ \sum_{j=1 \atop j \neq i}^m A_jS_j(t)C_j^T\Omega_j^{-1}(t)T_j(t)C_jS_j(t)A_j^T,
\]

(28)

with \(\Omega_i(t) \) and \(\Omega_j(t) \) positive definite and defined as:

\[
\Omega_i = T_i(t)C_iS_i(t)C_i^T T_i(t) + T_i(t)S_{m_i}(t)T_i(t)
\]

\[
+ [I_{q \times q} - T_i(t)]
\]

\[
\Omega_j = T_j(t)C_jS_j(t)C_j^T T_j(t) + T_j(t)S_{m_j}(t)T_j(t)
\]

\[
+ [I_{q \times q} - T_j(t)].
\]

(29)

(30)

It should be noted that (28) is an algebraic Ricatti equation. The solution of the Ricatti equation is found iteratively backwards in time by using (29) and (30). Then, the Kalman gains are computed as:

\[
L_i(t) = A_iS_i(t)C_i^T\Omega_i^{-1}(t),
\]

(31)

\[
L_j(t) = A_jS_j(t)C_j^T\Omega_j^{-1}(t).
\]

(32)

The reason for adding \([I_{q \times q} - T_i(t)]\) and \([I_{q \times q} - T_j(t)]\) to (29) and (30), respectively, is that in the process of inverting \(\Omega_i^{-1}(t) \) and \(\Omega_j^{-1}(t) \) for the Kalman gain equations (31) and (32), singularity may occur at those sampling times that we do not have output measurements \((T_i(t) = 0) \). Thus, to guarantee the non-singularity of \(\Omega_i^{-1}(t) \) and \(\Omega_j^{-1}(t) \) the extra terms \([I_{q \times q} - T_i(t)]\) and \([I_{q \times q} - T_j(t)]\) have been added to (29) and (30), respectively, in which \(I_{q \times q} \) is the identity matrix, (Scattolini and Schiavoni, 1995). The block diagonal matrix \([I_{q \times q} - T_i(t)]\) only adds non-zero terms to the scalar diagonal elements of \(\Omega_i(t) \) and \(\Omega_j(t) \) during the output sampling mechanism and in no way affects the predictor equation.

5. SIMULATION RESULTS

To illustrate the efficiency of the proposed method for solving distributed control problems, the example of the high purity distillation column studied as a benchmark for large-scale systems in Skogestad et al. (1988); Al-Gherwi et al. (2010) is considered. There, the outputs of the system, \(y_1 \) and \(y_2 \), are top and bottom product compositions, respectively, and the inputs \(u_1 \) and \(u_2 \) are reflux flowrate and boil-up, respectively. As the composition dynamics in this system are usually much slower than the flow dynamics the system can be considered as a multi-rate system. In particular, the following nominal state-space continuous-time model is considered:

\[
\begin{bmatrix}
\dot{x}_1 \\
\dot{x}_2
\end{bmatrix} = \begin{bmatrix}
-0.0133 & 0 \\
0 & -0.0133
\end{bmatrix} \begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}
\]

\[
+ \begin{bmatrix}
0.0117 & 0.0115 \\
0.0144 & 0.0146
\end{bmatrix} \begin{bmatrix}
u_1 \\
u_2
\end{bmatrix},
\]

(33)

\[
y = x.
\]

(34)

The inputs are constrained to \(-2 \leq u_1 \leq 2\) and \(-1 \leq u_2 \leq 2\). The continuous-time model is discretized with a sampling time of 1 min. The parameters used for simulation purposes are the same as the parameters used by Al-Gherwi et al. (2010): \(N_p = 20 \), \(N_c = 5 \) and \(Q = R = I \). The set-point value for the first subsystem switches between one and zero every 200 minutes and for the second

419
subsystem the set-point is zero. The nominal model is decomposed into two subsystems as follows: Subsystem 1:
\[\dot{x}_1 = -0.0133x_1 + 0.0117u_1 + 0.0115u_2 \]
\[y_1 = x_1 \]
Subsystem 2:
\[\dot{x}_2 = -0.0133x_2 + 0.0146u_1 + 0.0144u_2 \]
\[y_2 = x_2. \]

