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9.1 Introduction

One of the defining changes in molecular biology over thedastade has been
the massive scaling up of its experimental techniques. €haencing of the entire
genome of organisms, the determination of the expressiah &€ genes in a cell by
means of DNA micro-arrays, and the identification of pro¢eand their interactions
by high-throughput proteomic methods have produced enesramounts of data on
different aspects of the development and functioning décel

A consensus is now emerging among biologists that to exfilede data to full
potential one needs to complement experimental resultsfaitnal models of bio-
chemical networks. Mathematical models that describe gaderotein interactions
in a precise and unambiguous manner can play an instrunretgah shaping the
future of biology. For example, mathematical models allemputer-based simula-
tion and analysis of biochemical networks. Sulsilico experiments can be used
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222 Stochastic Hybrid Modeling of Biochemical Processes

for massive and rapid verification or falsification of biolcg hypotheses, replacing

in certain cases costly and time-consuming in vitrarovivo experiments. More-
over,in silico, in vitro andin vivo experiments can be used together in a feedback
arrangement: mathematical model predictions can asdiseidesign ofn vitro and

in vivo experiments, the results of which can in turn be used to inthoe fidelity

of the mathematical models.

The possibility of combining new experimental methods }ssticated mathemat-
ical techniques, and increasingly powerful computers,giaan a new lease of life
to an idea as appealing as it is difficult to realize: undeditay how the global
behavior of an organism emerges from the interactions twemponents at the
molecular level. Although this idea of systems biology hastiple aspects [23], an
ultimate challenge is the construction of a mathematicalehof whole cells, that
will be able to simulatén silico the behavior of an organisim vivo.

In the last few decades, a large number of approaches for lmmgdaolecular
interaction networks have been proposed. Motivated by kassification of [12],
one can divide the models available in the literature in tlasges:

e Models with purely continuous dynamics, for example, medkeat describe
the evolution of concentrations of proteins, mRNAs, etcterms of ordinary
or partial differential equations.

e Models with purely discrete dynamics, for example, grapldet®of the inter-
dependencies in a regulatory network, Boolean networkgtegidextensions,
Bayesian networks, or Markov chain models.

Common sense and experimental evidence suggest thatmadithese classes alone
is adequate for developing realistic models of molecul@raction networks. Time-
scale hierarchies cause biological processes to be movemiently described as a
mixture of continuous and discrete phenomena. For exarplgjnuous changes
in chemical concentrations or the environment of a cellrofteyger discrete transi-
tions (such as the onset of mitosis, or cell differentigtittrat in turn influence the
concentration dynamics. At the level of molecular intei@t, the co-occurrence
of discrete and continuous dynamics is exemplified by théchwliike activation or
inhibition of gene expression by regulatory proteins.

The recognition that hybrid discrete-continuous dynamas play an important
role in biochemical systems has led a number of researahangdstigate how meth-
ods developed for hybrid systems in other areas (such asdelmleomputation and
air traffic management) can be extended to biological sysfé 1, 13, 5, 3, 15]. It
is, however, fair to say that the realization of the potdmidybrid systems theory
in the context of biochemical system modeling is still foe thuture. In addition,
recently the observation that many biological processes\ie considerable levels
of uncertainty has been gaining momentum [27, 22]. For eXaregperimental ob-
servations suggest that stochastic uncertainty may play@at role in enhancing
the robustness of biochemical processes [35], or may benthehé variability ob-
served in the behavior of certain organisms [36, 37]. Ststitity is even observed
in fundamental processes such as the DNA replication if8el26]. This has led
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researchers to attempt the development of stochasticchyiwilels for certain bio-
chemical processes [20, 19], that aim to couple the advastafgstochastic analysis
with the generality of hybrid systems.

In this chapter we explore further stochastic, hybrid agpetthe modeling of
biochemical networks. We first survey briefly a frameworkrfoodeling stochastic
hybrid systems known as Piecewise Deterministic Markoxc®sees (PDMP; Sec-
tion 9.2). We then proceed to use this framework to captueeetsence of two
biochemical processes: the production of subtilin by thetdrdum Bachillus sub-
tilis (B. subtilis Section 9.3), and the process of DNA replication in euktcyeells
(Section 9.4). The two models illustrate two different megisms through which
stochastic features manifest themselves in biochemicalgsses: the uncertainty
about switching genes “on” and “off” and uncertainty abdwe binding of protein
complexes on the DNA. We also discuss how these models cand®eén simu-
lation and present simulation results. The concludingeed¢Section 9.5) presents
directions for further research.

9.2 Overview of PDMP

Piecewise Deterministic Markov Processes (PDMP), intceduby Mark Davis
in [9, 10], are a class of continuous-time stochastic hypratesses which covers a
wide range of non-diffusion phenomena. They involve a hy/brate space, compris-
ing continuous and discrete states. The defining featuretohamous PDMP is that
continuous motion is deterministic; between two conseeutiansitions the contin-
uous state evolves according to an ordinary differentiab¢ign (ODE). Transitions
occur either when the state hits the state space boundamyther interior of the state
space, according to a generalized Poisson process. Wheménansition occurs,
the hybrid state is reset instantaneously according to lagtnibty distribution which
depends on the hybrid state before the transition, and theeps is repeated. Here
we introduce formally PDMP following the notation of [6, 24Dur treatment of
PDMP is adequate for this chapter, but glosses over someaétdhnical subtleties
introduced in [9, 10] to make the PDMP model as precise andmg¢as possible.

