Identification of deterministic piecewise affine models of genetic regulatory networks

Giancarlo Ferrari-Trecate

Dipartimento di Informatica e Sistemistica (DIS), Università degli Studi di Pavia, Italy

giancarlo.ferrari@unipv.it

Thanks to: O. Bernard, D. Chieppi, S. Druhle, H. de Jong, R. Porreca
Overview

1. Basics on Genetic Regulatory Networks (GRNs) and their identification
2. PieceWise Affine (PWA) models of GRNs
3. Data-based reconstruction of GRNs
 • Pitfalls of general methods for PWA system identification
 • Towards gray-box identification of GRNs
 • Switch detection
 • Threshold reconstruction
4. A case study: identification of *E. coli* carbon starvation response
5. Conclusions
Genetic regulatory networks

- **GRNs** underlie functioning and development of living organisms
 - *Components*: genes, proteins, small molecules, and their mutual regulatory interactions

Genes

- Gene: dynamical system coding for a molecule (e.g. a protein)
- Genes are regulated by the concentration of proteins present in the cell
 - Genes can be turned on and off
Genetic regulatory networks

- **GRNs** underlie functioning and development of living organisms
 - *Components:* genes, proteins, small molecules and their mutual regulatory interactions

- GRNs are usually **large** (many genes) and **complex** (feedback loops)

GRN governing *E. coli* carbon starvation response

Ropers et al., *BioSystems*, 2006
Gene expression data

- Experimental techniques in biology have led to the production of enormous amount of data on the dynamics of gene expression:
 - DNA microarrays
 - gene reporter systems

Time-series measurement of fluorescence or luminescence

$rrn\ \text{GFP}$
Data-driven modeling of GRNs

- System identification problem: derive a model of the regulatory interactions according to measurements and model structure

List of:
- genes
- proteins
- small molecules

List of:
- genetic interactions
- dynamical parameters

Expression data

\[\frac{dx}{dt} = f(x) - \gamma x \]

Gene reporter systems ⇒ adequate sampling time to capture GRN dynamics
State of the art

Classes of dynamical models that were used for modeling genes and GRNs:

- **Linear** (Gardner et al., Science 301, 2003)
 → only valid near an equilibrium point

- **Nonlinear smooth** (Jaeger et al., Nature 430, 2004)
 → more adequate description but difficult to use for identification

- **PieceWise Affine (PWA)**
 → compromise between linear and non-linear
 - Introduced by Glass and Kauffman in the 1970s
 - Ghosh and Tomlin, Syst. Biol. 1, 2004
 - Batt et al., HSCC05, Vol. 3414 of LNCS, 2005

 → tools for analysis and abstractions available
 → identification methods for PWA systems available
PWA models of GRNs

Consider a GRN composed by n genes

- **State vector**: $x = [x_1, x_2, \ldots, x_n] \in \Omega$

- **State set** $\Omega \subset \mathbb{R}_{\geq 0}^n$: hyperrectangle including the origin

Toy example

[Diagram showing a toy example of a GRN with two genes and their interactions.]
PWA models of GRNs

GRN dynamics:
\[
\dot{x}_i = f_i(x) - g_i(x)x, \quad i = 1, \ldots, n
\]

- **synthesis rate \(\geq 0\)**
- **degradation rate \(> 0\)**

\[
f_i(x) = \sum_{l \in L_i} \alpha_{il} b_{il}(x)
\]

\[
g_i(x) = \sum_{l \in \tilde{L}_i} \tilde{\alpha}_{il} \tilde{b}_{il}(x)
\]

- **0/1-valued polynomials of step functions**

\[
s^+(x_j, \theta) = \begin{cases} 1 & \text{for } x_j \geq \theta \\ 0 & \text{otherwise} \end{cases}
\]

\[
s^-(x_j, \theta) = \begin{cases} 1 & \text{for } x_j < \theta \\ 0 & \text{otherwise} \end{cases}
\]

\[
\theta : \text{switching threshold}
\]

Toy example

\[
\begin{align*}
\dot{x}_1 &= \alpha_{11} b_{11}(x) - \tilde{\alpha}_{11} x_1 \\
\dot{x}_2 &= \alpha_{21} b_{21}(x) - \tilde{\alpha}_{21} x_2
\end{align*}
\]

\[
\begin{align*}
b_{11} &= s^-(x_1, \theta^1_1) s^-(x_2, \theta^1_2) \\
b_{21} &= s^-(x_1, \theta^2_1) s^-(x_2, \theta^2_2)
\end{align*}
\]
PWA models of GRNs

