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9.1 Introduction

One of the defining changes in molecular biology over the lastdecade has been
the massive scaling up of its experimental techniques. The sequencing of the entire
genome of organisms, the determination of the expression level of genes in a cell by
means of DNA micro-arrays, and the identification of proteins and their interactions
by high-throughput proteomic methods have produced enormous amounts of data on
different aspects of the development and functioning of cells.

A consensus is now emerging among biologists that to exploitthese data to full
potential one needs to complement experimental results with formal models of bio-
chemical networks. Mathematical models that describe geneand protein interactions
in a precise and unambiguous manner can play an instrumentalrole in shaping the
future of biology. For example, mathematical models allow computer-based simula-
tion and analysis of biochemical networks. Suchin silico experiments can be used
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222 Stochastic Hybrid Modeling of Biochemical Processes

for massive and rapid verification or falsification of biological hypotheses, replacing
in certain cases costly and time-consuming in vitro orin vivo experiments. More-
over, in silico, in vitro and in vivo experiments can be used together in a feedback
arrangement: mathematical model predictions can assist inthe design ofin vitro and
in vivo experiments, the results of which can in turn be used to improve the fidelity
of the mathematical models.

The possibility of combining new experimental methods, sophisticated mathemat-
ical techniques, and increasingly powerful computers, hasgiven a new lease of life
to an idea as appealing as it is difficult to realize: understanding how the global
behavior of an organism emerges from the interactions between components at the
molecular level. Although this idea of systems biology has multiple aspects [23], an
ultimate challenge is the construction of a mathematical model of whole cells, that
will be able to simulatein silico the behavior of an organismin vivo.

In the last few decades, a large number of approaches for modeling molecular
interaction networks have been proposed. Motivated by the classification of [12],
one can divide the models available in the literature in two classes:

• Models with purely continuous dynamics, for example, models that describe
the evolution of concentrations of proteins, mRNAs, etc., in terms of ordinary
or partial differential equations.

• Models with purely discrete dynamics, for example, graph models of the inter-
dependencies in a regulatory network, Boolean networks andtheir extensions,
Bayesian networks, or Markov chain models.

Common sense and experimental evidence suggest that neither of these classes alone
is adequate for developing realistic models of molecular interaction networks. Time-
scale hierarchies cause biological processes to be more conveniently described as a
mixture of continuous and discrete phenomena. For example,continuous changes
in chemical concentrations or the environment of a cell often trigger discrete transi-
tions (such as the onset of mitosis, or cell differentiation) that in turn influence the
concentration dynamics. At the level of molecular interactions, the co-occurrence
of discrete and continuous dynamics is exemplified by the switch-like activation or
inhibition of gene expression by regulatory proteins.

The recognition that hybrid discrete-continuous dynamicscan play an important
role in biochemical systems has led a number of researchers to investigate how meth-
ods developed for hybrid systems in other areas (such as embedded computation and
air traffic management) can be extended to biological systems [17, 1, 13, 5, 3, 15]. It
is, however, fair to say that the realization of the potential of hybrid systems theory
in the context of biochemical system modeling is still for the future. In addition,
recently the observation that many biological processes involve considerable levels
of uncertainty has been gaining momentum [27, 22]. For example, experimental ob-
servations suggest that stochastic uncertainty may play a crucial role in enhancing
the robustness of biochemical processes [35], or may be behind the variability ob-
served in the behavior of certain organisms [36, 37]. Stochasticity is even observed
in fundamental processes such as the DNA replication itself[8, 26]. This has led
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researchers to attempt the development of stochastic hybrid models for certain bio-
chemical processes [20, 19], that aim to couple the advantages of stochastic analysis
with the generality of hybrid systems.

In this chapter we explore further stochastic, hybrid aspects in the modeling of
biochemical networks. We first survey briefly a framework formodeling stochastic
hybrid systems known as Piecewise Deterministic Markov Processes (PDMP; Sec-
tion 9.2). We then proceed to use this framework to capture the essence of two
biochemical processes: the production of subtilin by the bacteriumBachillus sub-
tilis (B. subtilis; Section 9.3), and the process of DNA replication in eukaryotic cells
(Section 9.4). The two models illustrate two different mechanisms through which
stochastic features manifest themselves in biochemical processes: the uncertainty
about switching genes “on” and “off” and uncertainty about the binding of protein
complexes on the DNA. We also discuss how these models can be coded in simu-
lation and present simulation results. The concluding section (Section 9.5) presents
directions for further research.

9.2 Overview of PDMP

Piecewise Deterministic Markov Processes (PDMP), introduced by Mark Davis
in [9, 10], are a class of continuous-time stochastic hybridprocesses which covers a
wide range of non-diffusion phenomena. They involve a hybrid state space, compris-
ing continuous and discrete states. The defining feature of autonomous PDMP is that
continuous motion is deterministic; between two consecutive transitions the contin-
uous state evolves according to an ordinary differential equation (ODE). Transitions
occur either when the state hits the state space boundary, orin the interior of the state
space, according to a generalized Poisson process. Whenever a transition occurs,
the hybrid state is reset instantaneously according to a probability distribution which
depends on the hybrid state before the transition, and the process is repeated. Here
we introduce formally PDMP following the notation of [6, 24]. Our treatment of
PDMP is adequate for this chapter, but glosses over some of the technical subtleties
introduced in [9, 10] to make the PDMP model as precise and general as possible.

9.2.1 Modeling Framework

Let Q be a countable set of discrete states, and letd(·) : Q → N andX(·) : Q →
R

d(·) be two maps assigning to each discrete stateq∈Q a continuous state dimension
d(q) and an open subsetX(q) ⊆ R

d(q). We call the set

D(Q,d,X) =
⋃

q∈Q

{q}×X(q) = {(q,x) | q∈ Q, x∈ X(q)}

the hybrid state space of the PDMP and denote by(q,x) ∈ D(Q,d,X) the hybrid
state. For simplicity, we use justD to denote the state space when theQ, d, andX
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are clear from the context. We denote the complement of the hybrid state space by

D
c =

⋃

q∈Q

{q}×X(q)c,

its closure by
D =

⋃

q∈Q

{q}×X(q),

and its boundary by
∂D =

⋃

q∈Q

{q}× ∂X(q) = D \D .