9.21 Modeling Framework

Let Q be a countable set of discrete states, and(éet: Q — N andX(:) : Q —
RIC) be two maps assigning to each discrete si&®) a continuous state dimension
d(qg) and an open subski(q) C R4, We call the set

7(Q.d.X) = [J {a} x X(a) = {(a,x) |a € Q, x& X(a)}
a<Q

the hybrid state space of the PDMP and denotddy) € 2(Q,d, X) the hybrid
state. For simplicity, we use ju$t to denote the state space when @el, andX
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are clear from the context. We denote the complement of thedhgtate space by

2°= |J {a} x X(a)°,
geQ

its closure by

7 =J{a} xX(a),
qeQ
and its boundary by -
02 = | J{a} x oX(a) =2\ 2.
qeQ

As usual X(q)°¢ denotes the complemeix(q) the closure, andX(q) the boundary
of the open seX(q) in RY9, and\ denotes set difference. Le#(2) denote the
smallesto-algebra onJgeq{q} x RY@ containing all sets of the forri} x Aq with
Aq a Borel subset oX(q).

We consider a parameterized family of vector fiefdg, -) : R4 — R4 qe Q,
assigning to each hybrid state, x) a directionf (g,x) € RY®, As usual, we define
the flow of f as the functiord(q, -,-) : R4 x R — RY® such thatd(q,x,0) = x
and for allt € R,

%CD(q,x,t) = f(q,®(q,x,t)). (9.1)

Notice that we implicitly assume that the discrete stateemains constant along
continuous evolution.
DEFINITION 9.1 A PDMP is a collection H = ((Q,d,X), f,Init,A,R),
where

e Q is a countable set of discrete states;

e d(-): Q— N maps each Q€ Q to a continuous state space dimension;

e X(1):Q— RO maps each q € Q to an open subset X(q) of RY@ -

e f(q,"): RI@D — RUD s g family of vector fields parameterized by q € Q;

o Init(-) : B(2) — [0,1] is an initial probability measure on (2,%8(2));

o A(-,) 1 2 = R* is a transition rate function;

e R(:,-,"): B(2)x D — [0,1] assigns to each (Q,X) € Z a measure R(-,d,X)
on (2,%(2)).

To define the PDMP executions we introduce the notions of titdime, t*(-,-) :
9 — R U{w}, defined as

t*(q,x) = inf{t > 0| ®(q,x,t) ¢ 9} (9.2)
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and of the survival functiof (-,-,-) : 2 x R — [0,1],

o e_f(t)A(qvq)(Q7X7T))dT if t <t*(q,x)
Flaxy = {0 if t > t*(q,X). (9:3)

With this notation, the executions of the PDMP can be thoofjas being generated
by the following algorithm.

ALGORITHM 9.1 (Generation of PDMP executions)
set T=0
extract Z-valued random variable (§,X) according to Init(-)
while T < o
extract R -valued random variable T such that P[T >t] = F(§,%t)
set q(t) = G and x(t) = D(G, Xt —T) for allt € [T,T+T)
if T <o
extract Z-valued random variable (¢ ,X)
according to R((, ~,q,¢(q,>2,f))
st (G,%) = (q/,X/)
end if
e T=T+T
end while

All random extractions in Algorithm 9.1 are assumed to bepehdent. To ensure
that the algorithm produces a well-defined stochastic m®eenumber of assump-
tions are introduced in [10, 9].

ASSUMPTION 9.1 The PDMP satisfies the following assumptions:
(i) Init(2°¢) = 0 and R(2¢,q,x) = 0 for all (g,X) € 2.

(ii) For all g€ Q, the set X(q) € RY¥ is open and f(q,-) is globally Lipschitz
continuous.

(iii) A(+,-) is measurable. For all (g,X) € & there exists € > 0 such that the
function t — A (g, P(q,x,t)) is integrable for t € [0,€). For all A€ B(2),
R(A, (-,+)) is measurable.

(iv) The expected number of jumps in [0,t] is finite for all t < co.

Most of the assumptions are technical and are needed toestiatithe transition
kernels, the solutions of the differential equations, ete well defined. The last part
of the assumption deserves some closer scrutiny. This stdlehastic variant of the
non-Zeno assumption commonly imposed on hybrid systenstatés that “on the
average” only a finite number of discrete transitions cae fakce in any finite time
interval. While this assumption is generally true for rgadtems, it is easy to gener-
ate models that violate it due to modeling over-abstradqiee, for example, [21]).
Even if a model is not Zeno, establishing this this may bedaliffi[25].
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Under Assumption 9.1 it can be shown [10, 9] that Algorithrh @efines a strong
Markov process, which is continuous from the right with leftits. Based on these
fundamental properties, [10, 9] proceed to completelyattarize PDMP processes
through their generator, and then use the generator to sbamohe can compute
expectations, establish stability conditions and solviéinogd control problems for
this class of stochastic hybrid systems.

9.2.2 Simulation

The properties of PDMP are in general rather difficult to gtadalytically. Ex-
plicit solutions for things like expectations are impo$sito derive, except in very
special cases (see, for example, [11]). One therefore oésarts to numerical meth-
ods. For computing expectations, approximating distiiing, etc., one of the most
popular is Monte Carlo simulation.

The simulation of PDMP models presents several challerdyesto the interac-
tion of discrete, continuous, and stochastic terms. Becthescontinuous dynamics
are deterministic, standard algorithms used for the sitimmleof continuous, de-
terministic systems are adequate for simulating the elarilietween two discrete
transitions. The difficulties arise when the continuoudgion has to be interrupted
so that a discrete transition can be executed.

For forced transitions (when the state attempts to leay®ne needs to detect
when the statey, leaves an open seX(q), along continuous evolution. This is
known as the event detection problem in the hybrid systetesature. Several al-
gorithms have been developed to deal with this problem (@eexXample [4]) and
have recently been included in standard simulation packageh as Dymola, Mat-
lab, or the Simulink package SimEvents. Roughly speakimgjdea is to code the
setX(q) using a functiong(q,x), of the state that changes sign at the boundary of
X(q). The simulation algorithm keeps track of the functig(a, x(k)) at each step,
k, of the continuous simulation and proceeds normally as &sgjq, x(k)) does not
change sign between one step and the next; recall that icdsiq also does not
change. Ifg changes sign (say between steand stegk + 1) the simulation halts,
a zero crossing algorithm is used to pinpoint the time at tvifie sign change took
place, the state at this time is computed, the event is “sedyi and the simulation
resumes from the new state. Zero crossing (finding the mretée just before the
event) usually involves fitting a polynomial to a few valuégydefore and after the
event (say a spline througdig,x(k— 1)), g(q,x(k)) andg(qg,x(k+ 1))) and finding
its roots. Servicing the event (finding the state just afterdvent) requires a random
extraction from the transition kern® While it is known that for most hybrid sys-
tems initial conditions exist for which accurate event déta is problematic, it is
also known that for a wide class of hybrid systems the siranatrategy outlined
above works for almost all initial states [33].