- All thresholds split Ω into hyperrectangular domains $\{\Delta^j\}_{j=1}^s$
- Step functions are constant on each domain \Rightarrow PWA system

\[
\dot{x} = \mu^j - \nu^j x \quad \text{if} \quad \lambda(x) = j
\]

- $\mu^j = [\mu_1^j \ldots \mu_n^j]^T \geq 0$, $\nu^j = \text{diag}(\nu_1^j, \ldots, \nu_n^j) > 0$
- $\lambda(x) = j \Leftrightarrow x \in \Delta^j$: switching function

Toy example
PWA model of a molecule concentration

Dynamics of the i-th molecule concentration:

$$\dot{x}_i = \kappa^j_i - \gamma^j_i x_i \quad \text{if} \quad x \in M^j_i$$

- $\{M^j_i\}_{j=1}^{s_i}$: molecule domains (regions in Ω where the i-th concentration obeys to the same dynamics)

- **Inputs:** x_p, $p \neq i$

Toy example

Standing assumption: no sliding-mode behaviors
Data model

Discrete-time model for the i-th molecule concentration:

\[
\begin{align*}
 x_i(k + 1) &= \tilde{\kappa}_i^j - \tilde{\gamma}_i^j x_i(k) + \eta_i(k) \quad \text{if} \quad x(k) \in M_i^j \\
y_i(k) &= x_i(k) + \xi_i(k)
\end{align*}
\]

- $\tilde{\kappa}_i^j = (\kappa_i^j \backslash \gamma_i^j)(1 - e^{-\gamma_i^j T})$, $\tilde{\gamma}_i^j = -e^{\gamma_i^j T}$: rate parameters
- T: sampling time
- η_i, ξ_i: noise
- $y_i(k)$: measured data

Common data models:

- PieceWise Autoregressive eXogenous (PWARX): $\xi_i = 0$
- PWA Output-Error (PWA-OE): $\eta_i = 0$
Identification of GRNs

PWA discrete-time model of the GRN:

\[
\begin{align*}
 x_i(k+1) &= \bar{\kappa}_i^j - \bar{\gamma}_i^j x_i(k) + \eta_i(k) \quad \text{if} \quad x(k) \in M_i^j \\
 y_i(k) &= x_i(k) + \xi_i(k) \\
 i &= 1, \ldots, n
\end{align*}
\]

Identification problem: reconstruct

- the number of modes
- all rate parameters
- all switching thresholds

from the dataset \(\{y_i(k), k = 1, \ldots, N, i = 1 : \ldots, n\} \)

Can one use available algorithms for the identification of PWA models?
Input-output PWA models

PWARX / PWA-OE models considered in hybrid identification:

\[u(k) \xrightarrow{\text{MISO PWA system}} w(k) \]

\[z(k + 1) = \phi^j \left[\begin{array}{c} r(k) \\ 1 \end{array} \right] + \eta(k) \quad \text{if} \quad r(k) \in \mathcal{X}^j \]

\[w(k) = z(k) + \xi(k) \]

- \(r(k) = \left[\begin{array}{cccc} z(k) & \cdots & z(k - n_a) & u(k) & \cdots & u(k - n_b) \end{array} \right]' \)

\[\{\mathcal{X}^j\}_{j=1}^{\hat{s}} : \text{polyhedral partition of the polytope } \mathcal{X} \]

PWA models for a single molecule concentration fall within this class
Identification of I/O PWA models

PWARX / PWA-OE models considered in hybrid identification:

\[
\begin{align*}
 z(k + 1) &= \phi^j \begin{bmatrix} r(k)' & 1 \end{bmatrix}' + \eta(k) \quad \text{if} \quad r(k) \in \mathcal{X}^j \\
 w(k) &= z(k) + \xi(k)
\end{align*}
\]

Data set = noisy samples
\[\mathcal{N} = \{(r(k), w(k))\}_{k=1}^N\]
- Common assumptions:
 1. known model orders
 2. known regressor set \(\mathcal{X}\)

- Estimate:
 1. the number \(\tilde{s}\) of modes
 2. the parameters \(\{\phi^j\}_{j=1}^{\tilde{s}}\)
 3. the regions \(\{\mathcal{X}^j\}_{j=1}^{\tilde{s}}\)

PWARX system identification:
(Bemporad et al., 2005), (Vidal et al., 2005),
(Juloski et al., 2005), (Ferrari-Trecate et al., 2003), ...