As usual,X(q)c denotes the complement,X(q) the closure, and∂X(q) the boundary
of the open setX(q) in R

d(q), and\ denotes set difference. LetB(D) denote the
smallestσ -algebra on∪q∈Q{q}×R

d(q) containing all sets of the form{q}×Aq with
Aq a Borel subset ofX(q).

We consider a parameterized family of vector fieldsf (q, ·) : R
d(q) → R

d(q), q∈ Q,
assigning to each hybrid state(q,x) a directionf (q,x) ∈ R

d(q). As usual, we define
the flow of f as the functionΦ(q, ·, ·) : R

d(q) ×R → R
d(q) such thatΦ(q,x,0) = x

and for allt ∈ R,
d
dt

Φ(q,x,t) = f (q,Φ(q,x,t)). (9.1)

Notice that we implicitly assume that the discrete stateq remains constant along
continuous evolution.

DEFINITION 9.1 A PDMP is a collection H = ((Q,d,X), f , Init ,λ ,R),
where

• Q is a countable set of discrete states;

• d(·) : Q→ N maps each q∈ Q to a continuous state space dimension;

• X(·) : Q→ R
d(.) maps each q∈ Q to an open subset X(q) of R

d(q);

• f (q, ·) : R
d(q) → R

d(q) is a family of vector fields parameterized by q∈ Q;

• Init(·) : B(D) → [0,1] is an initial probability measure on (D ,B(D));

• λ (·, ·) : D → R
+ is a transition rate function;

• R(·, ·, ·) : B(D)×D → [0,1] assigns to each (q,x) ∈D a measure R(·,q,x)
on (D ,B(D)).

To define the PDMP executions we introduce the notions of the exit time, t∗(·, ·) :
D → R

+ ∪{∞}, defined as

t∗(q,x) = inf {t > 0 | Φ(q,x,t) /∈ D} (9.2)
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and of the survival functionF(·, ·, ·) : D ×R
+ → [0,1],

F(q,x, t) =

{

e−
∫ t
0 λ (q,Φ(q,x,τ))dτ if t < t∗(q,x)

0 if t ≥ t∗(q,x).
(9.3)

With this notation, the executions of the PDMP can be thoughtof as being generated
by the following algorithm.

ALGORITHM 9.1 (Generation of PDMP executions)
set T = 0
extract D-valued random variable (q̂, x̂) according to Init(·)
while T < ∞

extract R
+-valued random variable T̂ such that P[T̂ > t] = F(q̂, x̂,t)

set q(t) = q̂ and x(t) = Φ(q̂, x̂,t −T) for all t ∈ [T,T + T̂)
if T̂ < ∞

extract D-valued random variable (q′,x′)
according to R((·, ·, q̂,Φ(q̂, x̂, T̂))

set (q̂, x̂) = (q′,x′)
end if
set T = T + T̂

end while

All random extractions in Algorithm 9.1 are assumed to be independent. To ensure
that the algorithm produces a well-defined stochastic process a number of assump-
tions are introduced in [10, 9].

ASSUMPTION 9.1 The PDMP satisfies the following assumptions:

(i) Init(Dc) = 0 and R(Dc,q,x) = 0 for all (q,x) ∈ D .

(ii) For all q∈Q, the set X(q)⊆R
d(q) is open and f (q, ·) is globally Lipschitz

continuous.

(iii) λ (·, ·) is measurable. For all (q,x) ∈ D there exists ε > 0 such that the
function t → λ (q,Φ(q,x,t)) is integrable for t ∈ [0,ε). For all A∈ B(D),
R(A,(·, ·)) is measurable.

(iv) The expected number of jumps in [0,t] is finite for all t < ∞.

Most of the assumptions are technical and are needed to ensure that the transition
kernels, the solutions of the differential equations, etc., are well defined. The last part
of the assumption deserves some closer scrutiny. This is thestochastic variant of the
non-Zeno assumption commonly imposed on hybrid systems. Itstates that “on the
average” only a finite number of discrete transitions can take place in any finite time
interval. While this assumption is generally true for real systems, it is easy to gener-
ate models that violate it due to modeling over-abstraction(see, for example, [21]).
Even if a model is not Zeno, establishing this this may be difficult [25].
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Under Assumption 9.1 it can be shown [10, 9] that Algorithm 9.1 defines a strong
Markov process, which is continuous from the right with leftlimits. Based on these
fundamental properties, [10, 9] proceed to completely characterize PDMP processes
through their generator, and then use the generator to show how one can compute
expectations, establish stability conditions and solve optimal control problems for
this class of stochastic hybrid systems.

9.2.2 Simulation

The properties of PDMP are in general rather difficult to study analytically. Ex-
plicit solutions for things like expectations are impossible to derive, except in very
special cases (see, for example, [11]). One therefore oftenresorts to numerical meth-
ods. For computing expectations, approximating distributions, etc., one of the most
popular is Monte Carlo simulation.

The simulation of PDMP models presents several challenges,due to the interac-
tion of discrete, continuous, and stochastic terms. Because the continuous dynamics
are deterministic, standard algorithms used for the simulation of continuous, de-
terministic systems are adequate for simulating the evolution between two discrete
transitions. The difficulties arise when the continuous evolution has to be interrupted
so that a discrete transition can be executed.

For forced transitions (when the state attempts to leaveD) one needs to detect
when the state,x, leaves an open set,X(q), along continuous evolution. This is
known as the event detection problem in the hybrid systems literature. Several al-
gorithms have been developed to deal with this problem (see for example [4]) and
have recently been included in standard simulation packages such as Dymola, Mat-
lab, or the Simulink package SimEvents. Roughly speaking, the idea is to code the
setX(q) using a function,g(q,x), of the state that changes sign at the boundary of
X(q). The simulation algorithm keeps track of the functiong(q,x(k)) at each step,
k, of the continuous simulation and proceeds normally as longasg(q,x(k)) does not
change sign between one step and the next; recall that in thiscaseq also does not
change. Ifg changes sign (say between stepk and stepk+ 1) the simulation halts,
a zero crossing algorithm is used to pinpoint the time at which the sign change took
place, the state at this time is computed, the event is “serviced,” and the simulation
resumes from the new state. Zero crossing (finding the precise state just before the
event) usually involves fitting a polynomial to a few values of g before and after the
event (say a spline throughg(q,x(k−1)), g(q,x(k)) andg(q,x(k+ 1))) and finding
its roots. Servicing the event (finding the state just after the event) requires a random
extraction from the transition kernelR. While it is known that for most hybrid sys-
tems initial conditions exist for which accurate event detection is problematic, it is
also known that for a wide class of hybrid systems the simulation strategy outlined
above works for almost all initial states [33].