For spontaneous transitions, the situation is at first sigre difficult: one needs
to extract a random transition tim€, such that

P[T>tj=e [A@@@xT)dr
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It turns out, however, that this can easily be done by appegnvo additional con-
tinuous states, say< R andz € R, to the state vector. We therefore make a new
PDMP,H’ = ((Q,d’, X"), f/,Init’,A’, R") with continuous state dimension

d'(q) =d(q) + 2,forall g€ Q.

We set
X'(@) =X(a) x {(,2 €R?*|2> 0,y < ~In(2)}.

The continuous dynamics of these additional states areadiys = A (g,x) and
z=0, in other words
f(a,x) ]

f'(g,x) = [A(q,X)
0

We setA’(q,x,y,z) =0 forallg e Q, (x,y,2) € R¥(@).

Initially, and after each discrete transitigris set to 0, whereasis extracted uni-
formly in the interval[0,1]. For simplicity consider the first interval of continuous
evolution; the same argument holds between any two transitiUntil the first dis-
crete transition we have

y(t) = [ A(0(0),(6(0) X(0), 1)d, andz(t) = 2(0).

Notice that, sinc& is non-negative, the staygt) is a non-decreasing function of
SinceA’ is identically equal to zero spontaneous transitions ateassible for

the modified PDMP. Therefore the first transition will takag# because eithg(t)

leavesX(q), or becausg(t) > —In(z(t)). Assume the latter is the case, and let

T=inf{r>0]y(1) > —In(z(1))}.

t) < —In(z(t))] (y(t) non-decreasing)
X(0),1))dT < —In(z(t))]
9(0):@(q(0)x(0).7))d1)

X(0).1))dt (z(0) uniform).

After the discrete transition the new stétgx) is extracted according g, y is reset
to zero andzis extracted uniformly ifo, 1].

Therefore, for simulation purposes spontaneous transittan be treated in very
much the same way as forced transitions. In fact, the abavstaction is standard
in the simulation of discrete event systems [7] and showsdthary PDMPH, is
equivalent to another PDMP’, that involves only forced transitions. Spontaneous
transitions, however, still provide a very natural way ofdeling physical phenom-
ena and will be used extensively below.



228 Stochastic Hybrid Modeling of Biochemical Processes

9.3 Subtilin Production by B. subtilis
9.3.1 Qualitative Description

Subtilin is an antibiotic released 8. subtilisas a way of confronting difficult
environmental conditions. The factors that govern subifioduction can be divided
into internal (the physiological states of the cell) anceemél (local population den-
sity, nutrient levels, aeration, environmental signatis,)eRoughly speaking, a high
concentration of nutrients in the environment results iniraamease inB. subtilis
population without a remarkable change in subtilin con@gin. Subtilin produc-
tion starts when the amount of nutrient falls under a thrieshecause of excessive
population growth [29].B. subtilisthen produces subtilin and uses it as a weapon
to increase its food supply, by eliminating competing spgcin addition to reduc-
ing the demand for nutrients, the decomposition of the degas killed by subtilin
releases additional nutrients in the environment.

According to the simplified model for the subtilin productiprocess developed
in [20], subtilin derives from the peptide SpaS. Respomesfbl the production of
Spas is the activated protein SpaRK, which in turn is prodinethe SigH protein.
Finally, the composition of SigH is turned on whenever thé&ieat concentration
falls below a certain threshold.

9.3.2 An Initial Model

An initial stochastic hybrid model for this process was mregd in [20]. The
model comprises 5 continuous states: the populatidh stibtilis x;, the concentra-
tion of nutrients in the environment,, and the concentrations of the SigH, SpaRK
and SpaS moleculess, x4, andxs respectively). The model also comprisés=28
discrete states, generated by three binary switches, whgctienote bys;, S, and
S. Switch S3 is deterministic: it goes ON when the concentration of reutts,
X2, falls below a certain threshold (denoted By, and OFF when it rises over this
threshold. The other two switches are stochastic. In [28]dtochastic behavior is
approximated by a discrete time Markov chain, with conssampling intervalA.
Given that the switcl®, is OFF at timekA, the probability that it will be ON at time
(k4 1)A depends on the concentration of SigH at the tkend is given by

CX3
1+cxs’

a0(Xs) = (9.4)
The nonlinear form of this equation is common for chemicattmns, such as the ac-
tivation of genes, that involve “binding” of proteins to tB&A. Roughly speaking,
the higherxs is the more SigH molecules are around and the higher the pildipa
that one of them will bind with the DNA activating the genettpeoduces SpaRK.
The constant is a model parameter that depends on the activation enertheof
reaction (reflecting the natural “propensity” of the pautar molecules to bind) and
the temperature. It will be shown below that> 0 (as expected for a concentration)
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thereforeap(xz) can indeed be thought of as a probability. Notice that thegldity
of switching ON increases to 1 ag gets higher. Conversely, given that the switch
S, is ON at timekA, the probability that it will be OFF at timék+ 1)A is

1
a1(x3) =1—ag(x3) = . 9.5
1(X3) ao(Xa) Tioa (9.5)
Notice that this probability increases to Lxagets smaller. The dynamics of switch
S are similar, with the concentration of SpaRX, replacingxs and a different
value,c/, for the constant.
The dynamics for th&. subtilispopulationx; are given by the logistic equation

. X1
a=ra(l-5s) (96)
Under this equatior; will tend to converge to
X
Do (X2) = mm{i; Dmax} (9.7)

the steady state population for a given nutrient amoMptandDyax are constants
of the model; the latter represents constraints on the ptipal because of space
limitations and competition within the population.