PWA-OE system identification:
(Juloski & Weiland, 2006), (Rosenqvist & Karlström, 2006)

Software: Hybrid Identification Toolbox
Pitfalls of available methods

Existing identification methods are generic in nature and do not exploit features of PWA models of GRNs

Example 1: Switch detection from noisy measurements

- Very challenging problem for general PWARX / PWA-OE models
- Much easier for PWA models of GRNs

\[
g(k) = \begin{cases}
1 & \text{if } k < 20 \\
0 & \text{if } k \geq 20
\end{cases}
\]
Pitfalls of available methods

Existing identification methods do not take into account constraints of PWA models of GRNs

Example 2: switching thresholds ⇒ hyperrectangular domains

Neglecting this kind of information ...

The concept of threshold associated to a concentration variable is lost
Pitfalls of available methods

Existing hybrid identification methods produce a single result but data are often scarce and multiple models might be plausible.

Example: expression data in three domains

Problem: find thresholds separating domains

Three “minimal” combinations of thresholds
All of them should be produced!
Identification of PWA models of GRNs

Our approach: gray-box identification

1) Detection of switches in gene expression data

2) Estimation of the number of modes and attribution of the measurements to mode data sets

3) Reconstruction of
 • thresholds on concentration variables
 • all “minimal” combinations of thresholds consistent with the data

4) Estimation of kinetic parameters for all models generated in point 3

• Step 2 is currently under study
• Step 4 is easy (LS on each mode data set)

Next:
• two algorithms for step 1
• a procedure for step 3
Switching index

(Porreca et al., 2006)

PWA-OE model for the \(i\)-th molecule:

\[
x(k + 1) = \tilde{\kappa}^i - \tilde{\gamma}^i x(k) \quad \text{if} \quad x(k) \in M^i
\]

\[
y(k) = x(k) + \xi(k), \quad \xi(k) \sim WGN(0, \sigma_n^2)
\]

\[
\{M^j\}_{j=1}^s : \text{molecule domains}
\]

Switching index:

\[
o(k) = \frac{x(k + 1) - x(k)}{x(k) - x(k - 1)}
\]

The index emphasizes switches:

- if \(x(k - 1), \ x(k), \ x(k + 1)\) belong to the same molecule domain for \(k = k_a, \ldots, k_b\), then \(o(k)\) is constant
- otherwise, it has a varying profile
Behavior of the switching index

(a)

(b)

(c)
Moving Average (MA) switching indexes

$$\bar{\delta}(k) = \frac{\bar{x}(k+1) - \bar{x}(k)}{\bar{x}(k) - \bar{x}(k-1)} = \frac{x(k+W) - x(k)}{x(k+W-1) - x(k-1)}$$

$$\bar{x}(k) = \frac{1}{W-2} \sum_{i=1}^{W-2} x(k+i)$$
Data-based indexes

Data-based MA switching index: \[\tilde{o}(k) = \frac{y(k + W) - y(k)}{y(k + W - 1) - y(k - 1)} \]

Ratio of two Gaussian random variables

\[Z = \frac{X_1}{X_2} \]

\[X_1 = y(k + W) - y(k), \quad X_1 \sim N(x(k + W) - x(k), 2\sigma_n^2) \]

\[X_2 = y(k + W - 1) - y(k - 1), \quad X_2 \sim N(x(k + W - 1) - x(k - 1), 2\sigma_n^2) \]

Modified Cauchy distribution
- undefined mean and variance

Fieller’s theorem allows one to compute the \(\alpha \)-level confidence sets for \(\tilde{o}(k) \) in closed form

The higher \(W \) the smaller confidence sets
Data-based indexes
Switch detection algorithm

Key idea: aggregation rule based on confidence sets computed on different MA windows
Switch detection algorithm

Key idea: aggregation rule based on confidence sets computed on different MA windows

Aggregation

Switch detection

Further features of the complete algorithm (Porreca et al., 2006)
- re-initialization after the detection of a switch
- backtracking for improving switch detection
- *ad hoc* handling of confidence sets of infinite length
Switch detection based on nonlinear estimation

Exponential model of the data (j-th mode):

\[
y(k) = \frac{\kappa^j}{\gamma^j} - \left(\frac{\kappa^j}{\gamma^j} - x(k_0) \right) e^{-\gamma^j(k-k_0)T} + \xi(k)
\]