For spontaneous transitions, the situation is at first sightmore difficult: one needs
to extract a random transition time,T̂, such that

P[T̂ > t] = e−
∫ t
0 λ (q̂,Φ(q̂,x̂,τ))dτ .
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It turns out, however, that this can easily be done by appending two additional con-
tinuous states, sayy ∈ R andz∈ R, to the state vector. We therefore make a new
PDMP,H ′ = ((Q,d′,X′), f ′, Init′,λ ′,R′) with continuous state dimension

d′(q) = d(q)+2, for all q∈ Q.

We set

X′(q) = X(q)×{(y,z) ∈ R
2 | z> 0, y < − ln(z)}.

The continuous dynamics of these additional states are given by ẏ = λ (q,x) and
ż= 0, in other words

f ′(q,x) =





f (q,x)
λ (q,x)

0



 .

We setλ ′(q,x,y,z) = 0 for all q∈ Q, (x,y,z) ∈ R
d′(q).

Initially, and after each discrete transitiony is set to 0, whereasz is extracted uni-
formly in the interval[0,1]. For simplicity consider the first interval of continuous
evolution; the same argument holds between any two transitions. Until the first dis-
crete transition we have

y(t) =
∫ t

0
λ (q(0),Φ(q(0),x(0),τ))dτ, andz(t) = z(0).

Notice that, sinceλ is non-negative, the statey(t) is a non-decreasing function oft.
Sinceλ ′ is identically equal to zero spontaneous transitions are not possible for

the modified PDMP. Therefore the first transition will take place because eitherx(t)
leavesX(q), or becausey(t) ≥− ln(z(t)). Assume the latter is the case, and let

T̂ = inf{τ ≥ 0 | y(τ) ≥− ln(z(τ))}.

Then

P[T̂ > t] = P[y(t) < − ln(z(t))] (y(t) non-decreasing)
= P[

∫ t
0 λ (q(0),Φ(q(0),x(0),τ))dτ < − ln(z(t))]

= P[z(0) < e−
∫ t
0 λ (q(0),Φ(q(0),x(0),τ))dτ]

= e−
∫ t
0 λ (q(0),Φ(q(0),x(0),τ))dτ (z(0) uniform).

After the discrete transition the new state(q,x) is extracted according toR, y is reset
to zero andz is extracted uniformly in[0,1].

Therefore, for simulation purposes spontaneous transitions can be treated in very
much the same way as forced transitions. In fact, the above construction is standard
in the simulation of discrete event systems [7] and shows that every PDMP,H, is
equivalent to another PDMP,H ′, that involves only forced transitions. Spontaneous
transitions, however, still provide a very natural way of modeling physical phenom-
ena and will be used extensively below.
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9.3 Subtilin Production by B. subtilis

9.3.1 Qualitative Description

Subtilin is an antibiotic released byB. subtilisas a way of confronting difficult
environmental conditions. The factors that govern subtilin production can be divided
into internal (the physiological states of the cell) and external (local population den-
sity, nutrient levels, aeration, environmental signals, etc.). Roughly speaking, a high
concentration of nutrients in the environment results in anincrease inB. subtilis
population without a remarkable change in subtilin concentration. Subtilin produc-
tion starts when the amount of nutrient falls under a threshold because of excessive
population growth [29].B. subtilisthen produces subtilin and uses it as a weapon
to increase its food supply, by eliminating competing species; in addition to reduc-
ing the demand for nutrients, the decomposition of the organisms killed by subtilin
releases additional nutrients in the environment.

According to the simplified model for the subtilin production process developed
in [20], subtilin derives from the peptide SpaS. Responsible for the production of
SpaS is the activated protein SpaRK, which in turn is produced by the SigH protein.
Finally, the composition of SigH is turned on whenever the nutrient concentration
falls below a certain threshold.

9.3.2 An Initial Model

An initial stochastic hybrid model for this process was proposed in [20]. The
model comprises 5 continuous states: the population ofB. subtilis, x1, the concentra-
tion of nutrients in the environment,x2, and the concentrations of the SigH, SpaRK
and SpaS molecules (x3, x4, andx5 respectively). The model also comprises 23 = 8
discrete states, generated by three binary switches, whichwe denote byS3, S4 and
S5. Switch S3 is deterministic: it goes ON when the concentration of nutrients,
x2, falls below a certain threshold (denoted byη), and OFF when it rises over this
threshold. The other two switches are stochastic. In [20] this stochastic behavior is
approximated by a discrete time Markov chain, with constantsampling interval∆.
Given that the switchS4 is OFF at timek∆, the probability that it will be ON at time
(k+1)∆ depends on the concentration of SigH at the timek∆ and is given by

a0(x3) =
cx3

1+cx3
, (9.4)

The nonlinear form of this equation is common for chemical reactions, such as the ac-
tivation of genes, that involve “binding” of proteins to theDNA. Roughly speaking,
the higherx3 is the more SigH molecules are around and the higher the probability
that one of them will bind with the DNA activating the gene that produces SpaRK.
The constantc is a model parameter that depends on the activation energy ofthe
reaction (reflecting the natural “propensity” of the particular molecules to bind) and
the temperature. It will be shown below thatx3 ≥ 0 (as expected for a concentration)
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thereforea0(x3) can indeed be thought of as a probability. Notice that the probability
of switching ON increases to 1 asx3 gets higher. Conversely, given that the switch
S4 is ON at timek∆, the probability that it will be OFF at time(k+1)∆ is

a1(x3) = 1−a0(x3) =
1

1+cx3
. (9.5)

Notice that this probability increases to 1 asx3 gets smaller. The dynamics of switch
S5 are similar, with the concentration of SpaRK,x4, replacingx3 and a different
value,c′, for the constant.

The dynamics for theB. subtilispopulationx1 are given by the logistic equation

ẋ1 = rx1(1−
x1

D∞(x2)
). (9.6)

Under this equation,x1 will tend to converge to

D∞(x2) = min{
x2

X0
,Dmax}, (9.7)

the steady state population for a given nutrient amount.X0 andDmax are constants
of the model; the latter represents constraints on the population because of space
limitations and competition within the population.