The dynamics fok, are governed by

Xo = —KiXq1 + KoXsg (98)

wherek; denotes the rate of nutrient consumption per unit of pomrandk; the
rate of nutrient production due to the action of subtilin. fél@recisely, the second
term is proportional to the average concentration of Spagfdy simplicity [20]
assume that the average concentration is proportionaktadhcentration of SpaS
for a single cell.

The dynamics for the remaining three states depend on theetisstate, i.e., the
state of the three switches. In all three cases,

- —lixi If §is OFF
Tk

—lixi if §is ON. (©-9)

It is easy to see that the concentratiplecreases exponentially toward zero when-
ever the switcts is OFF and tends exponentially towakd|; wheneverS is ON.
Note that the model is closely related to the piecewise affindels studied by [13,
5]. The key differences are the nonlinear dynamicg;ofnd the stochastic terms
used to describe the switch behavior.

9.3.3 A Formal PDMP M odel

We now try to develop a PDMP| = ((Q,d, X), f,Init,A,R), to capture the mech-
anism behind subtilin production outlined above. To do tiesneed to define all the
guantities listed in Definition 9.1.
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FIGURE 9.1: Visualization of discrete state space.

The presence of the three switch&g, (&4, andSs) dictate that the PDMP model
should have 8 discrete states (see Figure 9.1). We denate diszrete states by

Q:{qu'~'7q7}7 (910)

so that the index (in binary) of each discrete state refldwsstate of the three
switches. For example, statp corresponds to binary 000, i.e., all three switches
being OFF. Likewise, statgs corresponds to binary 101, i.e., switch&sand S
being ON and switcts, being OFF. In the following discussion, the state hames
do, - - - , g7 and the binary equivalents of their indices will be usedriciangeably. A
wildcard,, will be used when in a statement the position of some swidmmate-
rial; e.g., 1x x denotes that something holds whgnis ON, whatever the values of
S, andSs may be.

The discussion in the previous section suggests that ther®e eontinuous states
and all of them are active in all discrete states. Thereftre,dimension of the
continuous state space is constant

d(q) =5, forallqe Q. (9.12)

The definition of the survival function (9.3) suggests that dpen setX (q) C R®
are used to force discrete transitions to take place aticerédues of state. In the
subtlin production model outlined above the only forcedsitions are those induced
by the deterministic switcBs: S3 has to go ON whenevesp falls under the threshold
n and has to go OFF whenever it rises over this threshold. Tinassitions can be
forced by defining

X(0x%) =R x (n,0) x R and X(1x%) =R x (—o0,n) x R3. (9.12)

The three elements defined in Equations (9.10)—(9.12) cetelgldetermine the hy-
brid state space?(Q,d, X), of the PDMP.
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The family of vector fields,f(q,-), is easy to infer from the above discussion.
From Equations (9.6)—(9.9) we have that

[x1(1~ mrrers Drad) | (11~ Frseetmad) |
—kax1 + koXa —kix1 + koxs
f(go,X) = —l3x3 f(a,x) = —l3x3
—laxq —laxq
i —IsXs } L Ks — IsXs
%11~ i o Dt )| [™X1(1~ i o D) |
—kaX1 + koXa —kix1 + koxs
f(Qo,X) = —l3x3 f(ds,x) = —l3x3
K —l4%4 Kg —la4x4
L —|5X5 i L k5 - |5X5
[x1(1— rrere Drad) | [ ™a(L~ i o D) |
—kyx1 + koXs —kix1 + koxa
f(Q4,X) = ks — l3X3 f(gs,X) = ks —I3x3
—lax4 —lax4
i —I5Xs } L Ks — IsXs
[rxa (1 min{xz/)go,Dmax} )| i (1— min{Xz/)é%o.,Dmax} )
—kaX1 + koXa —kix1 + koxa
f(Qe,X) = ks — l3X3 f(a7,x) = ka —l3x3
ks —14%a ks — 144
L —lgxs i ks — I5X;

Notice that most of the equations are affine (and hence dlobigischitz) inx. The
only difficulty may arise from the population equation whismonlinear. However,
the bounds orx; andx, established in Proposition 9.1 below ensure that Assump-
tion 9.1 is met.

The probability distributioninit, for the initial state of the model should respect
the constraints imposed by Assumption 9.1. We therefongirethat the distribution
satisfies

Init({0xx} x {xeR®|x2<N}) =0, Init({1s} x {xeR®|x,>n})=0. (9.13)

The initial state should also reflect any other constraimigased by biological in-
tuition. For example, sincg; reflects theB. subtilispopulation, it is reasonable
to assume that; > 0 (at least initially). Moreover, the form of the logistic et
tion (9.6) suggests that another reasonable constraihatgnitially x; < De(X2).
Finally, since continuous states, ..., xs reflect concentrations, it is reasonable to
assume that they also start with non-negative values. Téws&raints can be im-
posed if we require that for afj € Q

Init({g} x {x€ R®| x1 € (0,Dw(X2)) and mir{xz, X3, Xs,%s} >0})=1. (9.14)

Any probability distribution that respects constraintsl@® and (9.14) is an accept-
able initial state probability distribution for our model.
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a7

a4 d6

a2

FIGURE 9.2: Transitions out of statg.