Switch detection strategy:

- estimate \(\hat{\kappa}^j, \hat{\gamma}^j, \hat{x}(k_0)\) using aggregated measures up to the time \(k_P\)
- hypothesis test:
 - \(H_0: y(k_P + 1)\) belongs to the same mode;
 - \(I_\alpha\): \(\alpha\)-level confidence interval for \(y(k_P + 1)\) under \(H_0\)
- switch detection rule: \(y(k_P + 1) \not\in I_\alpha\)
Comparison of the methods

Results based on extensive simulations

<table>
<thead>
<tr>
<th>θ_{m}</th>
<th>switching indexes</th>
<th>nonlinear estimation</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{-5}</td>
<td>accuracy 97.1%</td>
<td>accuracy 75.3%</td>
</tr>
<tr>
<td></td>
<td>fragmentation 4.4%</td>
<td>fragmentation 34.4%</td>
</tr>
<tr>
<td>10^{-4}</td>
<td>accuracy 93.8%</td>
<td>accuracy 80.7%</td>
</tr>
<tr>
<td></td>
<td>fragmentation 5.2%</td>
<td>fragmentation 26.9%</td>
</tr>
<tr>
<td>10^{-3}</td>
<td>accuracy 69.7%</td>
<td>accuracy 69.7%</td>
</tr>
<tr>
<td></td>
<td>fragmentation 16.4%</td>
<td>fragmentation 30.7%</td>
</tr>
<tr>
<td>10^{-2}</td>
<td>accuracy 22.3%</td>
<td>accuracy 63.8%</td>
</tr>
<tr>
<td></td>
<td>fragmentation 34.3%</td>
<td>fragmentation 15.2%</td>
</tr>
</tbody>
</table>
Reconstruction of switching thresholds

Assume that in early stages of identification:

- the number of modes has been estimated
- data have been attributed to modes of operation (i.e. data have been partitioned into mode data sets F_1, \ldots, F_s)

- **Switching thresholds**: axis-parallel (ap-) hyperplanes
- A set of switching thresholds consistent with the data must separate all pairs $(F_p, F_q), p \neq q$

How to find all “minimal” combinations of ap-hyperplanes that separate the sets F_1, \ldots, F_s?
Separation power of ap-hyperplanes
(Druhle et al., 2005)

- An ap-hyperplane has a supporting vector parallel to one axis
 - The label of the axis is the direction of the ap-hyperplane
- The separation power $S(\theta)$ of an ap-hyperplane θ describes the separated data sets
- Two ap-hyperplanes with a same direction and a same separation power are equivalent (thus defining equivalence classes of ap-hyperplanes)
Cuts

For each class of equivalence, the ap-hyperplane that minimizes the empirical risk (i.e. that lies in the middle of the equivalence class) is a cut.

The collection C^* of all cuts can be easily computed.

Standing assumption: all pairs of sets are separated by C^*

C^* contains unnecessary cuts (i.e. unnecessary regulation circuits)

Occam’s razor: find the simplest collections of cuts that separate the sets
Multicuts

A collection of cuts such that all pairs of sets are separated is a **multicut**

\[
\mathcal{M}_1 \quad \mathcal{M}_2 \quad \mathcal{M}_3 = C^*
\]

Rough idea: find all minimal multicuts by enumerating all multicuts
- combinatorial explosion!

Better ideas:
- remove cuts that are “redundant”
- find criteria for avoiding the enumeration of all multicuts
Multicut algorithm

(Druhle et al., 2005)

- remove cuts that are “redundant”
- find criteria for avoiding the enumeration of all multicuts

How to do it?

Mathematics: define partial order relations on cuts and multicuts and exploit the theory of POSETS.

Algorithms: branch-and-bound methods for computing all minimal multicuts
A case study

Identification of the GRN governing carbon starvation response of *E. coli*

Transitions from exponential to stationary phase involve observable changes in:

- morphology,
- metabolism,
- gene expression,
- ...