The dynamics forx2 are governed by

ẋ2 = −k1x1 +k2x5 (9.8)

wherek1 denotes the rate of nutrient consumption per unit of population andk2 the
rate of nutrient production due to the action of subtilin. More precisely, the second
term is proportional to the average concentration of SpaS, but for simplicity [20]
assume that the average concentration is proportional to the concentration of SpaS
for a single cell.

The dynamics for the remaining three states depend on the discrete state, i.e., the
state of the three switches. In all three cases,

ẋi =

{

−l ixi if Si is OFF

ki − l ixi if Si is ON.
(9.9)

It is easy to see that the concentrationxi decreases exponentially toward zero when-
ever the switchSi is OFF and tends exponentially towardki/l i wheneverSi is ON.
Note that the model is closely related to the piecewise affinemodels studied by [13,
5]. The key differences are the nonlinear dynamics ofx1 and the stochastic terms
used to describe the switch behavior.

9.3.3 A Formal PDMP Model

We now try to develop a PDMP,H = ((Q,d,X), f , Init,λ ,R), to capture the mech-
anism behind subtilin production outlined above. To do thiswe need to define all the
quantities listed in Definition 9.1.
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FIGURE 9.1: Visualization of discrete state space.

The presence of the three switches (S3, S4, andS5) dictate that the PDMP model
should have 8 discrete states (see Figure 9.1). We denote these discrete states by

Q = {q0, . . . ,q7}, (9.10)

so that the index (in binary) of each discrete state reflects the state of the three
switches. For example, stateq0 corresponds to binary 000, i.e., all three switches
being OFF. Likewise, stateq5 corresponds to binary 101, i.e., switchesS3 andS5

being ON and switchS4 being OFF. In the following discussion, the state names
q0, . . . ,q7 and the binary equivalents of their indices will be used interchangeably. A
wildcard,∗, will be used when in a statement the position of some switch is immate-
rial; e.g., 1∗ ∗ denotes that something holds whenS3 is ON, whatever the values of
S4 andS5 may be.

The discussion in the previous section suggests that there are 5 continuous states
and all of them are active in all discrete states. Therefore,the dimension of the
continuous state space is constant

d(q) = 5, for all q∈ Q. (9.11)

The definition of the survival function (9.3) suggests that the open setsX(q)⊆ R
5

are used to force discrete transitions to take place at certain values of state. In the
subtlin production model outlined above the only forced transitions are those induced
by the deterministic switchS3: S3 has to go ON wheneverx2 falls under the threshold
η and has to go OFF whenever it rises over this threshold. Thesetransitions can be
forced by defining

X(0∗ ∗) = R× (η ,∞)×R
3 and X(1∗ ∗) = R× (−∞,η)×R

3. (9.12)

The three elements defined in Equations (9.10)–(9.12) completely determine the hy-
brid state space,D(Q,d,X), of the PDMP.
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The family of vector fields,f (q, ·), is easy to infer from the above discussion.
From Equations (9.6)–(9.9) we have that

f (q0,x) =













rx1(1−
x1

min{x2/X0,Dmax}
)

−k1x1 +k2x3

−l3x3

−l4x4

−l5x5













f (q1,x) =













rx1(1−
x1

min{x2/X0,Dmax}
)

−k1x1 +k2x3

−l3x3

−l4x4

k5− l5x5













f (q2,x) =













rx1(1−
x1

min{x2/X0,Dmax}
)

−k1x1 +k2x3

−l3x3

k4− l4x4

−l5x5













f (q3,x) =













rx1(1−
x1

min{x2/X0,Dmax}
)

−k1x1 +k2x3

−l3x3

k4− l4x4

k5− l5x5













f (q4,x) =













rx1(1−
x1

min{x2/X0,Dmax}
)

−k1x1 +k2x3

k3− l3x3

−l4x4

−l5x5













f (q5,x) =













rx1(1−
x1

min{x2/X0,Dmax}
)

−k1x1 +k2x3

k3− l3x3

−l4x4

k5− l5x5













f (q6,x) =













rx1(1−
x1

min{x2/X0,Dmax}
)

−k1x1 +k2x3

k3− l3x3

k4− l4x4

−l5x5













f (q7,x) =













rx1(1−
x1

min{x2/X0,Dmax}
)

−k1x1 +k2x3

k3− l3x3

k4− l4x4

k5− l5xi













.

Notice that most of the equations are affine (and hence globally Lipschitz) in x. The
only difficulty may arise from the population equation whichis nonlinear. However,
the bounds onx1 andx2 established in Proposition 9.1 below ensure that Assump-
tion 9.1 is met.

The probability distribution,Init, for the initial state of the model should respect
the constraints imposed by Assumption 9.1. We therefore require that the distribution
satisfies

Init({0∗∗}×{x∈R
5 | x2 ≤ η}) = 0, Init({1∗∗}×{x∈R

5 | x2 ≥ η}) = 0. (9.13)

The initial state should also reflect any other constraints imposed by biological in-
tuition. For example, sincex1 reflects theB. subtilispopulation, it is reasonable
to assume thatx1 ≥ 0 (at least initially). Moreover, the form of the logistic equa-
tion (9.6) suggests that another reasonable constraint is that initially x1 ≤ D∞(x2).
Finally, since continuous statesx2, . . . ,x5 reflect concentrations, it is reasonable to
assume that they also start with non-negative values. Theseconstraints can be im-
posed if we require that for allq∈ Q

Init({q}×{x∈ R
5 | x1 ∈ (0,D∞(x2)) and min{x2,x3,x4,x5} > 0}) = 1. (9.14)

Any probability distribution that respects constraints (9.13) and (9.14) is an accept-
able initial state probability distribution for our model.
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FIGURE 9.2: Transitions out of stateq6.

The main problem we confront when trying to express the subtilin production
model as a PDMP is the definition of the rate functionλ . Intuitively, this function
indicates the “tendency” of the system to switch its discrete state. The rate function
λ will govern the spontaneous transitions of the switchesS4 andS5; recall thatS3

is deterministic and is governed by forced transitions. To present the design of an
appropriate functionλ we focus on discrete stateq6 (the design ofλ for the other
discrete states is similar). Figure 9.2 summarizes the discrete transitions out of state
q6. Notice that simultaneous switching of more than one of the switchesS3, S4, S5

is not allowed. This makes the PDMP model of the system more streamlined. It is
also a reasonable assumption to make, since simultaneous switching of two or more
switches is a null event in the underlying probability space.