The main problem we confront when trying to express the Balgroduction
model as a PDMP is the definition of the rate functionintuitively, this function
indicates the “tendency” of the system to switch its disergate. The rate function
A will govern the spontaneous transitions of the switcBeandSs; recall thatSs
is deterministic and is governed by forced transitions. fespnt the design of an
appropriate functiold we focus on discrete statg (the design ofA for the other
discrete states is similar). Figure 9.2 summarizes theatstransitions out of state
gs- Notice that simultaneous switching of more than one of thigchesSs, &, S
is not allowed. This makes the PDMP model of the system moeaustlined. It is
also a reasonable assumption to make, since simultanedahisg of two or more
switches is a null event in the underlying probability space

Recall thaigg corresponds to binary 110, i.e., switct®saand$, being ON andss
being OFF. Of the three transitions outggf the one tay, (S3 — OFF) is forced and
does not feature in the construction of the rate funcfionFor the remaining two
transitions, we define two separate rate functions,, opp(x) and /\%ﬁ oN®X).
These functions need to be linked somehow to the transitiobabilities of the
discrete time Markov chain with sampling periadused to model the probabilistic
switching in [20]. This can be done via the survival functafrEquation (9.3). The
survival function states that the probability that the stwi, remains ON throughout
the intervallkA, (k+ 1)4] is equal to

exp(— /:H)AASW OFF(X(T))dT) .

According to Equation (9.4) this probability should be ddoal — ag(x3(kA)). As-
suming thatA is small enough, we have that

1 ao(xs(ka)) ~ exp( ~LAg, . opp(X(kA)) ) .
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Selecting

)\84—> OFF(X) = @ (9.15)

achieves the desired effect. Likewise, we define
In(1+4c'xq) —In(c'xq)

/\Sﬁ ONX) = A (9.16)
and set the transition rate for discrete st@ai¢o
A(G6,X) = Ag,_. oFF(X) + A5 ON(X): (9.17)

Notice that the functiondg, . oFg(x) and As. oN(x) take non-negative values
and are therefore good candidates for rate functidrg;) oN(X) is discontinuous
atxz = 0, but the form of the vector field fog; ensures that there exists> 0 small
enough such that i3(0) > 0, As oN(X(1)) is integrable along the solutions of the
differential equation over € [0, €). In a similar way, one can define rate functions
/\Stﬁ OFF(X) (replacingks by x4 andc by ¢’ in Equation (9.15)) am?]Sﬁ oN(X) (re-
placingx, by x3 andc’ by cin Equation (9.16)) and use them to define the transition
rates for the remaining discrete states (in a way analogolgtiation (9.17)).

The last thing we need to define to complete the PDMP modekigtbbability
distribution for the state after a discrete transition. ©héy difficulty here is remov-
ing any ambiguities that may be caused by simultaneousisggtof two or more of
S3, &4, andSs. We do this by introducing a priority scheme: Whenever thedd
transition has to take place it does, else either of the sp@oius transitions can take
place. For statgg this leads to

R(d6,X) = J(g,. (4,X) If (06, X) € Z° (9.18)
else
Ag,— OFF(X) As. ON(X)
R(d6,X) = %767)()5@4,@ (9, %) + Sj\(Tx)é(qwx)(q,x). (9.19)

Here d45)(0,X) denotes the Dirac measure concentratedjat). If desired, the
two components of the measure((9.18) corresponding to the forced transition
and (9.19) corresponding to the spontaneous transiti@mspe written together us-
ing the indicator functionly (g, x), of the setZ.

R(ge,X) = (1~ 12(d6, X)) O(g,.x) (0, X)+

A X A X
_ OFFX ~ ONW
1% (0s6,X) (SA,\(T,X)CS(%x) (9,X) + S%\(was(qu) (a,%) |

The measur® for the other discrete states can be defined in an analogousema
It is easy to see that this probability measure satisfiespsion 9.1.

The above discussion shows that the PDMP model also satis@issof the con-
ditions of Assumption 9.1. The only problem may be the non&Zeondition. While
this condition is likely to hold because of the structurela# vector fields and the
transition rates, showing theoretically that it does igejahallenging.
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9.34 Analysisand Simulation

To ensure that the model makes biological sense and to $§ingoimewhat the
analysis, we impose the following restrictions on the valokthe parameters.

ASSUMPTION 9.2 All model constants C, N, r, Xo, Dmax, ki fori=1,...,5
and |; for i = 3,4,5 are positive. Moreover, ki < rXg.

Under these assumptions the following fact is easy to dstabl

PROPOSITION 9.1 Almost surely:
(i) For allt>0, (q(t),x(t)) € Z and for almost allt >0, (q(t),X(t)) € 2.
(i) For allt >0, X1(t) € [0,Du(X2(t))], and min{Xa(t),x3(t),Xs(t),xs(t)} > 0.

PROOF (Outline) The first part is a general property of PDMP, and follows
directly from (9.13) For the second part, the proof can be done by induction.
We note first that by (9.14) the conditions hold almost surely for the initial
state. The discrete transitions leave the continuous state unaffected, there-
fore we only have to show that the conditions remain valid along continuous
evolution.

Let x(0) denote the state at the beginning of an interval of continuous
evolution and assume that condition 2 holds for this state. The form of the
vector field is such X3 > —l3xg. Therefore, x3(t) > e '3'x3(0) > 0 throughout
the interval of continuous evolution. Similar arguments show that X4(t) >0
and Xs(t) > 0. Moreover, since X1 = 0if X; = 0 or X1 = D (X2), X1(t) remains in
the interval [0,De(Xp)] if it is initially in this interval.

It remains to show that X2(t) > 0. Consider the function V(X) = % Differ-
entiating and assuming Xo < Dmax/Xo we get

V(X) =X (17 m) — i—%(fkllerkzX;g)

X2 X2
2
=% — (o —ky) (ﬁ—;) ~ ke
2
< —(rXo—ki) (ﬁ—;)

If we let a =Xy /% the last inequality reads a <ra — (rXg— kl)az. If ky < rXp,
then for a large enough (equivalently, X, small enough since X3 is bounded) the
quadratic term dominates and keeps o bounded. Therefore, x;(t) > 0 along
continuous evolution. [ |

Even though some additional facts about this model can lablesied analyti-
cally, the most productive way to analyze the model (esfigéia stochastic behav-
ior) is by simulation. The model can easily be coded in sirtiofa using the methods
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FIGURE 9.3: Sample solution for PDMP model of subtilin protdan.

outlined in Section 9.2.2. In this case the only forced titeorss are those governing
the switchS;. An obvious choice for a function to code these forced ttaons as
zero crossings ig(g,x) = X — n; the same function can be used for switchihg
ON (crossing zero from above) and OFF (crossing zero frorovidelServicing the
event simply involves switching the state Sf

The model was coded in Matlab using ode45 with events enabigaical trajec-
tories of the system is shown in Figure 9.3.