The process and measurement noises for both subsystems are zero mean white noise sequences with covariances \(S_{p_1}(t) = S_{p_2}(t) = S_{m_1}(t) = S_{m_2}(t) = 10^{-5}. \) The closed-loop performance was studied using centralized MPC, Nash-based MPC with a distributed Kalman Filter, and Nash-based MPC with a decentralized Kalman Filter for a multi-rate setting. The outputs and inputs for the asynchronous agents (agents in which both inputs sampling rate and outputs sampling rate are different) are depicted in Fig. 2. It can be seen from Fig. 2 that the proposed method in the presence of noise and input constraints represents tracking performance close to the centralized case. Moreover, the distributed Nash-based MPC with a decentralized Kalman Filter shows slower tracking in comparison with the centralized approach and the proposed method. In Fig. 3 and Fig. 4, two scenarios have been considered. In the first scenario the goal is to analyze the degradation of the performance due to an infrequent input sampling. From the simulation results in Fig. 3 it can be seen that performance does not degrade significantly even in a noisy process with lack of output measurements. In the second scenario the aim is to analyze the effect of infrequent inputs on the system performance. The simulation results for the second scenario are depicted in Fig. 4, which shows satisfactory performance in the presence of noise. From Fig. 4 it can be seen that the proposed method presents even better performance than the centralized case for the second subsystem’s output when the input sampling period increases. The main reason for this improvement with respect to the centralized scheme is that in the centralized case when the inputs are updated less frequently than the output measurements, the state computation at each sampling time cannot be accomplished properly because of the missing input injection in the inter-sampling times. However this problem does not emerge in the proposed method as the Kalman Filter corrects this fault by replacing the computed states with the estimated states. Table 1 gives the comparison of the costs computed by (19) as a mean over the complete simulation period. A comparison has been done between the three MPC schemes. The results of the analysis for the set-point tracking show better performance for the
Table 1. Simulation results and analysis of:

<table>
<thead>
<tr>
<th>Performance Evaluation - Cost Computation</th>
<th>Cent</th>
<th>Nash-DiKF</th>
<th>Nash-DeKF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-Rate</td>
<td>$T_{u_1} = 1$; $T_{u_2} = 1$; $T_{y_1} = 1$; $T_{y_2} = 1$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constrained</td>
<td>0.3752</td>
<td>0.5808</td>
<td>1.4025</td>
</tr>
<tr>
<td>Unconstrained</td>
<td>0.3063</td>
<td>0.5082</td>
<td>0.7756</td>
</tr>
<tr>
<td>Multi-Rate1</td>
<td>$T_{u_1} = 1$; $T_{y_1} = 1$; $T_{y_2} = 4$; $T_{y_2} = 9$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constrained</td>
<td>0.4955</td>
<td>0.6125</td>
<td>1.0461</td>
</tr>
<tr>
<td>Unconstrained</td>
<td>0.4332</td>
<td>0.5449</td>
<td>0.7956</td>
</tr>
<tr>
<td>Multi-Rate2</td>
<td>$T_{u_1} = 1$; $T_{y_1} = 1$; $T_{y_1} = 3$; $T_{y_2} = 9$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constrained</td>
<td>0.3573</td>
<td>0.5713</td>
<td>0.9079</td>
</tr>
<tr>
<td>Unconstrained</td>
<td>0.2713</td>
<td>0.5193</td>
<td>0.7666</td>
</tr>
<tr>
<td>Multi-Rate3</td>
<td>$T_{u_1} = 2$; $T_{u_2} = 3$; $T_{y_1} = 1$; $T_{y_2} = 1$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constrained</td>
<td>0.7570</td>
<td>0.6224</td>
<td>1.5659</td>
</tr>
<tr>
<td>Unconstrained</td>
<td>0.7022</td>
<td>0.5900</td>
<td>0.8435</td>
</tr>
</tbody>
</table>

6. CONCLUSIONS AND FUTURE RESEARCH

Distributed MPC via a Nash game has been studied for multi-rate sampled-data systems. A distributed Kalman Filter has been proposed to provide the state values for inter-sampling times. The proposed method has been compared with a centralized scheme and also with a decentralized Kalman Filter scheme through simulations. The simulation results illustrate the efficiency of our method. The simulation has been done in MATLAB for possible cases including slow and fast input samples as well as slow and fast output samples. The proposed scheme offers efficient tracking for constrained problems including both process and measurement noise. Future research includes the following topics:

- The presented method uses a communication-based optimization based on Nash Equilibrium (NE), which is non-cooperative. However, the best achievable performance is characterized by a Pareto set, which represents the set of optimal trade-offs among the competing controller objectives Venkat et al. (2006).
Further research is required to extend the proposed method for cooperative situations.

- A larger dimensional case study will be considered in future work, including heterogeneous dynamics.
- Different aspects of the proposed method such as stability, convergence and computational complexity will be analysed.

REFERENCES