Recall thatq6 corresponds to binary 110, i.e., switchesS3 andS4 being ON andS5

being OFF. Of the three transitions out ofq6, the one toq2 (S3 → OFF) is forced and
does not feature in the construction of the rate functionλ . For the remaining two
transitions, we define two separate rate functions,λS4→ OFF(x) andλS5→ ON(x).
These functions need to be linked somehow to the transition probabilities of the
discrete time Markov chain with sampling period∆ used to model the probabilistic
switching in [20]. This can be done via the survival functionof Equation (9.3). The
survival function states that the probability that the switchS4 remains ON throughout
the interval[k∆,(k+1)∆] is equal to

exp

(

−

∫ (k+1)∆

k∆
λS4→ OFF(x(τ))dτ

)

.

According to Equation (9.4) this probability should be equal to 1−a0(x3(k∆)). As-
suming that∆ is small enough, we have that

1−a0(x3(k∆)) ≈ exp
(

−∆λS4→ OFF(x(k∆))
)

.
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Selecting

λS4→ OFF(x) =
ln(1+cx3)

∆
(9.15)

achieves the desired effect. Likewise, we define

λS5→ ON(x) =
ln(1+c′x4)− ln(c′x4)

∆
(9.16)

and set the transition rate for discrete stateq6 to

λ (q6,x) = λS4→ OFF(x)+ λS5→ ON(x). (9.17)

Notice that the functionsλS4→ OFF(x) and λS5→ ON(x) take non-negative values
and are therefore good candidates for rate functions.λS5→ ON(x) is discontinuous
at x3 = 0, but the form of the vector field forx3 ensures that there existsε > 0 small
enough such that ifx3(0) > 0, λS5→ ON(x(t)) is integrable along the solutions of the
differential equation overt ∈ [0,ε). In a similar way, one can define rate functions
λS5→ OFF(x) (replacingx3 by x4 andcby c′ in Equation (9.15)) andλS4→ ON(x) (re-
placingx4 by x3 andc′ by c in Equation (9.16)) and use them to define the transition
rates for the remaining discrete states (in a way analogous to Equation (9.17)).

The last thing we need to define to complete the PDMP model is the probability
distribution for the state after a discrete transition. Theonly difficulty here is remov-
ing any ambiguities that may be caused by simultaneous switches of two or more of
S3, S4, andS5. We do this by introducing a priority scheme: Whenever the forced
transition has to take place it does, else either of the spontaneous transitions can take
place. For stateq6 this leads to

R(q6,x) = δ(q2,x)(q,x) if (q6,x) ∈ D
c (9.18)

else

R(q6,x) =
λS4→ OFF(x)

λ (q6,x)
δ(q4,x)(q,x)+

λS5→ ON(x)

λ (q6,x)
δ(q7,x)(q,x). (9.19)

Here δ(q̂,x̂)(q,x) denotes the Dirac measure concentrated at(q̂, x̂). If desired, the
two components of the measureR ((9.18) corresponding to the forced transition
and (9.19) corresponding to the spontaneous transitions) can be written together us-
ing the indicator function,ID(q,x), of the setD .

R(q6,x) = (1− ID(q6,x))δ(q2,x)(q,x)+

ID(q6,x)

( λ
S4→ OFF(x)

λ (q6,x)
δ(q4,x)(q,x)+

λ
S5→ ON(x)

λ (q6,x)
δ(q7,x)(q,x)

)

.

The measureR for the other discrete states can be defined in an analogous manner.
It is easy to see that this probability measure satisfies Assumption 9.1.

The above discussion shows that the PDMP model also satisfiesmost of the con-
ditions of Assumption 9.1. The only problem may be the non-Zeno condition. While
this condition is likely to hold because of the structure of the vector fields and the
transition rates, showing theoretically that it does is quite challenging.
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9.3.4 Analysis and Simulation

To ensure that the model makes biological sense and to simplify somewhat the
analysis, we impose the following restrictions on the values of the parameters.

ASSUMPTION 9.2 All model constants c, η , r, X0, Dmax, ki for i = 1, . . . ,5
and l i for i = 3,4,5 are positive. Moreover, k1 < rX0.

Under these assumptions the following fact is easy to establish:

PROPOSITION 9.1 Almost surely:

(i) For all t ≥ 0, (q(t),x(t)) ∈ D and for almost all t ≥ 0, (q(t),x(t)) ∈ D .

(ii) For all t ≥ 0, x1(t) ∈ [0,D∞(x2(t))], and min{x2(t),x3(t),x4(t),x5(t)} > 0.

PROOF (Outline) The first part is a general property of PDMP, and follows
directly from (9.13). For the second part, the proof can be done by induction.
We note first that by (9.14), the conditions hold almost surely for the initial
state. The discrete transitions leave the continuous state unaffected, there-
fore we only have to show that the conditions remain valid along continuous
evolution.

Let x(0) denote the state at the beginning of an interval of continuous
evolution and assume that condition 2 holds for this state. The form of the
vector field is such ẋ3 ≥ −l3x3. Therefore, x3(t) ≥ e−l3tx3(0) > 0 throughout
the interval of continuous evolution. Similar arguments show that x4(t) > 0
and x5(t) > 0. Moreover, since ẋ1 = 0 if x1 = 0 or x1 = D∞(x2), x1(t) remains in
the interval [0,D∞(x2)] if it is initially in this interval.

It remains to show that x2(t) > 0. Consider the function V(x) = x1
x2

. Differ-

entiating and assuming x2 ≤ Dmax/X0 we get

V̇(x) = rx1
x2

(

1− X0x1
x2

)

− x1
x2
2
(−k1x1 +k2x3)

= r x1
x2
− (rX0−k1)

(

x1
x2

)2
−k2

x1x3
x2
2

≤ r x1
x2
− (rX0−k1)

(

x1
x2

)2

If we let α = x1/x2 the last inequality reads α̇ ≤ rα − (rX0−k1)α2. If k1 < rX0,
then for α large enough (equivalently, x2 small enough since x1 is bounded) the
quadratic term dominates and keeps α bounded. Therefore, x2(t) > 0 along
continuous evolution.