9.4 DNA Replication in the Cell Cycle
9.4.1 Qualitative Description

DNA replication, the process of duplication of the cells giémmaterial, is central
to the life of every living cell, and is always carried outqrio cell division to ensure
that the cells genetic information is maintained. Repi@atakes place during a
specific stage in the life cycle of a cell (the cell cycle). Tl cycle (as shown in
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o &%

M S

FIGURE 9.4: The phases of cell cycle.

Figure 9.4) can be subdivided in four phases: G1, a growtkghmawhich the cell
increases its mass; S (synthesis), when DNA replicatioestpkace; G2, a second
growth phase; and finally M phase (mitosis), during whichaék divides and gives
rise to two daughter cells.

Cell cycle events are regulated by the periodic fluctuatiotize activity of protein
complexes called Cyclin Dependent Kinases (CDK). CDK aeentlaster regulators
of the cell cycle [30]. In Figure 9.5, the so-called quatitiea model of cell cycle
regulation is illustrated. There are two identified thrddban CDK activity, thresh-
old 1 associated with entry into S phase and threshold 2 @edavith entry into
mitosis. Complex models have already been developed fdrittelnemical network
regulating the fluctuation of CDK activity during the cellaty [34].

Because daughter cells must have the same genetic infomaatiheir progenitor,
during S-phase, every base of the genome must be replicatedamnd only once.
Genomes of eukaryotic cells are large in size and the speegplcation is limited.
To accelerate the process, DNA replication initiates fronitiple points along the
chromosomes, called origins of replication. Followingiation from a given origin,
replication continues bi-directionally along the genogieing rise to two replication
forks moving in opposite directions.

To be able to ensure that each region of the genome is regdicatce and only
once, a cell must be able to distinguish a replicated from raneplicated region.
Before replication, and while CDK activity is low, originseapresent in the pre-
replicative state and can initiate DNA replication when CBétivity passes thresh-
old 1. When an origin fires (or when it is passively replicaigd passing replication
fork from a nearby origin) it automatically switches to thespreplicating state and
can no longer supportinitiation of replication. CDK adtigs over threshold 1 inhibit
conversion of the post-replicating state to the pre-rafilie state. To re-acquire the
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FIGURE 9.5: Quantitative model of cell cycle regulation.

pre-replicative state origins must wait for the end of thetage, when CDK activity
resets to zero. With this simple mechanism, re-replicaqmevented.

Initial models, influenced by the replication of bacteriahgmes, postulated that
defined regions in the genome would act as origins of rejdinah every cell cy-
cle [16]. Indeed, initial work from the budding yeag8daccharomyces cerevisjae
identified specific sequences which acted as origins of aafdin with high effi-
ciency [31]. This simple deterministic model of origin selen however is reap-
praised following more recent findings which show that, esgily in higher eukary-
otes, a large number of potential origins exist, and actigirts are stochastically
selected during each S phase [8, 26]. For example, receltavothe fission yeast
Schizosaccharomyces ponjB6] clearly showed that origins fire stochastically dur-
ing the S phase. The fission yeast genome has many hundredgeafial origins,
but only a few of them fire in any given cell cycle. Multicebuleukaryotes are also
believed to exhibit similar behavior.

9.4.2 Stochastic Hybrid Features

There are two main sources of uncertainty in the DNA replicaprocess. The
first has to do with which origins of replication fire in a pattiar cell cycle and the
second with the times at which they fire.

Not all the origins participate in every S phase [8, 26]. @wgare classified as
strongandweak according to the frequency with which they fire. Given a gdapan
of cells undergoing an S-phase, strong origins are obsdovéide in many cells,
whereas weak ones fire in only a few. This firing probabilitiyisically encoded as
a number between 0 and 1 for each origin, reflecting the ptagerof cells in which
the particular origin is observed to fire.

Even if an origin does fire, the time during the S phase wherillitdw so is still
uncertain. Some origins have been observed to fire earlire@rS phase, while
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i-1 i i+ 1

PreR l l l Case 1

@ J—>-—<—I—>-—<—|— Case 2

@ J—-><—I—>—<-|— Case 3

@ J>—<—I—><—|— Case 4
@ J—>-<—I—><—|— Case 5

Y
@ J—)-—< l l Case 6

FIGURE 9.6: Possible states of an origin.

others tend to fire later [14]. This timing aspect is usualigaed by a number in
minutes, reflecting the average firing time of the origin iropylation of cells.

The two uncertainty parameters, efficiency and firing tinme,cearly correlated.
Late firing origins will also tend to have smaller efficiergi@ his is because origins
that tend to fire later during S phase give the chance to nesathy firing origins to
replicate the part of the genome around them [18]. It is an@ngdebate among
the cell cycle community as to whether these two manifestatof uncertainty are
in fact one and the same, or whether there are separate igimlogechanisms that
determine if an origin is weak versus strong and early firiaggus late firing. The
hope is that mathematical models, like the one presentedvbeill assist biologists
in answering such questions.

During the S phase an origin of replication may find itself imenber of “states”.
These are summarized in Figure 9.6, where we concentrate anigin i and its
neighbors, denoted biy- 1 (left) andi + 1 (right). We distinguish a number of cases.

Case 1. Pre-replicative. Every origin is in this mode until the &nt becomes
active (firing time). In this case it does not replicate in dingction.

Case 2: Replicating on both sides. When the origin firing time isafead, the
origin gets activated and begins to replicate the DNA todfsdnd right. The points
of replication (“forks”) move away from the origin with a ¢am speed (“fork veloc-
ity”).