![Graph showing log (pop. size) over time with a transition at > 4 h]
\[
\begin{align*}
\dot{x}_{\text{CRP}} &= \kappa_{\text{CRP}}^0 + \kappa_{\text{CRP}}^1 s^- (x_{\text{Fis}}, \theta_{\text{Fis}}) s^+ (x_{\text{CRP}}, \theta_{\text{CRP}}) s^+ (x_S, \theta_S) - \gamma_{\text{CRP}} x_{\text{CRP}} \\
\dot{x}_{\text{Fis}} &= \kappa_{\text{Fis}}^0 (1 - s^+ (x_{\text{CRP}}, \theta_{\text{CRP}}) s^+ (x_S, \theta_S)) \\
&\quad + \kappa_{\text{Fis}}^1 s^+ (x_{\text{GyrAB}}, \theta_{\text{GyrAB}}) (1 - s^+ (x_{\text{CRP}}, \theta_{\text{CRP}}) s^+ (x_S, \theta_S)) - \gamma_{\text{Fis}} x_{\text{Fis}} \\
\dot{x}_{\text{GyrAB}} &= \kappa_{\text{GyrAB}}^0 s^- (x_{\text{Fis}}, \theta_{\text{Fis}}) - \gamma_{\text{GyrAB}} x_{\text{GyrAB}} \\
\dot{x}_{\text{rrn}} &= \kappa_{\text{rrn}} s^+ (x_{\text{Fis}}, \theta_{\text{Fis}}) - \gamma_{\text{rrn}} x_{\text{rrn}} \\
\dot{x}_S &= 0
\end{align*}
\]
Switch detection

Data produced by an OE-PWA model ($\times = \text{true switches}$)

- simulation of the transition stat. \rightarrow exp. due to carbon upshift

Vertical lines: switch detected by the algorithm based on nonlinear estimation

- all switches have been reconstructed
- one spurious switch in the profile of protein Fis
Reconstruction of switching thresholds

Data produced by a PWARX model (vertical lines = true switches)

- correct classification used for building the mode data sets $\mathcal{F}_1, \ldots, \mathcal{F}_s$
Reconstruction of switching thresholds

Non “redundant” cuts found by the algorithm:

<table>
<thead>
<tr>
<th>Cut</th>
<th>Variable</th>
<th>Threshold value</th>
<th>Interaction</th>
<th>Correct? (Y/N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_1</td>
<td>x_{Fis}</td>
<td>0.26</td>
<td>Fis activates fis</td>
<td>N</td>
</tr>
<tr>
<td>C_2</td>
<td>x_{GyrAB}</td>
<td>0.49</td>
<td>GyrAB activates fis</td>
<td>Y</td>
</tr>
<tr>
<td>C_3</td>
<td>x_{rrn}</td>
<td>0.03</td>
<td>Stable RNAs activate rrn</td>
<td>N</td>
</tr>
<tr>
<td>C_4</td>
<td>x_{CRP}</td>
<td>0.65</td>
<td>CRP inhibits fis</td>
<td>Y</td>
</tr>
<tr>
<td>C_5</td>
<td>x_{Fis}</td>
<td>0.5</td>
<td>Fis activates rrn</td>
<td>Y</td>
</tr>
<tr>
<td>C_6</td>
<td>x_{Fis}</td>
<td>0.74</td>
<td>Fis inhibits $gyrAB$</td>
<td>Y</td>
</tr>
</tbody>
</table>

Minimal multicuts found:

<table>
<thead>
<tr>
<th>Multicut</th>
<th>Cuts in multicut</th>
<th>Correct? (Y/N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC_1</td>
<td>${C_2, C_3, C_6}$</td>
<td>${Y, N, Y}$</td>
</tr>
<tr>
<td>MC_2</td>
<td>${C_2, C_4, C_6}$</td>
<td>${Y, Y, Y}$</td>
</tr>
<tr>
<td>MC_3</td>
<td>${C_2, C_5, C_6}$</td>
<td>${Y, Y, Y}$</td>
</tr>
</tbody>
</table>
Reconstruction of switching thresholds

Merging the best minimal multicuts obtained on stat. \rightarrow exp. and exp. \rightarrow stat. data sets, only one interaction (autoactivation of CRP) has not been inferred.
Conclusions

• Data-driven modeling of GRNs is a very active area of systems biology
 • Experimental techniques for obtaining accurate gene expression data are available

• Hybrid systems are appealing for modeling GRNs
 • compromise between linear and nonlinear models
 • they preserve the on/off behavior of genes

• Identification of PWA models of GRNs: exploit structure in order to
 • improve identification results
 • obtain multiple, biologically meaningful models

Current limitations of the proposed methods for switch detection and threshold reconstruction:
• absence of sliding-mode behaviors
• separability of mode data sets
• no capability of detecting “missing” genes