Even though some additional facts about this model can be established analyti-
cally, the most productive way to analyze the model (especially its stochastic behav-
ior) is by simulation. The model can easily be coded in simulation, using the methods
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FIGURE 9.3: Sample solution for PDMP model of subtilin production.

outlined in Section 9.2.2. In this case the only forced transitions are those governing
the switchS3. An obvious choice for a function to code these forced transitions as
zero crossings isg(q,x) = x2 −η ; the same function can be used for switchingS3

ON (crossing zero from above) and OFF (crossing zero from below). Servicing the
event simply involves switching the state ofS3.

The model was coded in Matlab using ode45 with events enabled. Typical trajec-
tories of the system is shown in Figure 9.3.

9.4 DNA Replication in the Cell Cycle

9.4.1 Qualitative Description

DNA replication, the process of duplication of the cells genetic material, is central
to the life of every living cell, and is always carried out prior to cell division to ensure
that the cells genetic information is maintained. Replication takes place during a
specific stage in the life cycle of a cell (the cell cycle). Thecell cycle (as shown in
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FIGURE 9.4: The phases of cell cycle.

Figure 9.4) can be subdivided in four phases: G1, a growth phase in which the cell
increases its mass; S (synthesis), when DNA replication takes place; G2, a second
growth phase; and finally M phase (mitosis), during which thecell divides and gives
rise to two daughter cells.

Cell cycle events are regulated by the periodic fluctuationsin the activity of protein
complexes called Cyclin Dependent Kinases (CDK). CDK are the master regulators
of the cell cycle [30]. In Figure 9.5, the so-called quantitative model of cell cycle
regulation is illustrated. There are two identified thresholds in CDK activity, thresh-
old 1 associated with entry into S phase and threshold 2 associated with entry into
mitosis. Complex models have already been developed for thebiochemical network
regulating the fluctuation of CDK activity during the cell cycle [34].

Because daughter cells must have the same genetic information as their progenitor,
during S-phase, every base of the genome must be replicated once and only once.
Genomes of eukaryotic cells are large in size and the speed ofreplication is limited.
To accelerate the process, DNA replication initiates from multiple points along the
chromosomes, called origins of replication. Following initiation from a given origin,
replication continues bi-directionally along the genome,giving rise to two replication
forks moving in opposite directions.

To be able to ensure that each region of the genome is replicated once and only
once, a cell must be able to distinguish a replicated from an unreplicated region.
Before replication, and while CDK activity is low, origins are present in the pre-
replicative state and can initiate DNA replication when CDKactivity passes thresh-
old 1. When an origin fires (or when it is passively replicatedby a passing replication
fork from a nearby origin) it automatically switches to the post-replicating state and
can no longer support initiation of replication. CDK activities over threshold 1 inhibit
conversion of the post-replicating state to the pre-replicative state. To re-acquire the
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FIGURE 9.5: Quantitative model of cell cycle regulation.

pre-replicative state origins must wait for the end of the M phase, when CDK activity
resets to zero. With this simple mechanism, re-replicationis prevented.

Initial models, influenced by the replication of bacterial genomes, postulated that
defined regions in the genome would act as origins of replication in every cell cy-
cle [16]. Indeed, initial work from the budding yeast (Saccharomyces cerevisiae)
identified specific sequences which acted as origins of replication with high effi-
ciency [31]. This simple deterministic model of origin selection however is reap-
praised following more recent findings which show that, especially in higher eukary-
otes, a large number of potential origins exist, and active origins are stochastically
selected during each S phase [8, 26]. For example, recent work on the fission yeast
Schizosaccharomyces pombe[26] clearly showed that origins fire stochastically dur-
ing the S phase. The fission yeast genome has many hundreds of potential origins,
but only a few of them fire in any given cell cycle. Multicellular eukaryotes are also
believed to exhibit similar behavior.

9.4.2 Stochastic Hybrid Features

There are two main sources of uncertainty in the DNA replication process. The
first has to do with which origins of replication fire in a particular cell cycle and the
second with the times at which they fire.

Not all the origins participate in every S phase [8, 26]. Origins are classified as
strongandweak, according to the frequency with which they fire. Given a population
of cells undergoing an S-phase, strong origins are observedto fire in many cells,
whereas weak ones fire in only a few. This firing probability istypically encoded as
a number between 0 and 1 for each origin, reflecting the percentage of cells in which
the particular origin is observed to fire.

Even if an origin does fire, the time during the S phase when it will do so is still
uncertain. Some origins have been observed to fire earlier inthe S phase, while
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FIGURE 9.6: Possible states of an origin.

others tend to fire later [14]. This timing aspect is usually encoded by a number in
minutes, reflecting the average firing time of the origin in a population of cells.

The two uncertainty parameters, efficiency and firing time, are clearly correlated.
Late firing origins will also tend to have smaller efficiencies. This is because origins
that tend to fire later during S phase give the chance to nearbyearly firing origins to
replicate the part of the genome around them [18]. It is an on going debate among
the cell cycle community as to whether these two manifestations of uncertainty are
in fact one and the same, or whether there are separate biological mechanisms that
determine if an origin is weak versus strong and early firing versus late firing. The
hope is that mathematical models, like the one presented below, will assist biologists
in answering such questions.

During the S phase an origin of replication may find itself in anumber of “states”.
These are summarized in Figure 9.6, where we concentrate on an origin i and its
neighbors, denoted byi−1 (left) andi +1 (right). We distinguish a number of cases.

Case 1: Pre-replicative. Every origin is in this mode until the time it becomes
active (firing time). In this case it does not replicate in anydirection.

Case 2: Replicating on both sides. When the origin firing time is reached, the
origin gets activated and begins to replicate the DNA to its left and right. The points
of replication (“forks”) move away from the origin with a certain speed (“fork veloc-
ity”).

Case 3: Right replicating. When the section of DNA thati has replicated to its
left reaches the section of DNA thati −1 has replicated to its right, then the whole
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section between the two origins has been replicated. Origini does not need to do any
more replication to its left and so it continues only to the right.

Case 4: Left replicating. This is symmetric to Case 3. Origini stops replication
to the right and continues to the left.

Case 5: Post replicating. The replication has finished in both directions and the
origin has completed its job.