Case 3: Right replicating. When the section of DNA thiahas replicated to its
left reaches the section of DNA thiat 1 has replicated to its right, then the whole
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section between the two origins has been replicated. Oridpes not need to do any
more replication to its left and so it continues only to thghti

Case 4: Left replicating. This is symmetric to Case 3. Origiatops replication
to the right and continues to the left.

Case 5: Post replicating. The replication has finished in both dicss and the
origin has completed its job.

Case 6: Passively replicated. The section replicated by an actiigin (i+ 1 in
the figure) reaches originbefore it has had a chance to fire. Replication ¢f1
continues, overtaking and destroying origin

The above discussion suggests that DNA replication is a targrocess that
involves different types of dynamics: discrete dynamics ttuthe firing of the ori-
gins, continuous dynamics from the evolution of the repigraforks, and stochastic
terms needed to capture origin efficiencies and uncertaintyt their firing times.
In the next section we present a stochastic hybrid model & wligh these diverse
dynamics.

9.43 A PDMP Modél

The model splits the genome in pieces whose replicationsigrasd to be inde-
pendent of one another. Examples of pieces are chromosd@hesmosomes may
be further divided into smaller pieces, to exclude, for eganrDNA repeats in the
middle of a chromosome which are usually excluded in seqogrdatabases and
micro-array data. The model for each piece of the genomeinejthe following
data:

e The lengthL, of the piece of the genome, in bases. We will assumeliligt
large enough so that, if we normalize bywe can approximate the position
along the genome with a continuous quantity, [0,1]. This is a reasonable
approximation even for the simplest organisms.

e The normalized position®); € (0,1), i = 1,2,...,N, of the origins of repli-
cation along the genome. For notational convenience, werapfwo dummy
origins to the list of true origins, situated at the ends afhregenome piece,
Op=0 andONH =1.

e The firing rate of the originsA € R, i =1,2,...,N, in minutes®. We set
Ao =Ans1=0.

e The fork velocity,v(l) € Ry as a function of the location, € [0,1], in the
genome.

Using micro-array techniques, values for all these pararsedre now becoming
available for a number of organisms.

The above discussion reveals that during the S phase, emih of replication
can find itself in one of six discrete states: pre-repliafreR replicating on both
sides, RB, replicating to the right onlyRR replicating to the left onlyLR, post
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FIGURE 9.7: Definition of continuous states of an origin.

replicating,PostR and passively replicate®assR The discrete state space of our
model will therefore be

Q = {PreRRB RR LR, PostRPassR".

The discrete statey € Q will be denoted as a N-tuple,= (q1,dp, . ..,qn) With g €
{PreRRB,RR LR, PostRPassR. The dummy origins introduced at the beginning
and the end of the section of DNA are not reflected in the disatate, we simply set
0o = On+1 = PreR Note that the number of discrete state¥, grows exponentially
with the number of origins. Even simple organisms have s¢vemdreds of origins
and even though only a small fraction of the possible stat¢sigited in any one S
phase, the total number of discrete states reached can beaem

The number of continuous states depends on the discreteastdtwill change
during the evolution of the system. Since the continuoue stflects the progress
of the replication forks, we introduce one continuous stateach origin replicating
only to the left, or only to the right and two continuous stafter each origin repli-
cating in both directions. Therefore the dimension of theticmous state space for
a given discrete statge Q will be

d(a) = [{i [ ai € {RRLR}}|[+2[{i [ g = RB},

where, as usual; | denotes the cardinality of a set. For an origin wijtke {RR RB}
we will useR; to denote the length of DNA it has replicated to its right. dwkise
for an origin withg; € {LR RB} we will useL; to denote the length of DNA it has
replicated to its left (see Figure 9.7). For a discrete stgte Q, the continuous
statex € R4 will be a d(q)-tuple consisting of th& andL; listed in the order of
increasing; if g = RBwe assume that thg is listed beford;. Notice that initially
all origins will be in the pre-replicative mode and after dwmpletion of the S phase
all origins will be in either post replicating or passivepticated. Therefore both at
the beginning and at the end of the S phase we will ltge¢ = 0 and the continuous
state space will be trivial.

The open setX(q) are used to force discrete transitions to take place. Figure
also summarizes the discrete transitions that can take fidaeach origin of replica-
tion. All transitions except the one froRreRto RBare forced and have to do with
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the relation between the replication forks of origiand those of other replicating
origins to its left and to its right. For a discrete stgte Q and an origin = 1,...,N
we denote these replicating neighbors to the left and rifjbtigin i by

LNi(q) =max{j <i|q; € {RRRB}}

RN(g) =min{j > i qj € {LR RB}}.
Whenever the sets are empty welsht(g) = 0 andRN (q) = N + 1.

We build the seX(q) out of setsX;(q), one of each active origin. Forced transi-
tions occur when replication forks meet. For example, i§iori is only replicating
to its right,q; = RR and its right replication forkR;, meets the left replication fork,
LRN(q)’ of its right neighborRN (q), then origini must stop replicating and switch
to gi = PostR Therefore

o = RR=>Xi(q) = {ORN g —LRN(g > O +R} CRY 9.

Notice that the set is well defined: becauge- RRand, by definition,qRN(q) €

{LR,RB} bothR andLRpq are included among the continuous states. Likewise,
we define

Gi = LR=Xi(0) = {OLN,(q) + RRN(g < O —Li}

6i = RB=Xi(0) = {OLN g +RRN( < Oi ~Li} " {ORN( ~LRN(g > O+ R}
G = PreR=-X() = {OLN,( * RRN(q) < O} M{ORN (g ~LRN(@ > O}

qi € {PostRPassR = X(q) = R%9.

We define the overall set by

X(q) is clearly an open set.
The vector field f, reflects the continuous progress of the replication foltisag
the genome. It is again defined one origin at a time. We set

V(Oi+R) €R ifg=RR

. _ v(Gi +Ri) 2 i
fi(q,x) = [V(Oil—i)} eR° if g =RB
V(OifLi) eR if Qi =LR

Recall that all other discrete states do not give rise to amticuous states. The
overall vector fieldf (q,x) € R4 is obtained by stacking th&(q, x) for the individ-
ual replicating origins one on top of the other. Under milduasptions on the fork
velocity it is easy to see thd{q,-) satisfies Assumption 9.1.

The initial state measure is trivial. Biological intuitieuggests that at the begin-
ning of the S phase all origins are pre-replicative and nba&jion forks are active.
The initial probability measure is therefore just the Dinagasure

Init(q,x) = 5PreFé“x{0}(q’X)'
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Recall that wherm = PreR" the continuous state is triviale R® = {0}.

The only spontaneous transition in our model is the one friate ®reRto the
stateRB; all other transitions are forced. The transition rategoverning sponta-
neous transitions reflects the randomness in the firing tofikee origins. Therefore
A is only important for origins in statereR We defineX one origin at a time, setting

_ [ A ifg=PreR
i@ %) = {0 otherwise

This implies that the firing timeT;, of origini have a survival function of the form
PTi >t]=e. (9.20)

Notice that herd; refers to the time originwould fire in the absence of interference
from other origins, not the observed firing times. In prastiarigini will sometimes
get passively replicated by adjacent origins before it gethance to fire. There-
fore the observed firing times will show a bias toward smalkdues that the AA;
anticipated by (9.20). We set the overall rate to

N
A (qax) = Zl/\l(qax)

Finally, for the transition measufwe distinguish two cases: either no transition
is forced (i.e., state before the transition isa), or a transition is forced (i.e., state
before the transition id 2). In the former case, fay € Q let

di(q) = I{j <i|qj € {RRLR}}+2|{j <i|q; =RBY}|.

For (§,X) € 2 with G = PreRdefine the measure

as the Dirac measure concentrated(qrx) € 2 with g = RB, q; = §; for j #1,

xj = Xj for j < di(4), Xd,(q) = Xd(§+1 = 0, andxj;2 = X; for j > di(§). In words, if
origini fires spontaneously, its discrete state chang&Btand two new continuous
states are introduced to store the progress of its remitédirks. Since a spontaneous
transition takes place whenever one of the origins in SR can fire, the overall
reset measure from staié X) € & can be written as

3i|a=PreR 4% RB(%X)

A @) (9.21)

R((q,X), (qv)’z)) =
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Finally, if (§,X) € 02, i.e., a transition is forced for at least one origin, defime t
“guard” conditions

Gq—»PaSqu’)z) = (ql = PrER)/\
[(OLN(q) + RRN(@) = O V (ORN(g) ~ LRN(q) < O]

G, RRGX) = (G =RBA

(OLN,(q) T RRN(g) = Oi = Li) A(ORN(g) ~LRN(g) > O +R)
Gy—LR(G,X) = (G =RBA

(ORN(g) ~LRN(g) < O +R) A (OLN,(g) + RRN(q) < G —Li)

Gy PostRG,X) = [(Gi = RB)A

(ORN(g) ~ LRN(q) = Oi+ R) A (OLN,g) + RRN(q) = Oi — L))
G =RRIA(ORN (g ~LRN(g = Oi+R)]
G = LR) A (OLN(q) +RRN(q) = O — Li)].

We can then definB((:,-), (§,X)) as a Dirac measure concentrated q/x) with

PassRif G, passid,X) is true
~_JRR if G, RRGX) istrue
=R if Gy _LR(G:X) is true
PostR if G, postR:X) is true

andx same ag, with the elements correspondingitwith g; # G dropped. Notice
that, as in the case @&. subtilis if forced transitions are available they are taken,
preempting any spontaneous transitions.

9.4.4 Implementation in Simulation and Results

The model of DNA replication is very complex, with a potelifi@normous num-
ber of discrete (8) and continuous (g) states. The model has the advantage that it is
naturally decomposed to fairly independent componen¢srtbdels for the individ-
ual origins) which interact via their continuous stateg (hogress of the replication
forks). Current research concentrates on exploiting caitipoal frameworks for
stochastic hybrid systems ( [2, 28, 32], see also ChapteitRi®folume) to model
and analyze the behavior of the DNA replication mechanism.

In the meantime, the best way to analyze the behavior of ffstem is through
simulation. A simulator of the DNA replication process waveloped which simu-
lates the DNA replication process genome wide, given a fipeggnome size, spe-
cific origin positions and efficiencies and specific fork \aiies. Event detection
was accomplished by computing the zero crossings of fumstd the form

9(6:X) = ORN(g) ~LRN(g — O — R

(for the discrete transition frolRRto PostR and similar functions for the remain-
ing transitions). Servicing the events involved switchihg discrete state, but also
changing the continuous state dimension, by dropping oingddtates.
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FIGURE 9.8: Evolution of unreplicated DNA.

Simulation results for a number of runs of the model are shiavidgure 9.8. Here
the genome size used was 12 million bases, with 900 originedaced at random
locations and with random efficiencies. The fork velocityswanstant at 5500 bases
per minute. The figure clearly shows the randomness in the Bghcation process
predicted by the model.

9.5 Concluding Remarks

We have presented an overview of stochastic hybrid modé&ses that arise in
biochemical processes. We have argued that stochastimhdgoramics play a cru-
cial role in this context and illustrated this point by deygihg PDMP models for
two biochemical processes, subtilin production by the wigraB. subtilisand DNA
replication in eukaryotes. We also discussed how the mamisbe analyzed by
Monte Carlo simulation. Current research focuses on tutfiegparameters of the
models based on experimental data and exploiting the daalyd simulation results
obtained with the models (in particular the DNA replicatimodel) to gain biologi-
cal insight. Already the results of the DNA replication mbhave led biologists to
re-think long held conventional opinions about the duratib the S phase and the
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role of different mechanisms that play a role in cell cyclgulation.
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