Case 6: Passively replicated. The section replicated by an activeorigin (i + 1 in
the figure) reaches origini before it has had a chance to fire. Replication ofi + 1
continues, overtaking and destroying origini.

The above discussion suggests that DNA replication is a complex process that
involves different types of dynamics: discrete dynamics due to the firing of the ori-
gins, continuous dynamics from the evolution of the replication forks, and stochastic
terms needed to capture origin efficiencies and uncertaintyabout their firing times.
In the next section we present a stochastic hybrid model to deal with these diverse
dynamics.

9.4.3 A PDMP Model

The model splits the genome in pieces whose replication is assumed to be inde-
pendent of one another. Examples of pieces are chromosomes.Chromosomes may
be further divided into smaller pieces, to exclude, for example, rDNA repeats in the
middle of a chromosome which are usually excluded in sequencing databases and
micro-array data. The model for each piece of the genome requires the following
data:

• The length,L, of the piece of the genome, in bases. We will assume thatL is
large enough so that, if we normalize byL, we can approximate the position
along the genome with a continuous quantity,l ∈ [0,1]. This is a reasonable
approximation even for the simplest organisms.

• The normalized positions,Oi ∈ (0,1), i = 1,2, . . . ,N, of the origins of repli-
cation along the genome. For notational convenience, we append two dummy
origins to the list of true origins, situated at the ends of each genome piece,
O0 = 0 andON+1 = 1.

• The firing rate of the origins,λi ∈ R+, i = 1,2, . . . ,N, in minutes−1. We set
λ0 = λN+1 = 0.

• The fork velocity,v(l) ∈ R+ as a function of the location,l ∈ [0,1], in the
genome.

Using micro-array techniques, values for all these parameters are now becoming
available for a number of organisms.

The above discussion reveals that during the S phase, each origin of replication
can find itself in one of six discrete states: pre-replicative,PreR, replicating on both
sides,RB, replicating to the right only,RR, replicating to the left only,LR, post
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FIGURE 9.7: Definition of continuous states of an origin.

replicating,PostR, and passively replicated,PassR. The discrete state space of our
model will therefore be

Q = {PreR,RB,RR,LR,PostR,PassR}N.

The discrete state,q∈ Q will be denoted as a N-tuple,q = (q1,q2, . . . ,qN) with qi ∈
{PreR,RB,RR,LR,PostR,PassR}. The dummy origins introduced at the beginning
and the end of the section of DNA are not reflected in the discrete state, we simply set
q0 = qN+1 = PreR. Note that the number of discrete states, 6N, grows exponentially
with the number of origins. Even simple organisms have several hundreds of origins
and even though only a small fraction of the possible states get visited in any one S
phase, the total number of discrete states reached can be enormous.

The number of continuous states depends on the discrete state and will change
during the evolution of the system. Since the continuous state reflects the progress
of the replication forks, we introduce one continuous statefor each origin replicating
only to the left, or only to the right and two continuous states for each origin repli-
cating in both directions. Therefore the dimension of the continuous state space for
a given discrete stateq∈ Q will be

d(q) = |{i | qi ∈ {RR,LR}}|+2|{i | qi = RB}| ,

where, as usual,| · | denotes the cardinality of a set. For an origin withqi ∈ {RR,RB}
we will useRi to denote the length of DNA it has replicated to its right. Likewise
for an origin withqi ∈ {LR,RB} we will useLi to denote the length of DNA it has
replicated to its left (see Figure 9.7). For a discrete state, q ∈ Q, the continuous
statex ∈ R

d(q) will be a d(q)-tuple consisting of theRi andLi listed in the order of
increasingi; if qi = RBwe assume that theRi is listed beforeLi . Notice that initially
all origins will be in the pre-replicative mode and after thecompletion of the S phase
all origins will be in either post replicating or passively replicated. Therefore both at
the beginning and at the end of the S phase we will haved(q) = 0 and the continuous
state space will be trivial.

The open setsX(q) are used to force discrete transitions to take place. Figure9.6
also summarizes the discrete transitions that can take place for each origin of replica-
tion. All transitions except the one fromPreRto RBare forced and have to do with
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the relation between the replication forks of origini and those of other replicating
origins to its left and to its right. For a discrete stateq∈ Q and an origini = 1, . . . ,N
we denote these replicating neighbors to the left and right of origin i by

LNi(q) = max{ j < i | q j ∈ {RR,RB}}

RNi(q) = min{ j > i | q j ∈ {LR,RB}}.

Whenever the sets are empty we setLNi(q) = 0 andRNi(q) = N+1.
We build the setX(q) out of sets,Xi(q), one of each active origin. Forced transi-

tions occur when replication forks meet. For example, if origin i is only replicating
to its right,qi = RR, and its right replication fork,Ri , meets the left replication fork,
LRNi(q), of its right neighbor,RNi(q), then origini must stop replicating and switch
to qi = PostR. Therefore

qi = RR⇒ Xi(q) = {ORNi(q) −LRNi(q) > Oi +Ri} ⊆ R
d(q).

Notice that the set is well defined: becauseqi = RRand, by definition,qRNi(q) ∈

{LR,RB} bothRi andLRNi(q) are included among the continuous states. Likewise,
we define

qi = LR⇒ Xi(q) = {OLNi(q) +RRNi(q) < Oi −Li}

qi = RB⇒ Xi(q) = {OLNi(q) +RRNi(q) < Oi −Li}∩{ORNi(q)−LRNi(q) > Oi +Ri}

qi = PreR⇒ Xi(q) = {OLNi(q) +RRNi(q) < Oi}∩{ORNi(q)−LRNi(q) > Oi}

qi ∈ {PostR,PassR}⇒ Xi(q) = R
d(q).

We define the overall set by

X(q) =
N
⋂

i=1

Xi(q).

X(q) is clearly an open set.
The vector field,f , reflects the continuous progress of the replication forks along

the genome. It is again defined one origin at a time. We set

fi(q,x) =















v(Oi +Ri) ∈ R if qi = RR
[

v(Oi +Ri)
v(Oi −Li)

]

∈ R
2 if qi = RB

v(Oi −Li) ∈ R if qi = LR.

Recall that all other discrete states do not give rise to any continuous states. The
overall vector fieldf (q,x) ∈R

d(q) is obtained by stacking thefi(q,x) for the individ-
ual replicating origins one on top of the other. Under mild assumptions on the fork
velocity it is easy to see thatf (q, ·) satisfies Assumption 9.1.

The initial state measure is trivial. Biological intuitionsuggests that at the begin-
ning of the S phase all origins are pre-replicative and no replication forks are active.
The initial probability measure is therefore just the Diracmeasure

Init(q,x) = δPreRN
×{0}

(q,x).
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Recall that whenq = PreRN the continuous state is trivialx∈ R
0 = {0}.

The only spontaneous transition in our model is the one from statePreR to the
stateRB; all other transitions are forced. The transition rate,λ , governing sponta-
neous transitions reflects the randomness in the firing timesof the origins. Therefore
λ is only important for origins in statePreR. We defineλ one origin at a time, setting

λi(q,x) =

{

λi if qi = PreR
0 otherwise.

This implies that the firing time,Ti , of origin i have a survival function of the form

P[Ti ≥ t] = e−λit . (9.20)

Notice that hereTi refers to the time origini would fire in the absence of interference
from other origins, not the observed firing times. In practice, origini will sometimes
get passively replicated by adjacent origins before it getsa chance to fire. There-
fore the observed firing times will show a bias toward smallervalues that the 1/λi

anticipated by (9.20). We set the overall rate to

λ (q,x) =
N

∑
i=1

λi(q,x).

Finally, for the transition measureRwe distinguish two cases: either no transition
is forced (i.e., state before the transition is inD), or a transition is forced (i.e., state
before the transition in∂D). In the former case, forq∈ Q let

di(q) = |{ j < i | q j ∈ {RR,LR}}|+2|{ j < i | q j = RB}|.

For (q̂, x̂) ∈ D with q̂i = PreRdefine the measure

δqi→RB(q,x)

as the Dirac measure concentrated on(q,x) ∈ D with qi = RB, q j = q̂ j for j 6= i,
x j = x̂ j for j < di(q̂), xdi(q̂) = xdi(q̂)+1 = 0, andx j+2 = x̂ j for j ≥ di(q̂). In words, if
origin i fires spontaneously, its discrete state changes toRBand two new continuous
states are introduced to store the progress of its replication forks. Since a spontaneous
transition takes place whenever one of the origins in statePreRcan fire, the overall
reset measure from state(q̂, x̂) ∈ D can be written as

R((q,x),(q̂, x̂)) =
∑{i | q̂i=PreR} λiδqi→RB(q,x)

λ (q,x)
. (9.21)
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Finally, if (q̂, x̂) ∈ ∂D , i.e., a transition is forced for at least one origin, define the
“guard” conditions

Gqi→PassR(q̂, x̂) = (q̂i = PreR)∧

[(OLNi(q) +RRNi(q) ≥ Oi)∨ (ORNi(q)−LRNi(q) ≤ Oi)]

Gqi→RR(q̂, x̂) = (q̂i = RB)∧

(OLNi(q) +RRNi(q) ≥ Oi −Li)∧ (ORNi(q)−LRNi(q) > Oi +Ri)

Gqi→LR(q̂, x̂) = (q̂i = RB)∧

(ORNi(q)−LRNi(q) ≤ Oi +Ri)∧ (OLNi(q) +RRNi(q) < Oi −Li)

Gqi→PostR(q̂, x̂) = [(q̂i = RB)∧

(ORNi(q)−LRNi(q) ≤ Oi +Ri)∧ (OLNi(q) +RRNi(q) ≥ Oi −Li)]

∨[(q̂i = RR)∧ (ORNi(q)−LRNi(q) ≤ Oi +Ri)]

∨[(q̂i = LR)∧ (OLNi(q) +RRNi(q) ≥ Oi −Li)].

We can then defineR((·, ·),(q̂, x̂)) as a Dirac measure concentrated on(q,x) with

qi =















PassR if Gqi→PassR(q̂, x̂) is true
RR if Gqi→RR(q̂, x̂) is true
LR if Gqi→LR(q̂, x̂) is true
PostR if Gqi→PostR(q̂, x̂) is true

andx same as ˆx, with the elements corresponding toi with qi 6= q̂i dropped. Notice
that, as in the case ofB. subtilis, if forced transitions are available they are taken,
preempting any spontaneous transitions.

9.4.4 Implementation in Simulation and Results

The model of DNA replication is very complex, with a potentially enormous num-
ber of discrete (6N) and continuous (2N) states. The model has the advantage that it is
naturally decomposed to fairly independent components (the models for the individ-
ual origins) which interact via their continuous states (the progress of the replication
forks). Current research concentrates on exploiting compositional frameworks for
stochastic hybrid systems ( [2, 28, 32], see also Chapter 3 ofthis volume) to model
and analyze the behavior of the DNA replication mechanism.

In the meantime, the best way to analyze the behavior of this system is through
simulation. A simulator of the DNA replication process was developed which simu-
lates the DNA replication process genome wide, given a specific genome size, spe-
cific origin positions and efficiencies and specific fork velocities. Event detection
was accomplished by computing the zero crossings of functions of the form

g(q,x) = ORNi(q)−LRNi(q)−Oi −Ri

(for the discrete transition fromRRto PostR, and similar functions for the remain-
ing transitions). Servicing the events involved switchingthe discrete state, but also
changing the continuous state dimension, by dropping or adding states.
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FIGURE 9.8: Evolution of unreplicated DNA.

Simulation results for a number of runs of the model are shownin Figure 9.8. Here
the genome size used was 12 million bases, with 900 origins introduced at random
locations and with random efficiencies. The fork velocity was constant at 5500 bases
per minute. The figure clearly shows the randomness in the DNAreplication process
predicted by the model.

9.5 Concluding Remarks

We have presented an overview of stochastic hybrid modelingissues that arise in
biochemical processes. We have argued that stochastic hybrid dynamics play a cru-
cial role in this context and illustrated this point by developing PDMP models for
two biochemical processes, subtilin production by the organismB. subtilisand DNA
replication in eukaryotes. We also discussed how the modelscan be analyzed by
Monte Carlo simulation. Current research focuses on tuningthe parameters of the
models based on experimental data and exploiting the analysis and simulation results
obtained with the models (in particular the DNA replicationmodel) to gain biologi-
cal insight. Already the results of the DNA replication model have led biologists to
re-think long held conventional opinions about the duration of the S phase and the
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role of different mechanisms that play a role in cell cycle regulation.
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